• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nanoencapsulation of Lutein with Hydroxypropylmethyl Cellulose Phthalate by Supercritical Antisolvent*

    2009-05-15 00:25:46JINHeyang金鶴陽XIAFei夏菲JIANGCuilan江翠蘭ZHAOYaping趙亞平andHELin何琳
    關(guān)鍵詞:亞平

    JIN Heyang (金鶴陽), XIA Fei (夏菲), JIANG Cuilan (江翠蘭), ZHAO Yaping (趙亞平),** and HE Lin (何琳)

    ?

    Nanoencapsulation of Lutein with Hydroxypropylmethyl Cellulose Phthalate by Supercritical Antisolvent*

    JIN Heyang (金鶴陽)1, XIA Fei (夏菲)1, JIANG Cuilan (江翠蘭)1, ZHAO Yaping (趙亞平)1,**and HE Lin (何琳)2

    1School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China2Analysis Center of Shanghai Jiao Tong University, Shanghai 200240, China

    nanocapsule, lutein, hydroxypropylmethyl cellulose phthalate, supercritical antisolvent precipitation

    1 INTRODUCTION

    Lutein, as a kind of natural pigment widely existed in fruits, vegetables, flowers and some algaes [1], has been applied as a food additive for several years. It is popular in the market for preventing aging, protecting eyes, anti-oxidation, counter-heart disease and anti-cancer, especially as a valuable functional food ingredient [1-7]. Lutein is a derivative of α-carotene with the molecular formula of C40H56O2and its molecular structure is shown in Fig. 1.

    Figure 1 The molecular structure of lutein

    Due to the thermal and optical instability [8], the application of lutein in food is limited. Therefore, it is necessary to find a method to avoid these disadvantages. The encapsulation technique can protect food ingredients against deterioration and volatile losses, prevent the interaction between ingredients, maintain the inherent flavor and insulate some unfavorable smell. Some conventional methods, such as Wurster method, milling, spray-drying, and emulsion freeze drying, have been used in encapsulation techniques [9-11]. However, the applications in food and pharmaceutical industry is restricted by excessive use of organic solvent, high residual content of toxic solvent and other disadvantages. For example, the excess of organic solvent and high temperature in spray drying process are adverse to thermal stability and bioactivity of ingredients.

    Using supercritical CO2to encapsulate bioactive substances is a newly developed method and has been widely used because of low critical temperature and no toxicity. Some methods, such as the rapid expansion from supercritical solution (RESS), gas antisolvent(GAS), supercritical antisolvent precipitation (SAS), aerosol solvent extraction (ASES) and precipitation with a compressed fluid antisolvent (PCA), have been utilized in recent years [12-15]. Among these methods, the supercritical antisolvent (SAS), with its more feasible applications, has been given more attention [16, 17]. The protein (insulin)-loaded polymeric (PLA) microcapsules were prepared by SAS, with the average diameter of capsules in the range of 0.5-2 μm [18].

    To our knowledge, little has been reported on the nanoencapsulation of lutein with SAS. In this work, the objective is to make the nanoencapsulation of lutein by using SAS for the lutein to be used as a functional (healthy) food ingredient more conveniently. The effects of processing variables on the yield, lutein loading and efficiency of nanocapsules are studied. The morphology, the size and the content of lutein are characterized by SEM, particle size analyzer and UV spectrum, respectively. Hydroxypropylmethyl cellulose phthalate (HPMCP), widely used as an innoxious auxiliary material in the pharmacy, is selected as the coating material due to its gastric juice resistance.

    2 MATERIALS AND METHOD

    2.1 Materials

    Lutein was made in our laboratory with the purity of 92% analyzed with HPLC. HPMCP (HP55) was supplied by Hopetop Ltd. (Jiangsu, China). Acetone (AR) was purchased from Shanghai Linfeng Chemical Reagents Ltd. (Shanghai, China). CO2with the purity of 99.95% was obtained from SJTU Gas Station (Shanghai, China).

    2.2 Experimental method

    2.2.1

    Figure 2 Scheme of the apparatus for SAS experiment 1—CO2cylinder; 2—cooling system (refrigerator); 3—piston pump; 4—heat exchanger; 5—HPLC pump; 6—solution; 7—vessel (precipitator); 8—separator; 9—nozzle; 10—pressure meter

    Figure 3 Structure of the nuzzle and illustration for formation of nanocapsules

    2.2.2

    Lutein may exist in the nanospheres in two forms, adsorbed on the surface and embedded in the nanospheres, called nanocapsules. The encapsulation efficiency (EE) is defined as the ratio of the mass embedded to total amount of lutein in the product,

    The measurement is as follows. 10 mg of nanocapsules was dissolved in acetone to form a homogeneous solution, and UV spectrophotometry was used to determine the content of lutein,l. Another 10 mg of nanocapsules was in excessive hexane for several minutes so that the lutein adsorbed on the surface was dissolved in hexane, and then the contentswas determined.

