• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase Equilibrium of Isobutanol in Supercritical CO2

    2009-05-15 00:25:58WANGLin王琳HAOXiaosong郝小松ZHENGLan鄭嵐andCHENKaixun陳開(kāi)勛
    關(guān)鍵詞:王琳

    WANG Lin (王琳), HAO Xiaosong (郝小松), ZHENG Lan (鄭嵐) and CHEN Kaixun (陳開(kāi)勛),*

    ?

    Phase Equilibrium of Isobutanol in Supercritical CO2

    WANG Lin (王琳)1,2, HAO Xiaosong (郝小松)1, ZHENG Lan (鄭嵐)1and CHEN Kaixun (陳開(kāi)勛)1,*

    1Chemical Engineering College, Northwest University, Xi’an 710069, China2Chemistry and Pharmaceutical Engineering Coll ege, Nanyang Normal University, Nanyang 473061, China

    Vapor-liquid phase equilibrium data including composition, densities, molar volume and equilibrium constant of isobutanol in supercritical carbon dioxide from 313.2 K to 353.2 K were measured in a variable-volume visual cell. The properties of critical point were obtained by extrapolation. The results showed that critical temperature, critical pressure and critical compressibility factor of CO2-isobutanol system decreased with the increase of critical CO2content. The phase equilibrium model was established by Peng-Robinson equation of state and van der Waals-2 mixing regulation, and model parameters were determined by optimization calculation of nonlinear least square method. The correlation between calculated values and the experimental data showed good agreement.

    supercritical carbon dioxide, isobutanol, phase equilibrium model, critical property

    1 INTRODUCTION

    Supercritical fluid extraction technique (SCFE) is used widely in many processes as a new separation method, such as in removal of trace impurities, recovery of substance having high additional value and thermal sensitivity. CO2is the most commonly used supercritical fluid because of its toxicological inertness, low critical temperature, low cost and small impact on the earth’s environment [1-3]. Alcohol existing widely in fermentation wasted water is often used as entrainer to control the polarity of supercritical fluid, or as a modifier for supercritical fluid chromatography [4]. Thus, the study on supercritical CO2and alcohol is becoming increasingly popular. Vapor-liquid equilibrium properties at high pressures are required for engineering application such as in the design and operation of separation processes. There were some phase equilibrium reports on alcohol in CO2up to now [5-9], but fewer studies were on isobutanol in supercritical CO2[10]. In the present study, new vapor-liquid equilibrium data of isobutanol in CO2from 313.2 K to 353.2 K were measured in a variable-volume visual high pressure cell. Meanwhile, Peng-Robinson equation of state and van der Waals mixing rule were applied to predict vapor- liquid equilibria for CO2+isobutanol binary system.

    2 EXPERIMENTAL

    2.1 Materials and apparatus

    2.1.1

    Carbon dioxide was supplied by Shanxi Xinghua BOC Ltd. with a purity of 99.99%. Isobutanol(purity> 99%, by mass) was analytical reagent.

    2.1.2

    A schematic diagram of a variable-volume visual cell was shown in Fig. 1. The cell was produced by Hai’an Petroleum Research Instrument Plant, Nantong, Jiangsu. The apparatus had two visual windows and its internal maximum volume was 60 ml. The maximum operating temperature and pressure of the apparatus were 423 K with an accuracy of 0.1 K and 20 MPa with an accuracy of 0.01 MPa, respectively. The main parts of the apparatus were a variable volume cell, piston and screw-driven pump. The equilibrium pressure in the cell was measured by a differential pressure gauge; cell temperature was controlled by HA120-50-01 constant temperature liquid bath controller and measured by XT-7000 intelligent temperature regulation indicator. A magnetic stirrer was used for mixing the fluid in the cell.

    Figure 1 The schematic diagram of experimental apparatus

    2.2 Experimental procedure

    Before each experiment, the piston was moved to the upper dead position, thus, the volume of the view cell was made maximal. The entire internal loop of the apparatus including the equilibrium cell was rinsed several times with carbon dioxide. Then, the equilibrium cell was evacuated with a vacuum pump. The cell was charged with a given amount of isobutanol. Then, it was slightly pressurized with carbon dioxide to the initial pressure and was heated to the temperature. Different pressures were reached by different initial pressures and moving piston to different places. Once the pressure and temperature were adjusted to pre-set values, the mixture was stirred for a few hours. Then, the stirrer was switched off and after about one hour the coexisting phases were separated completely. Phase interface could be observed by visual window. Samples of vapor and liquid phase were collected respectively with small steel vessel by their own sampling valve.