    2.2.3

    The yield of product was the ratio between the final mass of nanocapsules obtained and the initial mass of raw material injected into the precipitator.

    2.2.4

    The lutein loading (LL) was the content of lutein in the final product. The measurement is similar to that in Section 2.2.2.

    2.2.5

    Scanning electron microscope (SEM) was applied to observe the morphology of HPMCP/lutein nanocapsules. A small amount of HPMCP/lutein nanocapsules were placed on one surface of a double-faced adhesive tape stuck to the sample stage, then coated with gold under vacuum condition to enhance their electric ability and observed on a JOEL (JEM-7401F) scanning electron microscope. The photos were obtained at a magnification of 30000 and 60000.

    2.2.6

    The particle size (PS) and particle size distribution (PSD) of HPMCP/lutein nanocapsules were determined by a particle size analyzer (ZETA SIZER, nano series, Malvern). A small amount of nanocapsules were put into pure water and dispersed by ultrasonic. The sample was placed in the analyzer and suitable refractive index was chosen to scan. The temperature was 25°C, the duration was 70 s and the count rate was 115 kilocycles per second. The mean diameter (m) and PSD of the sample were recorded.

    3 RESULTS AND DISCUSSION

    3.1 Effects of pressure and temperature

    Some physical properties of supercritical CO2, such as density, viscosity, diffusivity and surface tension , depend on pressure and temperature, and will affect the product in the SAS process.

    According to the experiments Nos. 1, 2 and 3 in Table 1, the yield of product increases with pressure. Lutein will reach higher supersaturation because its solubility in acetone is decreased at higher pressure, so that more lutein is deposited. On the contrary, lutein loading and encapsulation efficiency decrease as the pressure increases. The PSD of the product in Nos. 2 and 3 are shown in Fig. 4. At 40°C, the mean diameter of nanocapsules is increased from 171 nm at 13 MPa to 314 nm at 15 MPa, and the PSD is broadened from 90-310 nm to 180-640 nm correspondingly. In addition, the value of polydispersity index (PDI) reflects the uniformity of nanoparticles. The lower the PDI value, the more uniform of the particles. It is possible for the HPMCP to be expanded a little at high pressure of SC-CO2because it is a polymer.

    The experiments Nos. 1, 4 and 5 in Table 1 show that the yield has a maximum value as the temperature increases. In this ternary system, higher temperature enhances the transfer and dissolution of SC-CO2in acetone, and more lutein will be precipitated. However, higher temperature may increase the solubilities of HPMCP and lutein in the original solution and reduce the mutual solvation of SC-CO2and the solvent, so that less HPMCP and lutein are deposited. Another possible reason for the low loading of lutein is that lutein may degrade at higher temperature [19]. Therefore, the yield depends on different effects of temperature. Similarly, lutein loading and encapsulation efficiency have the minimum values accordingly. The mean diameter of product also has a maximum value in the temperature range. Since the temperature influences the infiltration of CO2into HPMCP, its effect on the particle size of product is irregular.

    An important objective of this work is to control the size of HPMCP/lutein capsules in nano-scale. It was reported that nanoparticles could be produced when the operating pressure was well above the mixture critical point (MCP) [20]. In this study, the operating temperature and pressure were controlled above the MCP of CO2-acetone binary system with 0.98 mole fraction of CO2(the data was evaluated according to Refs. [21, 22]). In experiments Nos. 1-5, when the temperature and pressure were equal to or above 40°C and 11 MPa, respectively, we obtained the nanocapsules with the mean diameter (m) ranging from 163 nm to 314 nm.

    Table 1 Experimental conditions and results

    3.2 Effects of flow rate of CO2

    The flow rate of CO2influences the mass transfer between the solvent and CO2and change the supersaturation of the solute. Higher rate usually favors the product yield, but if it is too high, the result will be opposite. As shown by Nos. 1, 6 and 7 in Table 1, the yield decreases when the flow rate of CO2is increased. The reason may be that high flow rate of SC-CO2carries the solution out from the precipitation vessel. Similarly, the lutein loading and encapsulation efficiency are not high, as shown in Table 1. When the flow rate of solution is increased from 1 ml·min-1(No. 1) to 2 ml·min-1(No. 8), the yield decreases from 57.6% to 28.3%, and the lutein loading decreases from 1.37% to 0.47%, due to the loss of HPMCP and lutein.

    The flow rate of CO2also influences the PS. As shown by Nos. 5-7 in Table 1, the PS decreases a little as the flow rate of SC-CO2increases. The reason may be that high flow rate results in higher supersaturation. Thus it is necessary to choose suitable flow rate of SC-CO2in SAS. The ratio between the flow rates of CO2and solution is also a key factor in the process.