    Table 1 Vapor-liquid phase equilibrium data of isobutanol(2) in CO2(1)

    2.3 Analytical method

    The analytical method was applied to determine the phase compositions at different temperatures and different pressures. The small sampling steel vessel was placed in an ice-water bath and connected with a desorption tank by capillary and needle-type valve. After the desorption tank was evacuated, carbon dioxide was desorbed to desorption tank slowly until pressure of the tank did not change; then, the temperature and pressure were recorded. Because the pressure in the desorption tank was far below the atmosphere pressure, the mass of CO2could be calculated by equation of state of ideal gas. The mass of isobutanol was equal to the sample mass minus CO2mass. Finally the molar fractions of two phases could be obtained at given temperature and pressure.

    3 RESULTS AND DISCUSSION

    3.1 Experimental data

    Vapor-liquid equilibrium data of isobutanol in CO2at 313.2 K, 323.2 K, 333.2 K, 343.2 K, 353.2 K were measured and listed in Table 1, where1and2were equilibrium constant of CO2(1) and isobutanol(2), respectively.

    3.2 Results and discussion

    Figure 2 indicated--diagram of CO2-isobutanol at different temperatures. As could be showed from Fig. 2, solubility of CO2would increase in liquid phase and would decrease in vapor phase with increasing pressure at the same temperature. At the same pressure, the solubility of CO2would decrease in liquid phase with increasing temperature, but the solubility of isobutanol would increase in vapor phase because its vapor pressure increased with increasing temperature. Since all thermodynamics properties of vapor phase and liquid phase were equal completely at critical point [11, 12], the composition of vapor and liquid phase must be equal completely at the critical point. Thus, critical point could be obtained by extrapolating vapor and liquid curve to their inflexion point.

    Figure 2--diagram of CO2-isobutanol at different temperatures ●?liquid phase;○?vapor phase;★?estimated critical points/K: 1—313.2; 2—323.2; 3—333.2; 4—343.2; 5—353.2

    Figure 3-diagram of CO2-isobutanol at different temperatures●?liquid phase;○?vapor phase/K: 1—313.2; 2—323.2; 3—333.2; 4—343.2; 5—353.2

    Figure 4 was the-diagram at different temperatures. The results in Fig. 4 showed that the density of the liquid phase decreased with the increasing pressure owing to enhancement of CO2content in liquid phase, but the density of vapor phase increased with increasing pressure. Thus, the densities of vapor and liquid phase would approach gradually and the pressure and density corresponding to the intersecting point of two curves were critical pressure and critical density, respectively.

    Figure 4-diagram of CO2-isobutanol at different temperatures ●?liquid phase;○?vapor phase; ★?calculated critical points/K: 1—313.2; 2—323.2; 3—333.2; 4—343.2; 5—353.2

    The correspondingm--diagram was drawn in Fig. 5, where the thin line indicated isopiestic conjugating line. The intersecting point of vapor phase and liquid phase curves corresponded to critical molar volume and critical composition.

    The critical values obtained from the above figures were summarized in Table 2, in which the critical properties of pure components readily available in the calculation were from literature [13].

    The results in Table 2 showed that the critical temperature of CO2-isobutanol dinary system was between critical temperatures of two pure components and critical pressure was above any of pure components. Moreover, critical temperature and critical pressure decreased with increasing critical composition of CO2, but critical density had a maximum value and critical molar volume had a minimum value in the measurement range.

    Figure 5m--diagram of CO2-isobutanol at different temperature●?liquid phase; ○?vapor phase; ★?calculated critical points

    Table 2 The critical values of CO2-isobutanol

    4 CORRELATION

    If the system arrived to equilibrium state, the partial fugacities were equal for each component in all the phases [14-16].

    For allcomponents, CO2and isobutanol, the fugacity could be calculated using the fugacity coefficient:

    The fugacity coefficient was calculated with Eq. (4):

    Thus, the pressure dependence of thecompressibility factor was necessary. This could be derived from an equation of state (EOS).

    In the work, the cubic Peng-Robinson equation of state, van der Waals-1 and van der Waals-2 mixing rule were chosen to describe vapor-liquid equilibria.

    4.1 Phase equilibrium description model [17-22]

    The expansion of compressibility factorof Peng-Robinson equation of state (PREOS) was Eq.(5)

    The constantsandwere calculated from the pure fluid critical data:

    The parameterwas calculated using, the Pitzer acentric factor:

    van der Waals-1 mixing rule was:

    van der Waals-2 mixing rule was:

    The integral equation of fugacity coefficient with PR and van der Waals-1 mixing rule(PR-1) was calculated by the following formula:

    The integral equation of fugacity coefficient with PR and van der Waals-2 mixing rule(PR-2) was calculated by the following formula:

    The objective function applied in the work was:

    Whereandwere the number of acquired phase equilibrium and the number of components in the system, respectively.was the objective function.

    Table 3 Vapor-liquid phase equilibrium calculated results of CO2(1)+isobutanol(2) system

    4.2 Calculated results and discussion

    The simplex optimization was done with metlab7.0 software according to the above-mentioned equations. The optimized model parameters and deviation analysis were summarized in Table 3.

    The results in Table 3 showed that a bigger deviation produced from the value with PR-1 model than from PR-2. Deviation analysis of molar fraction of vapor and liquid in Table 3 also showed that the adaptable model was influenced significantly by mixing rule, and Peng-Robinson equation of state and van der Waals-2 mixing regulation could be applied to better understanding of the phase behavior for CO2+isobutanol dinary system at high pressures and near-critical area. Due to the density of solution increased at high pressure and near-critical area, the short-course repulsive between molecules played a dominant role. It was necessary to revise the parameters representing molecule volume or molecule diameter. Accordingly, van der Waals-2 mixing rule including the two revising parameters was adaptable.

    5 CONCLUSIONS

    The phase equilibrium composition, density, molar volume and equilibrium constant of isobutanol in CO2were measured in a variable-volume visual cell from 313.2 K to 353.2 K. The phase equilibrium model was established by Peng-Robinson equation of state and van der Waals-2 mixing regulation. Consequently, the prediction model was expected to be a useful tool for the process design and operations of isobutanol from solutions including isobutanol with supercritical CO2.

    NOMENCLATURE

    ARD average relative deviation

    f,φpartial fugacity and partial fugacity coefficient ofcomponent

    12,12dinary action parameter

    pressure, MPa

    temperature, K

    mmolar volume, cm3·mol-1

    xmolar fraction ofcomponent in liquid phase

    ymolar fraction ofcomponent in vapor phase

    compressibility factor

    density, g·cm-3

    Superscripts

    liquid phase

    v vapor phase

    Subscripts

    c critical point

    cal calculated value

    exp experimental data

    1 Zhu, Z.Q., “Supercritical fluid extraction”, Supercritical Fluid Technology—The Principle and Application, Chemical Industry Press, Beijing (2001). (in Chinese)

    2 Kamel, K., Paolo, A., Ireneo, K., Abdallah, D., “Solubility of diamines in supercritical carbon dioxide experimental determination and correlation”,.., 41, 10-19 (2007). (in Chinese)

    3 Zhang, J.C., WU, X.Y., CAO, W.L., “Study on critical properties for CO2+cosolvent binary system and ternary system”,...., 10 (2), 223-227 (2002).

    4 Tatsuru, S., Naoki, T., Kunio, N., “Solubilities of ethanol, 1-prjopanol, 2-propanol and 1-butanol in supercritical carbon dioxide at 313 K and 333 K”,, 67, 213-226 (1991).

    5 Catinca, S., Viorel, F., Dan, G., “Phase behavior for carbon dioxide+ethanol system: experimental measurements and modeling with a cubic equation of state”,.., 47, 109-116 (2008).

    6 Hirotoshi, H., Tanimoto, I.Y., “ Phase equilibrium study for the separation of ethanol-water solution using subcritical and supercritical hydrocarbon solvent extraction”,, 84 (1), 297-320 (1993).

    7 Wang, W.L., Zhang, X.D., Liu, X.W., “Phase equilibria calculation for supercritical carbon dioxide and alcohol”,...., 24 (4), 1-3 (2003). (in Chinese)

    8 Luo, Z.C., Wei,Y. L, Hu, Y., “Phase equilibria study for isopropanol extraction from aqueous solution by using supercritical carbon dioxide”,...., 41 (4), 395-401 (1990). (in Chinese)

    9 Tian, Y.L., Han, M., Chen, L., Feng, J., Qin,Y., “Vapor-liquid equilibrium of CO2-ethanol binary system at high pressure”,..., 17 (2), 155-160 (2001).

    10 Yun, Z., Shi, M.R., Shi, J., “High pressure vapor-liquid phase equilibrium for carbon dioxide –-butanol and carbon dioxide--butanol”,.., 24 (1), 87-92 (1996).

    11 Chen, L., “High pressure equilibrium and critical curves of binary systems containing supercritical CO2”, Ph.D.Thesis, Tianjin University, Tianjin (2004). (in Chinese)

    12 Han, B.X., “Mixing supercritical fluid”, Supercritical Fluid Science and Technology, Chinese Petrol Chemical Engineering Press, Beijing (2005). (in Chinese)

    13 Bruce, E.P, John, M.P., John, P.O., The Properties of Gases and Liquids, Chemical Industry Press, Beijing, 260-266 (2006). (in Chinese)

    14 Chen, Z.X., Gu, F.Y., Hu, W.Y., “Vapor-liquid equilibrium”, The Thermodynamics of Chemical Engineering, Chemical Industry Press, Beijing, 183-187 (2005). (in Chinese)

    15 Fleur, B., Jean, P.P., Thierry, C., Roland, T., Jean, F.B., “Modelling solutions of hydrocarbons in dense CO2gas”,...., 21, 1219-1227 (2001).