    3.3 Effects of concentration and the ratio of HPMCP/lutein

    In Table 1, the yield and lutein loading of No. 1 are lower than those of No. 9. Higher concentration of HPMCP leads to higher supersaturation of solution and then more solute precipitate. However, the encapsulation efficiency of No. 1 is higher than that of No. 9. The possible reason is that most of lutein on the surface of the nano-spheres is taken away by the solvent in No. 1 experiment, while in No. 9, a lot of lutein is left on the surface due to its large quantity. The particle size of No. 9 is larger than that of No. 1. The similar trend was reported in Ref. [20]. Therefore, the concentration of solute is an important factor for the recovery rate.

    According to the data of Nos. 9-11 in Table 1, the effect of the ratio between HPMCP and lutein in acetone is studied. By increasing the ratio from 2.5︰1 to 10︰1, the yield increases from 83.20% to 95.35%. In No. 9, HPMCP and lutein are in their saturated concentrations at room temperature, so that the highest yield, 95.35%, is obtained. In addition, the mean diameter of capsules increases about 50 nm and the PSD becomes wider, as shown in Fig. 5 (a). The reduction of the ratio between coating material and the core usually increase the lutein loading. It is true for experiments Nos. 9 and 10. However, if the ratio is too low, the result is opposite. In No. 11, the lutein loading is the lowest among the experiments Nos. 9-11. The possible reason is that most of lutein is taken away by SC-CO2. Therefore, the lutein loading does not always increase as the amount of HPMCP decreases. For the encapsulation efficiency, the trend is similar. Thus the ratio between HPMCP and lutein plays an important role. As shown by the PS data of Nos. 9-11 and Fig. 6, the particle size of the product becomes smaller and the PSD becomes narrower as the ratio decreases, in which the concentration of HPMCP decreases from 8 to 2 mg·ml-1. The result is also consistent with a previous report [20]. The image of SEM reveals that the particles are nearly spherical, as shown in Fig. 5. The PSD is also well-proportioned as shown in Fig. 6.

    4 CONCLUSIONS

    HPMCP/lutein nanocapsules were produced using a supercritical antisolvent process. The highest yield was obtained when the initial concentrations of HPMCP and lutein were saturated, respectively. Moreover,the optimal condition for the highest lutein loading and encapsulation efficiency is 11 MPa, 40°C and the ratio of 4 mg·ml-1︰0.8 mg·ml-1ofHPMCP︰lutein. The mean diameter of the nanocapsules, being nearly spherical, was in the range of 163-219 nm. This work would promote the application of lutein in food and pharmacy industry.

    NOMENCLATURE

    HPMCPentration of HPMCP, mg·ml-1

    luteinconcentration of lutein, mg·ml-1

    mmean diameter of capsules, nm

    EE encapsulation efficiency, %

    LL lutein loading, %

    lmass of lutein in the product, mg

    pmass of product, mg

    rmass of raw material, mg

    smass of lutein on the surface of product, mg

    pressure, MPa

    PDI polydispersity index

    PS particle size, nm

    PSD particle size distribution

    temperature,°C

    svolumetric flow rate of solution, ml·min-1

    1 Landrum, J.T., Bone, R.A., Joa, H., Kilburn, M.D., Moore, L.L., Sprague, K.E., “A one year study of the macular pigment: the effect of 140 days of a lutein supplement”,, 65, 57-62 (1997).

    2 Gaziano, J.M., Manson, J.E., Ridker, P.M., “Beta carotene therapy for chronic stable angina”,, 82, 796 (1990).

    3 Cutler, R.G., “Carotenoids and retinol: their possible importance in determining longevity of primate species”,...., 87, 7627-7631 (1984).

    4 Hammond, B.R., Wooten, B.R., Snodderly, D.M., “Density of the human crystalline lens is related to the macular pigment carotenoids, lutein and zeaxanthin”,..., 77, 499-504 (1997).

    5 Mortensen, A., Skibsted, L.H., Sampson, J., Rice-Evans, C., Everett, S.A., “Comparative mechanisms and rates of free radical scavenging by caretenoid antioxidants”,, 418, 91-97 (1997).

    6 Kozuki., Y., Miura, Y., Yagasaki, K., “Inhibitory effects of carotenoids on the invasion of rat ascites hepatoma cells in culture”,, 151, 111-115 (2001).

    7 Narisawa, T., Fukaura, Y., Hasebe, M., “Inhibitory effects of natural carotenoids, alpha-carotene, beta-carotene, lycopene and lutein, on colonic aberrant crypt foci formation in rats”,, 107, 137 (1996).

    8 Subagio, A., Wakaki, H., Morita, N., “Stability of lutein and its myristate esters”,..., 63, 1784-1786(1999).

    9 Arimoto, M., Ichikawa, H., Fukumori, Y., “Microencapsulation of water-soluble macromolecules with acrylic terpolymers by the Wurster coating process for colon-specific drug delivery”,, 141, 177-186 (2004).

    10 Shu, B., Yu, W.L., Zhao, Y.P., Liu, X.Y., “Study on microencapsulation of lycopene by spray-drying”,, 76, 664-669 (2006).

    11 Breitkreutz, J., El-Saleh, F., Kiera, C., Kleinebudde, P., Wiedey, W., “Paediatric drug formulations of sodium benzoate (II) Coated granules with a lipophilic binder”,...., 56, 255-260 (2003).

    12 Matson, D.W., Fulton, J.L., Peterson, R.C., “Rapid expansion of supercritical fluid solutions: Solute formation of powders, thin films, and fibers”,...., 26, 2298 (1987).

    13 Dixon, D.J., Johnston, K.P., “Formation of microporous polymer fibers and oriented fibrils by precipitation with a compressed fluid antisolvent”,...., 50, 1929 (1993).

    14 Bleich, J., Kleinebudde, P., Mueller, B.W., “Influence of gas density and pressure on microparticles produced with the ASES process”,..., 106, 77 (1994).

    15 Liu, X.W., Li, Z.Y., Han, B., Yuan, T.L., “Supercritical antisolvent precipitation of microparticles of quercetin”,...., 13, 128-130 (2005).

    16 Falk, R., Randolph, T., Meyer, J.D., Kelly, R.M., Manning, M.C., “Controlled release of ionic compounds from poly (L-lactide) microspheres produced by precipitation with a compressed antisolvent”,., 44, 77 (1997).

    17 Mawson, S., Kanakia, S., Johnston, K.P., “Coaxial nozzle for control of particle morphology in precipitation with a compressed fluid antisolvent”,...., 64, 2105 (1997).

    18 Elvassore, N., Bertucco, A., “Production of proteinloaded polymeric microcapsules by compressed CO2in a mixed solvent”,...., 40, 795-800 (2001).

    19 Naranjo-Modad, S., López-Munguía, A., Vilarem, G., Gaset, A., Bárzana, E., “Solubility of purified lutein diesters obtained fromin supercritical CO2and the effect of solvent modifiers”,..., 48, 5640-5642 (2000).

    20 Reverchon, E., Marco, I.D., Torino, E., “Nanoparticles production by supercritical antisolvent precipitation: A general interpretation”,.., 43, 126-136 (2007).

    21 Chen, J.W., Wu, W.Z., Han, B.X., “Phase behavior, densities, and isothermal compressibility of CO2+pentane and CO2+acetone systems in various phase regions”,..., 48, 1544-1548 (2003).

    22 Wu, W.Z., Ke, J., Poliakoff, M., “Phase boundaries of CO2+toluene, CO2+acetone, and CO2+ethanol at high temperatures and high pressures”,...., 51, 1398-1403 (2006).

    2008-12-02,

    2009-03-28.

    the National High Technology Research and Development Program of China (2007AA10Z350).