    16 Wang, L.S., “The theory progress of generalized van der Waals partition function”, High Pressure Phase Equilibrium and Transport Property of Fluid, Science Press, Beijing, 75-85 (2002). (in Chinese)

    17 John, M.P., Rüdiger, N.L., Edmundo, G.A., “High pressure vapor-liquid equilibrium calculation”, Molecular Thermodynamics of Fluid-Phase Equilibria, Chemical Industry Press, Beijing, 435-441 (2006). (in Chinese)

    18 Abolghasem, J., Chan, H.K., Foster, N.R., “Mathematical representation of solute solubility in supercritical carbon dioxide using empirical expression”,.., 24 (1), 19-35 (2002).

    19 Zhu, H.G., Tian,Y.L., Chen, L., Qin, Y., Feng, J.J., “High-pressure phase equilibria for binary ethanol system containing supercritical CO2”,...., 9 (3), 322-325 (2001).

    20 Wu, J.L., Pan, Q.M., “Prediction of phase behavior for styrene/CO2/ polystyrene mixtures”,...., 10 (6), 706-710 (2002).

    21 Yusuke, S., Toshio, I., “Prediction of vapor-liquid equilibria for supercritical alcohol+fatty acid ester systems by SRK equation of state with Wong-Sandler mixing rule based on COSMO theory”,.., 46, 4-9 (2008).

    22 Berna, A., Chafer, A., Monton, J.B., Subirats, S., “High-pressure solubility data of system ethanol(1)+catechin (2)+CO2(3)”,.., 20, 157-162 (2001).

    2008-12-23,

    2009-04-16.