    ** To whom correspondence should be addressed. E-mail: ypzhao@sjtu.edu.cn

    猜你喜歡
    亞平
    航天員王亞平的太空生活
    軍事文摘(2023年10期)2023-06-09 09:14:20
    一起完成想象作文
    軍事文摘(2022年20期)2023-01-10 07:19:44
    Optical scheme to demonstrate state-independent quantum contextuality
    探討超聲檢查在甲狀腺腫塊良惡性鑒別中的診斷價值
    減刑、假釋的目的探究與制度完善*——兼與張亞平博士商榷
    刑法論叢(2018年2期)2018-10-10 03:31:58
    Effect of blade shape on hydraulic performance and vortex structure of vortex pumps *
    孔亞平和她的三個夢
    中國公路(2017年14期)2017-09-26 11:51:37
    平拋運(yùn)動潛能知識測試題
    機(jī)械能潛能知識訓(xùn)練試題
    天天添夜夜摸| 丰满乱子伦码专区| 男女午夜视频在线观看| 天天添夜夜摸| 美女国产高潮福利片在线看| 国产成人精品久久久久久| 国产精品99久久99久久久不卡 | 啦啦啦视频在线资源免费观看| 男女无遮挡免费网站观看| 免费不卡黄色视频| 免费黄频网站在线观看国产| 男女高潮啪啪啪动态图| 熟女av电影| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美日韩在线播放| 一区二区三区精品91| 亚洲熟女毛片儿| 亚洲熟女精品中文字幕| 亚洲欧美色中文字幕在线| 777米奇影视久久| 欧美激情 高清一区二区三区| 欧美乱码精品一区二区三区| 纵有疾风起免费观看全集完整版| 三上悠亚av全集在线观看| √禁漫天堂资源中文www| 五月开心婷婷网| 日韩 亚洲 欧美在线| 七月丁香在线播放| 久久亚洲国产成人精品v| 丰满少妇做爰视频| 成人黄色视频免费在线看| 两个人免费观看高清视频| 毛片一级片免费看久久久久| 欧美精品一区二区大全| 国产在线一区二区三区精| 校园人妻丝袜中文字幕| 欧美在线一区亚洲| 国产免费一区二区三区四区乱码| 日韩精品免费视频一区二区三区| 熟女少妇亚洲综合色aaa.| www.自偷自拍.com| 成人三级做爰电影| 国产精品.久久久| 毛片一级片免费看久久久久| 99香蕉大伊视频| 国产欧美亚洲国产| 久久婷婷青草| 免费黄网站久久成人精品| 丝袜脚勾引网站| 日日爽夜夜爽网站| 黑丝袜美女国产一区| 王馨瑶露胸无遮挡在线观看| 欧美变态另类bdsm刘玥| 精品少妇内射三级| 亚洲欧洲国产日韩| 国产高清不卡午夜福利| videos熟女内射| 亚洲自偷自拍图片 自拍| av片东京热男人的天堂| 大陆偷拍与自拍| 欧美黑人精品巨大| 大片免费播放器 马上看| 国产麻豆69| 午夜福利在线免费观看网站| 国产精品蜜桃在线观看| 亚洲国产精品一区三区| 国产精品国产三级专区第一集| 午夜福利一区二区在线看| 国产片特级美女逼逼视频| 国产精品三级大全| 天天操日日干夜夜撸| 国产又爽黄色视频| av不卡在线播放| 国产一区亚洲一区在线观看| 大话2 男鬼变身卡| 久久久久久久大尺度免费视频| 亚洲国产最新在线播放| 久久ye,这里只有精品| 69精品国产乱码久久久| 秋霞在线观看毛片| 久久综合国产亚洲精品| 午夜日本视频在线| 亚洲欧美成人精品一区二区| 下体分泌物呈黄色| 黄色怎么调成土黄色| 青草久久国产| 男女床上黄色一级片免费看| 亚洲欧美日韩另类电影网站| 国产伦人伦偷精品视频| 妹子高潮喷水视频| 精品第一国产精品| 亚洲精品自拍成人| 欧美在线黄色| 亚洲精品av麻豆狂野| 制服丝袜香蕉在线| 欧美精品高潮呻吟av久久| 国产免费一区二区三区四区乱码| 观看av在线不卡| 熟女av电影| 性色av一级| 中文字幕最新亚洲高清| 1024视频免费在线观看| 午夜福利,免费看| 精品少妇一区二区三区视频日本电影 | 中文字幕制服av| 黄色怎么调成土黄色| 亚洲一码二码三码区别大吗| 久久人人爽人人片av| 狂野欧美激情性xxxx| 亚洲av日韩精品久久久久久密 | 熟女少妇亚洲综合色aaa.| 成人午夜精彩视频在线观看| 一区二区三区乱码不卡18| 男人操女人黄网站| 久久婷婷青草| www日本在线高清视频| 一边亲一边摸免费视频| 黑丝袜美女国产一区| 亚洲精品成人av观看孕妇| 精品国产一区二区久久| 少妇被粗大的猛进出69影院| 狂野欧美激情性bbbbbb| 青青草视频在线视频观看| 免费高清在线观看视频在线观看| 超碰成人久久| 国产一区二区在线观看av| 无遮挡黄片免费观看| 精品一区在线观看国产| tube8黄色片| 高清不卡的av网站| 日本一区二区免费在线视频| 热99久久久久精品小说推荐| 韩国av在线不卡| 欧美国产精品一级二级三级| 日韩av不卡免费在线播放| 国产淫语在线视频| 老司机在亚洲福利影院| 亚洲一级一片aⅴ在线观看| 大陆偷拍与自拍| 日韩 欧美 亚洲 中文字幕| 久久午夜综合久久蜜桃| av又黄又爽大尺度在线免费看| 亚洲欧美精品自产自拍| 秋霞伦理黄片| 亚洲国产毛片av蜜桃av| 国产精品久久久久久久久免| 99热全是精品| 欧美 亚洲 国产 日韩一| 亚洲欧美一区二区三区国产| 大片免费播放器 马上看| 久久久精品94久久精品| 亚洲欧洲日产国产| 久久久精品94久久精品| 久久久精品国产亚洲av高清涩受| 午夜老司机福利片| 国产女主播在线喷水免费视频网站| 久久精品国产a三级三级三级| 在线观看国产h片| 一区二区av电影网| 女人被躁到高潮嗷嗷叫费观| 亚洲情色 制服丝袜| 久久久久久久久久久免费av| 97在线人人人人妻| 一区二区三区激情视频| 亚洲精品av麻豆狂野| 又大又黄又爽视频免费| 一本一本久久a久久精品综合妖精| 久久人人爽人人片av| 精品一区二区三区av网在线观看 | 免费观看av网站的网址| 最近的中文字幕免费完整| 99精国产麻豆久久婷婷| 天堂8中文在线网| 欧美xxⅹ黑人| 老汉色av国产亚洲站长工具| 久久国产精品男人的天堂亚洲| 黄网站色视频无遮挡免费观看| 高清欧美精品videossex| 午夜久久久在线观看| 中文欧美无线码| 最近中文字幕2019免费版| 久久天堂一区二区三区四区| 欧美亚洲日本最大视频资源| av不卡在线播放| 欧美久久黑人一区二区| 久久精品久久久久久噜噜老黄| 国产精品 国内视频| 看免费成人av毛片| 欧美黑人欧美精品刺激| 美女午夜性视频免费| 黄色 视频免费看| 免费日韩欧美在线观看| 综合色丁香网| av网站在线播放免费| 国产国语露脸激情在线看| 国产精品国产三级专区第一集| 久久久久久久大尺度免费视频| 丝袜美足系列| 中国三级夫妇交换| 老鸭窝网址在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 一本—道久久a久久精品蜜桃钙片| 91精品三级在线观看| 国产黄色视频一区二区在线观看| 国产成人91sexporn| 久久av网站| 波多野结衣av一区二区av| 中文字幕最新亚洲高清| 亚洲av中文av极速乱| 国产精品二区激情视频| 国产亚洲精品第一综合不卡| 亚洲欧美激情在线| av卡一久久| 国产97色在线日韩免费| 男女边摸边吃奶| 亚洲精品美女久久久久99蜜臀 | 在线天堂中文资源库| 亚洲国产毛片av蜜桃av| 亚洲美女搞黄在线观看| 国产精品国产三级国产专区5o| 看免费av毛片| 高清av免费在线| 一本—道久久a久久精品蜜桃钙片| 日韩不卡一区二区三区视频在线| 国产精品无大码| av视频免费观看在线观看| 亚洲少妇的诱惑av| 999久久久国产精品视频| 久久国产精品男人的天堂亚洲| 国产又爽黄色视频| 亚洲 欧美一区二区三区| 亚洲美女视频黄频| 又粗又硬又长又爽又黄的视频| 99热网站在线观看| 最黄视频免费看| 日韩av不卡免费在线播放| 国产成人精品久久二区二区91 | 久久影院123| 久久久精品94久久精品| 美女扒开内裤让男人捅视频| 丝袜人妻中文字幕| 亚洲精品自拍成人| 亚洲精品aⅴ在线观看| 欧美最新免费一区二区三区| 久久av网站| 考比视频在线观看| 亚洲精品在线美女| 日本av手机在线免费观看| 如日韩欧美国产精品一区二区三区| 黄片小视频在线播放| 日韩一区二区三区影片| 男女高潮啪啪啪动态图| a级毛片在线看网站| 人妻 亚洲 视频| 黄色怎么调成土黄色| 日韩av在线免费看完整版不卡| 80岁老熟妇乱子伦牲交| 美女视频免费永久观看网站| 亚洲一区中文字幕在线| 黄色怎么调成土黄色| 国产精品 欧美亚洲| videos熟女内射| 久久精品国产a三级三级三级| 水蜜桃什么品种好| 青春草国产在线视频| 国产乱人偷精品视频| 人妻 亚洲 视频| 国产在线视频一区二区| 男女边摸边吃奶| 各种免费的搞黄视频| av在线播放精品| 97精品久久久久久久久久精品| 在线观看人妻少妇| 黄片小视频在线播放| 国产一区二区三区综合在线观看| 国产精品一区二区在线观看99| 亚洲av中文av极速乱| 久久久久国产一级毛片高清牌| 少妇猛男粗大的猛烈进出视频| 国产精品免费视频内射| 久久久国产欧美日韩av| 精品人妻在线不人妻| 夫妻性生交免费视频一级片| 永久免费av网站大全| 