    * To whom correspondence should be addressed. E-mail: kxchen@nwu.edu.cn

    猜你喜歡
    王琳
    敦煌壁畫(huà)里的“她們”
    云鬢簪花入畫(huà)來(lái)
    Influence of carbon sources on the performance of carbon-coated nano-silicon
    Cabbage Connections
    找出隱含的全等三角形
    王琳油畫(huà)作品
    大眾文藝(2020年22期)2020-12-13 11:37:14
    一年級(jí)下冊(cè)第二單元檢測(cè)題
    王琳等
    王琳
    王琳
    男人舔女人的私密视频| 免费在线观看黄色视频的| 亚洲精品乱久久久久久| 春色校园在线视频观看| 久久久国产欧美日韩av| 90打野战视频偷拍视频| 大话2 男鬼变身卡| 午夜福利在线免费观看网站| 一级毛片黄色毛片免费观看视频| 伦精品一区二区三区| 考比视频在线观看| 亚洲国产精品国产精品| 纯流量卡能插随身wifi吗| 在线亚洲精品国产二区图片欧美| 国产男女超爽视频在线观看| 日韩欧美一区视频在线观看| 久久狼人影院| 国产精品久久久av美女十八| 国产成人精品一,二区| 久久久久久久亚洲中文字幕| 一级爰片在线观看| 极品少妇高潮喷水抽搐| 国产免费又黄又爽又色| 精品一品国产午夜福利视频| a级片在线免费高清观看视频| 日韩,欧美,国产一区二区三区| 91精品三级在线观看| 你懂的网址亚洲精品在线观看| 久久久久精品久久久久真实原创| 久久99热这里只频精品6学生| 国产精品一二三区在线看| 国产午夜精品一二区理论片| 亚洲精品,欧美精品| 一级毛片电影观看| 在线免费观看不下载黄p国产| 国产精品香港三级国产av潘金莲 | 亚洲av在线观看美女高潮| 黄色一级大片看看| 日本vs欧美在线观看视频| 国产1区2区3区精品| 99热全是精品| 天天影视国产精品| av国产精品久久久久影院| 嫩草影院入口| 黄网站色视频无遮挡免费观看| 国产日韩欧美亚洲二区| 国产又色又爽无遮挡免| 99国产综合亚洲精品| 久久99精品国语久久久| 色婷婷av一区二区三区视频| 中文字幕最新亚洲高清| 久久精品国产综合久久久| 少妇熟女欧美另类| 欧美成人午夜免费资源| 午夜福利一区二区在线看| 精品国产露脸久久av麻豆| 少妇人妻 视频| 国产精品欧美亚洲77777| 精品卡一卡二卡四卡免费| 亚洲欧美一区二区三区国产| 少妇熟女欧美另类| 欧美成人精品欧美一级黄| 亚洲精品国产av蜜桃| 亚洲第一av免费看| 午夜免费观看性视频| 日本黄色日本黄色录像| 午夜福利在线观看免费完整高清在| 天天操日日干夜夜撸| 成人毛片a级毛片在线播放| 街头女战士在线观看网站| 五月伊人婷婷丁香| 亚洲av.av天堂| 久久ye,这里只有精品| 99久久综合免费| 老司机亚洲免费影院| 久久久久久久国产电影| 一级毛片黄色毛片免费观看视频| 一级毛片电影观看| 日韩一区二区三区影片| 国产一区二区激情短视频 | 欧美成人午夜精品| 九草在线视频观看| 一级毛片 在线播放| 亚洲精品国产av成人精品| 老女人水多毛片| 你懂的网址亚洲精品在线观看| 久久久久视频综合| 一边摸一边做爽爽视频免费| 不卡视频在线观看欧美| 视频区图区小说| 伦理电影免费视频| 成人免费观看视频高清| 国产伦理片在线播放av一区| 亚洲成人av在线免费| 伊人亚洲综合成人网| 91aial.com中文字幕在线观看| 汤姆久久久久久久影院中文字幕| 久久99蜜桃精品久久| 精品国产一区二区久久| 国产亚洲欧美精品永久| 亚洲 欧美一区二区三区| 美女国产高潮福利片在线看| 如何舔出高潮| 国产淫语在线视频| 日本黄色日本黄色录像| 母亲3免费完整高清在线观看 | xxx大片免费视频| 日韩成人av中文字幕在线观看| 国产在视频线精品| 三上悠亚av全集在线观看| 国产毛片在线视频| 亚洲激情五月婷婷啪啪| 啦啦啦视频在线资源免费观看| 99久久人妻综合| 亚洲第一区二区三区不卡| 一级片'在线观看视频| 免费黄色在线免费观看| 不卡视频在线观看欧美| 亚洲精华国产精华液的使用体验| 视频区图区小说| 美国免费a级毛片| 免费少妇av软件| 交换朋友夫妻互换小说| 我的亚洲天堂| av线在线观看网站| 黄色配什么色好看| 日韩一区二区视频免费看| 黄网站色视频无遮挡免费观看| 超碰97精品在线观看| 少妇精品久久久久久久| 亚洲,欧美精品.