欧美日韩视频精品一区| 精品午夜福利在线看| 国产1区2区3区精品| 亚洲欧美激情在线| 在线观看一区二区三区激情| 久久鲁丝午夜福利片| 国产黄色免费在线视频| 各种免费的搞黄视频| 高清不卡的av网站| 亚洲精品成人av观看孕妇| 日本91视频免费播放| 亚洲国产精品999| 1024视频免费在线观看| 日韩制服骚丝袜av| 久久久久精品国产欧美久久久 | 午夜久久久在线观看| 男女高潮啪啪啪动态图| 王馨瑶露胸无遮挡在线观看| 老司机影院成人| 韩国精品一区二区三区| 国产免费又黄又爽又色| 亚洲国产精品999| 丝袜美腿诱惑在线| 街头女战士在线观看网站| 啦啦啦在线观看免费高清www| 午夜福利视频精品| 少妇人妻精品综合一区二区| 女人高潮潮喷娇喘18禁视频| 欧美黑人欧美精品刺激| 午夜福利网站1000一区二区三区| 日韩伦理黄色片| 男女边吃奶边做爰视频| av电影中文网址| 老司机靠b影院| 人妻 亚洲 视频| 美女脱内裤让男人舔精品视频| av免费观看日本| 青青草视频在线视频观看| 女人被躁到高潮嗷嗷叫费观| 蜜桃在线观看..| 欧美精品一区二区免费开放| 欧美黄色片欧美黄色片| 99国产综合亚洲精品| 精品国产一区二区久久| 日本爱情动作片www.在线观看| 亚洲精品在线美女| 国产一区有黄有色的免费视频| 看免费成人av毛片| 亚洲精品视频女| 啦啦啦在线观看免费高清www| 亚洲色图综合在线观看| 精品少妇一区二区三区视频日本电影 | √禁漫天堂资源中文www| 中国国产av一级| 女性被躁到高潮视频| 老汉色∧v一级毛片| 热99久久久久精品小说推荐| av.在线天堂| av免费观看日本| 激情五月婷婷亚洲| 久久国产亚洲av麻豆专区| 欧美成人精品欧美一级黄| 欧美激情 高清一区二区三区| 男女下面插进去视频免费观看| 国产麻豆69| www.熟女人妻精品国产| 中文字幕精品免费在线观看视频| 悠悠久久av| 国产不卡av网站在线观看| 久久久久久久久久久免费av| 电影成人av| 久久久久精品久久久久真实原创| 欧美中文综合在线视频| 卡戴珊不雅视频在线播放| 中文字幕亚洲精品专区| 巨乳人妻的诱惑在线观看| 精品国产露脸久久av麻豆| 在线观看免费午夜福利视频| 日韩成人av中文字幕在线观看| 秋霞在线观看毛片| 新久久久久国产一级毛片| 日韩熟女老妇一区二区性免费视频| 亚洲精品视频女| 亚洲欧洲日产国产| 国产精品久久久久久精品电影小说| 巨乳人妻的诱惑在线观看| 国产免费福利视频在线观看| 中文字幕色久视频| 亚洲国产最新在线播放| 国产在线一区二区三区精| 成人免费观看视频高清| 午夜老司机福利片| 午夜日韩欧美国产| 99久久人妻综合| 国产高清不卡午夜福利| 亚洲av成人精品一二三区| 国产免费一区二区三区四区乱码| 亚洲av在线观看美女高潮| 国产精品.久久久| 桃花免费在线播放| www日本在线高清视频| 少妇精品久久久久久久| 你懂的网址亚洲精品在线观看| 中文字幕色久视频| 热99国产精品久久久久久7| 亚洲国产毛片av蜜桃av| 亚洲一码二码三码区别大吗| 一边亲一边摸免费视频| www日本在线高清视频| 国产xxxxx性猛交| 日韩人妻精品一区2区三区| 国产激情久久老熟女| 欧美日韩精品网址| av视频免费观看在线观看| 母亲3免费完整高清在线观看| 日韩av免费高清视频| 中文乱码字字幕精品一区二区三区| 国产欧美日韩一区二区三区在线| 亚洲av综合色区一区| 亚洲综合精品二区| 日本wwww免费看| 亚洲人成网站在线观看播放| 丁香六月欧美| 国产在视频线精品| 久久人人97超碰香蕉20202| 男女之事视频高清在线观看 | 天天添夜夜摸| 爱豆传媒免费全集在线观看| 黄色视频在线播放观看不卡| 欧美黄色片欧美黄色片| 午夜老司机福利片| 欧美国产精品va在线观看不卡| 精品一区二区三卡| 丝袜人妻中文字幕| 卡戴珊不雅视频在线播放| 精品亚洲成a人片在线观看| 中文天堂在线官网| 人人妻人人添人人爽欧美一区卜| 一级a爱视频在线免费观看| 欧美黑人欧美精品刺激| 国产成人91sexporn| 最近手机中文字幕大全| 国产又爽黄色视频| 超色免费av| 精品卡一卡二卡四卡免费| 亚洲国产毛片av蜜桃av| 18在线观看网站| 丝袜美足系列| 美女中出高潮动态图| 麻豆av在线久日| 高清不卡的av网站| 在线观看一区二区三区激情| 日韩大码丰满熟妇| 精品少妇内射三级| 国产xxxxx性猛交| 国产一区二区三区av在线| 久久精品国产综合久久久| 日韩电影二区| 91国产中文字幕| 欧美日韩国产mv在线观看视频| 久久狼人影院| 亚洲天堂av无毛| 亚洲自偷自拍图片 自拍| 欧美黄色片欧美黄色片| 国产成人啪精品午夜网站| 麻豆乱淫一区二区| www.av在线官网国产| 交换朋友夫妻互换小说| 