| 熟女电影av网| 男女边摸边吃奶| 久久久久久伊人网av| 欧美日韩视频高清一区二区三区二| 久久国内精品自在自线图片| 亚洲精品中文字幕在线视频| 女人高潮潮喷娇喘18禁视频| 久久婷婷青草| 久久久久久久久久人人人人人人| 视频在线观看一区二区三区| 亚洲国产欧美在线一区| 成年人午夜在线观看视频| 波多野结衣av一区二区av| 老司机影院毛片| 国产男人的电影天堂91| 免费黄色在线免费观看| 久久久久国产网址| 国产亚洲欧美精品永久| 久久久久久久国产电影| 亚洲激情五月婷婷啪啪| 一级毛片我不卡| 亚洲国产看品久久| 亚洲熟女精品中文字幕| 日韩免费高清中文字幕av| 久热这里只有精品99| 一区在线观看完整版| 99九九在线精品视频| 精品国产一区二区三区四区第35| 99热国产这里只有精品6| 一本大道久久a久久精品| 日韩欧美一区视频在线观看| 国产一区二区在线观看av| 美女国产高潮福利片在线看| 看十八女毛片水多多多| 国产片内射在线| 亚洲精品国产av蜜桃| 制服丝袜香蕉在线| 久久国产亚洲av麻豆专区| 免费黄频网站在线观看国产| 成人手机av| 嫩草影院入口| 亚洲人成网站在线观看播放| 一级毛片 在线播放| 97精品久久久久久久久久精品| 亚洲精品美女久久av网站| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美一区二区三区国产| 精品国产一区二区三区久久久樱花| 高清av免费在线| 亚洲国产欧美日韩在线播放| 亚洲av欧美aⅴ国产| 校园人妻丝袜中文字幕| 一区二区日韩欧美中文字幕| 99香蕉大伊视频| 美国免费a级毛片| 免费看不卡的av| 亚洲国产av影院在线观看| 午夜91福利影院| 人妻少妇偷人精品九色| 国产激情久久老熟女| 久久 成人 亚洲| 国产精品久久久久久久久免| 女人久久www免费人成看片| 日日撸夜夜添| 最近手机中文字幕大全| 99久久人妻综合| videosex国产| 哪个播放器可以免费观看大片| xxx大片免费视频| 人妻人人澡人人爽人人| 乱人伦中国视频| 女性生殖器流出的白浆| 婷婷色综合大香蕉| 9色porny在线观看| 一边摸一边做爽爽视频免费| 日韩欧美一区视频在线观看| 最近最新中文字幕大全免费视频 | 国产亚洲精品第一综合不卡| 精品国产乱码久久久久久男人| 国产成人免费观看mmmm| 性色av一级| 国产精品av久久久久免费| 亚洲av电影在线观看一区二区三区| 高清在线视频一区二区三区| 一区在线观看完整版| 在线 av 中文字幕| 国产精品.久久久| 亚洲内射少妇av| 香蕉精品网在线| 在线看a的网站| 久久青草综合色| 欧美成人午夜免费资源| 99国产综合亚洲精品| av又黄又爽大尺度在线免费看| 美女国产高潮福利片在线看| 蜜桃在线观看..| 26uuu在线亚洲综合色| 免费观看无遮挡的男女| 免费黄频网站在线观看国产| 国产成人精品久久二区二区91 | www.精华液| 美国免费a级毛片| 高清在线视频一区二区三区| 夫妻性生交免费视频一级片| 人人妻人人澡人人看| 久久97久久精品| 飞空精品影院首页| 国产欧美亚洲国产| 欧美日韩视频精品一区| 国产精品一区二区在线不卡| 韩国av在线不卡| 少妇的逼水好多| 一级,二级,三级黄色视频| 国产精品 欧美亚洲| 精品少妇一区二区三区视频日本电影 | 亚洲成色77777| 日本vs欧美在线观看视频| 卡戴珊不雅视频在线播放| 一级黄片播放器| 免费黄频网站在线观看国产| 免费女性裸体啪啪无遮挡网站| 七月丁香在线播放| 精品国产国语对白av| 亚洲少妇的诱惑av| 亚洲欧美一区二区三区黑人 | 欧美av亚洲av综合av国产av | 男女啪啪激烈高潮av片| 国产片内射在线| 国产乱来视频区| 中文字幕人妻丝袜一区二区 | 最近最新中文字幕免费大全7| 午夜福利影视在线免费观看| 美女中出高潮动态图| 一区二区三区精品91| 丝瓜视频免费看黄片| 日韩精品免费视频一区二区三区| 亚洲欧美一区二区三区黑人 | 亚洲四区av| 激情视频va一区二区三区| 国产成人午夜福利电影在线观看| 免费高清在线观看日韩| 国产精品偷伦视频观看了| 国产av国产精品国产| 久久久久久人人人人人| 国产精品av久久久久免费| 国产成人精品婷婷| 久久人人爽人人片av| 欧美人与善性xxx| 最新中文字幕久久久久| 又黄又粗又硬又大视频| 久热久热在线精品观看| 国产在线免费精品| 黄色怎么调成土黄色| 秋霞伦理黄片| 高清av免费在线| 国产日韩欧美亚洲二区| 亚洲av成人精品一二三区| 成人二区视频| 亚洲精品自拍成人| 又黄又粗又硬又大视频| 人体艺术视频欧美日本| 好男人视频免费观看在线| 不卡视频在线观看欧美| 精品少妇久久久久久888优播| 