国产成人av激情在线播放| 精品亚洲成a人片在线观看| 亚洲精品自拍成人| 午夜福利视频精品| 国产精品国产av在线观看| 日韩伦理黄色片| netflix在线观看网站| 亚洲人成网站在线观看播放| 国产欧美日韩综合在线一区二区| 亚洲精品国产av成人精品| av视频免费观看在线观看| 午夜老司机福利片| 国产精品久久久av美女十八| videosex国产| 久久久精品94久久精品| 嫩草影视91久久| 18在线观看网站| 人妻人人澡人人爽人人| 亚洲成人国产一区在线观看 | 亚洲熟女精品中文字幕| av不卡在线播放| 高清视频免费观看一区二区| 国产一区亚洲一区在线观看| 国产无遮挡羞羞视频在线观看| 黄频高清免费视频| 日韩成人av中文字幕在线观看| 亚洲国产毛片av蜜桃av| 亚洲熟女精品中文字幕| 2021少妇久久久久久久久久久| 亚洲,欧美,日韩| 在线观看三级黄色| 老司机靠b影院| 纵有疾风起免费观看全集完整版| 亚洲精品av麻豆狂野| 男女无遮挡免费网站观看| 免费在线观看黄色视频的| 国产精品一区二区精品视频观看| videosex国产| 久久ye,这里只有精品| 精品亚洲成国产av| 亚洲天堂av无毛| 丝袜脚勾引网站| 老司机影院毛片| 久久综合国产亚洲精品| 免费黄频网站在线观看国产| 国产精品无大码| 中文乱码字字幕精品一区二区三区| 久久鲁丝午夜福利片| 日本猛色少妇xxxxx猛交久久| 亚洲美女搞黄在线观看| 亚洲激情五月婷婷啪啪| 精品卡一卡二卡四卡免费| 国产又色又爽无遮挡免| 99久久精品国产亚洲精品| 天堂俺去俺来也www色官网| 成年美女黄网站色视频大全免费| 国产99久久九九免费精品| avwww免费| 丁香六月天网| 免费在线观看视频国产中文字幕亚洲 | 99久久人妻综合| 亚洲国产欧美一区二区综合| 亚洲综合精品二区| 亚洲精品久久成人aⅴ小说| 午夜激情av网站| 久热这里只有精品99| 一本—道久久a久久精品蜜桃钙片| 制服丝袜香蕉在线| 人人澡人人妻人| 亚洲欧美色中文字幕在线| 免费观看a级毛片全部| 国产精品99久久99久久久不卡 | 男女高潮啪啪啪动态图| 妹子高潮喷水视频| 国产成人精品无人区| 男男h啪啪无遮挡| 熟女av电影| xxx大片免费视频| 日日啪夜夜爽| 日韩不卡一区二区三区视频在线| 亚洲精品在线美女| 午夜福利网站1000一区二区三区| 嫩草影院入口| 日韩,欧美,国产一区二区三区| 国产视频首页在线观看| 在线观看人妻少妇| 国产 一区精品| 午夜激情av网站| 最近最新中文字幕大全免费视频 | 多毛熟女@视频| 一个人免费看片子| 欧美日韩一级在线毛片| 妹子高潮喷水视频| 这个男人来自地球电影免费观看 | 精品国产乱码久久久久久男人| 卡戴珊不雅视频在线播放| 一本一本久久a久久精品综合妖精| www.熟女人妻精品国产| 亚洲欧美色中文字幕在线| 国产成人91sexporn| 美女视频免费永久观看网站| 亚洲精品久久久久久婷婷小说| 777久久人妻少妇嫩草av网站| 欧美日韩亚洲综合一区二区三区_| 久久精品久久精品一区二区三区| 欧美激情 高清一区二区三区| 丰满乱子伦码专区| 成人午夜精彩视频在线观看| 午夜激情久久久久久久| 无遮挡黄片免费观看| 精品一区二区免费观看| 亚洲精品国产av蜜桃| 婷婷色综合大香蕉| 婷婷成人精品国产| 欧美日韩成人在线一区二区| 久久久久国产精品人妻一区二区| 欧美日韩视频高清一区二区三区二| 国产av一区二区精品久久| 国产成人91sexporn| 精品亚洲成a人片在线观看| 在线观看免费午夜福利视频| 女的被弄到高潮叫床怎么办| 欧美人与性动交α欧美精品济南到| 国产无遮挡羞羞视频在线观看| 免费人妻精品一区二区三区视频| 亚洲五月色婷婷综合| 亚洲精品自拍成人| 侵犯人妻中文字幕一二三四区| 亚洲精品视频女| 一级黄片播放器| 18在线观看网站| 麻豆乱淫一区二区| 一区二区三区精品91| 久久人人爽人人片av| 久久免费观看电影| a级毛片黄视频| 国产成人精品久久久久久| 2021少妇久久久久久久久久久| 黄频高清免费视频| 国产精品熟女久久久久浪| 久久人妻熟女aⅴ| 久久精品亚洲熟妇少妇任你| 欧美xxⅹ黑人| 日本欧美国产在线视频| 亚洲欧美精品自产自拍| 一边摸一边抽搐一进一出视频| 国产伦人伦偷精品视频| 热99国产精品久久久久久7| 大话2 男鬼变身卡| 下体分泌物呈黄色| 日韩av在线免费看完整版不卡| 狂野欧美激情性bbbbbb| 日韩av不卡免费在线播放| 久久久久国产精品人妻一区二区| 又大又爽又粗| 在线免费观看不下载黄p国产| 国产精品国产三级专区第一集| 国产乱来视频区| 国产一区二区三区av在线| 国产成人欧美| 国产欧美日韩综合在线一区二区| 伊人久久大香线蕉亚洲五| 精品久久久久久电影网|