亚洲精品久久成人aⅴ小说| 一级毛片 在线播放| 国产爽快片一区二区三区| 纵有疾风起免费观看全集完整版| 超碰成人久久| 免费观看在线日韩| 毛片一级片免费看久久久久| 久久av网站| 99久久中文字幕三级久久日本| 啦啦啦中文免费视频观看日本| 精品久久久久久电影网| 嫩草影院入口| 久久久久久人人人人人| 性高湖久久久久久久久免费观看| 成年女人毛片免费观看观看9 | 国产xxxxx性猛交| 亚洲熟女精品中文字幕| 99久久综合免费| 精品亚洲乱码少妇综合久久| 永久网站在线| 男女国产视频网站| 午夜精品国产一区二区电影| 波野结衣二区三区在线| 国产成人精品婷婷| 热re99久久精品国产66热6| 亚洲成色77777| 国产精品免费大片| 成人二区视频| 国产熟女欧美一区二区| 欧美中文综合在线视频| 999精品在线视频| 丝袜美腿诱惑在线| √禁漫天堂资源中文www| 国产精品久久久久久久久免| 免费观看av网站的网址| 亚洲欧洲日产国产| 18禁观看日本| 男女下面插进去视频免费观看| 天美传媒精品一区二区| 成人午夜精彩视频在线观看| 男女高潮啪啪啪动态图| 免费看不卡的av| 午夜激情久久久久久久| 精品国产一区二区三区四区第35| 久久久国产一区二区| 在线观看一区二区三区激情| 少妇的丰满在线观看| 新久久久久国产一级毛片| 亚洲国产av新网站| 中文字幕亚洲精品专区| 日韩精品有码人妻一区| 黑人巨大精品欧美一区二区蜜桃| 日韩一卡2卡3卡4卡2021年| 亚洲美女搞黄在线观看| 日本wwww免费看| 九九爱精品视频在线观看| 日韩伦理黄色片| 如何舔出高潮| 亚洲欧洲国产日韩| 亚洲伊人色综图| 国产精品秋霞免费鲁丝片| 18禁动态无遮挡网站| 如日韩欧美国产精品一区二区三区| 丰满饥渴人妻一区二区三| 只有这里有精品99| 国产乱来视频区| 欧美亚洲 丝袜 人妻 在线| 一边摸一边做爽爽视频免费| 1024视频免费在线观看| 性色av一级| 成人手机av| 国产无遮挡羞羞视频在线观看| 国产精品偷伦视频观看了| 一级黄片播放器| 久久久亚洲精品成人影院| 丝袜脚勾引网站| 欧美精品人与动牲交sv欧美| 亚洲欧美日韩另类电影网站| 成人手机av| 亚洲av综合色区一区| 日本av免费视频播放| 国产亚洲一区二区精品| 一区在线观看完整版| 如何舔出高潮| 精品久久久久久电影网| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲综合色网址| 国产xxxxx性猛交| 久久久国产一区二区| 久久婷婷青草| 制服人妻中文乱码| 在线精品无人区一区二区三| 日日摸夜夜添夜夜爱| 美女高潮到喷水免费观看| 毛片一级片免费看久久久久| 精品国产乱码久久久久久男人| 国产精品久久久久成人av| 狠狠婷婷综合久久久久久88av| av不卡在线播放| 亚洲精品aⅴ在线观看| 9热在线视频观看99| 日韩av在线免费看完整版不卡| 久久久久国产精品人妻一区二区| 国产黄频视频在线观看| 三上悠亚av全集在线观看| 久久久精品国产亚洲av高清涩受| 亚洲国产最新在线播放| 亚洲av日韩在线播放| av女优亚洲男人天堂| 久久免费观看电影| 建设人人有责人人尽责人人享有的| 91国产中文字幕| 97人妻天天添夜夜摸| 国产成人精品福利久久| 99国产精品免费福利视频| 久久99蜜桃精品久久| 中文乱码字字幕精品一区二区三区| 免费大片黄手机在线观看| 欧美另类一区| 老女人水多毛片| 亚洲欧美精品自产自拍| 国产精品女同一区二区软件| 热99久久久久精品小说推荐| 日韩大片免费观看网站| 久久久久久久大尺度免费视频| 18在线观看网站| 精品少妇内射三级| 高清视频免费观看一区二区| 国产片内射在线| 日本爱情动作片www.在线观看| 国产精品免费视频内射| 纵有疾风起免费观看全集完整版| 亚洲av免费高清在线观看| 中文字幕人妻丝袜制服| 卡戴珊不雅视频在线播放| 老汉色av国产亚洲站长工具| 国产片内射在线| 亚洲精品久久成人aⅴ小说| 亚洲av福利一区| www.av在线官网国产| 日韩人妻精品一区2区三区| 性色avwww在线观看| 国产男女超爽视频在线观看| 亚洲国产最新在线播放| 亚洲成色77777| 久久午夜福利片| 亚洲人成77777在线视频| 最近中文字幕高清免费大全6| 捣出白浆h1v1| www.熟女人妻精品国产| 成年女人在线观看亚洲视频| 亚洲av.av天堂| 精品亚洲乱码少妇综合久久| 日韩一卡2卡3卡4卡2021年| 乱人伦中国视频| 亚洲伊人久久精品综合| 久久久久久久大尺度免费视频| 黄片无遮挡物在线观看| 丰满饥渴人妻一区二区三| 在线观看免费日韩欧美大片| 欧美成人午夜精品| 亚洲一区二区三区欧美精品| 少妇熟女欧美另类| 亚洲激情五月婷婷啪啪| 国产精品熟女久久久久浪| 中文字幕人妻丝袜制服| 亚洲图色成人| 边亲边吃奶的免费视频| 免费日韩欧美在线观看| 国产有黄有色有爽视频| 亚洲成人手机| 亚洲中文av在线| 校园人妻丝袜中文字幕| 亚洲,欧美精品.| 久久ye,这里只有精品| 男人添女人高潮全过程视频| 国产97色在线日韩免费| 精品亚洲乱码少妇综合久久| 精品一区二区三区四区五区乱码 | 99re6热这里在线精品视频| 亚洲精品国产色婷婷电影| 欧美成人精品欧美一级黄| 久久久久久久亚洲中文字幕| 精品一区二区免费观看| 狠狠精品人妻久久久久久综合| 两性夫妻黄色片| 性色av一级| 亚洲激情五月婷婷啪啪| a级毛片黄视频| 叶爱在线成人免费视频播放| 亚洲 欧美一区二区三区| 99国产精品免费福利视频| 成人18禁高潮啪啪吃奶动态图| 在线观看免费视频网站a站| 亚洲美女视频黄频| 建设人人有责人人尽责人人享有的| 春色校园在线视频观看| 久久久久国产网址| 免费观看性生交大片5| 深夜精品福利| 精品少妇久久久久久888优播| 亚洲成av片中文字幕在线观看 | 免费观看性生交大片5| 久久久久精品人妻al黑| 免费av中文字幕在线| 一区二区日韩欧美中文字幕| 免费久久久久久久精品成人欧美视频| 日韩电影二区| 夫妻午夜视频| 在线观看免费视频网站a站| 在线观看三级黄色| 免费少妇av软件| 亚洲av福利一区| 一区福利在线观看| 午夜激情久久久久久久| 国产成人精品一,二区| 亚洲av男天堂| 久久久国产欧美日韩av| 又大又黄又爽视频免费| 在线亚洲精品国产二区图片欧美| 少妇被粗大猛烈的视频| 午夜激情av网站| 日韩一本色道免费dvd| 国产精品免费视频内射| 高清黄色对白视频在线免费看| 好男人视频免费观看在线| 人人妻人人澡人人爽人人夜夜| 看免费av毛片| 国产一区二区三区综合在线观看| 久久人人爽av亚洲精品天堂| 伦理电影大哥的女人| 曰老女人黄片| 欧美日韩成人在线一区二区| 免费看av在线观看网站| 69精品国产乱码久久久| 午夜91福利影院| 婷婷色综合www| 久久精品人人爽人人爽视色| 啦啦啦视频在线资源免费观看| 久久精品人人爽人人爽视色| videossex国产| 老司机影院毛片| 精品久久久精品久久久| 99国产综合亚洲精品| 看免费av毛片| 免费高清在线观看日韩| 亚洲国产色片| 男女免费视频国产| 中文乱码字字幕精品一区二区三区| 午夜福利网站1000一区二区三区| 美女大奶头黄色视频| 在现免费观看毛片| 久久精品国产亚洲av高清一级| www日本在线高清视频| 欧美日韩一区二区视频在线观看视频在线| av国产久精品久网站免费入址| 女性生殖器流出的白浆| 国产免费视频播放在线视频| 久久人人97超碰香蕉20202| 久久久久国产网址| 精品少妇久久久久久888优播| 欧美日本中文国产一区发布| 在线观看国产h片| 黄片小视频在线播放| 日韩成人av中文字幕在线观看| 黄色配什么色好看| 日韩成人av中文字幕在线观看| kizo精华| 日本爱情动作片www.在线观看| 看十八女毛片水多多多| 一区二区三区四区激情视频| 看免费成人av毛片| 久久韩国三级中文字幕| 国产有黄有色有爽视频| 在现免费观看毛片| 亚洲av欧美aⅴ国产| 国产乱来视频区| 中文字幕人妻熟女乱码| 日日啪夜夜爽| 啦啦啦在线观看免费高清www| 国产午夜精品一二区理论片| 成人漫画全彩无遮挡| 在线精品无人区一区二区三| 男男h啪啪无遮挡| 久久人妻熟女aⅴ| 国产精品免费视频内射| 国产黄频视频在线观看| 亚洲精品国产av蜜桃| 成人国产av品久久久| 人人妻人人澡人人看| 一个人免费看片子| 国产亚洲午夜精品一区二区久久| 欧美黄色片欧美黄色片| av卡一久久| 在线观看免费日韩欧美大片| 精品一区二区三卡| 99久久综合免费| 两性夫妻黄色片| 久久精品熟女亚洲av麻豆精品| 91精品伊人久久大香线蕉| 久久99精品国语久久久| 亚洲三级黄色毛片| 精品卡一卡二卡四卡免费| 欧美精品一区二区免费开放| 成年女人在线观看亚洲视频| 午夜91福利影院| 哪个播放器可以免费观看大片| av在线老鸭窝| 91久久精品国产一区二区三区| 欧美激情极品国产一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 新久久久久国产一级毛片| 日本猛色少妇xxxxx猛交久久| 1024香蕉在线观看| 9191精品国产免费久久| 母亲3免费完整高清在线观看 | 亚洲av电影在线进入| 久久久久网色| 国产黄频视频在线观看| 成年av动漫网址|