• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase Equilibrium of Isobutanol in Supercritical CO2

    2009-05-15 00:25:58WANGLin王琳HAOXiaosong郝小松ZHENGLan鄭嵐andCHENKaixun陳開(kāi)勛
    關(guān)鍵詞:王琳

    WANG Lin (王琳), HAO Xiaosong (郝小松), ZHENG Lan (鄭嵐) and CHEN Kaixun (陳開(kāi)勛),*

    ?

    Phase Equilibrium of Isobutanol in Supercritical CO2

    WANG Lin (王琳)1,2, HAO Xiaosong (郝小松)1, ZHENG Lan (鄭嵐)1and CHEN Kaixun (陳開(kāi)勛)1,*

    1Chemical Engineering College, Northwest University, Xi’an 710069, China2Chemistry and Pharmaceutical Engineering Coll ege, Nanyang Normal University, Nanyang 473061, China

    Vapor-liquid phase equilibrium data including composition, densities, molar volume and equilibrium constant of isobutanol in supercritical carbon dioxide from 313.2 K to 353.2 K were measured in a variable-volume visual cell. The properties of critical point were obtained by extrapolation. The results showed that critical temperature, critical pressure and critical compressibility factor of CO2-isobutanol system decreased with the increase of critical CO2content. The phase equilibrium model was established by Peng-Robinson equation of state and van der Waals-2 mixing regulation, and model parameters were determined by optimization calculation of nonlinear least square method. The correlation between calculated values and the experimental data showed good agreement.

    supercritical carbon dioxide, isobutanol, phase equilibrium model, critical property

    1 INTRODUCTION

    Supercritical fluid extraction technique (SCFE) is used widely in many processes as a new separation method, such as in removal of trace impurities, recovery of substance having high additional value and thermal sensitivity. CO2is the most commonly used supercritical fluid because of its toxicological inertness, low critical temperature, low cost and small impact on the earth’s environment [1-3]. Alcohol existing widely in fermentation wasted water is often used as entrainer to control the polarity of supercritical fluid, or as a modifier for supercritical fluid chromatography [4]. Thus, the study on supercritical CO2and alcohol is becoming increasingly popular. Vapor-liquid equilibrium properties at high pressures are required for engineering application such as in the design and operation of separation processes. There were some phase equilibrium reports on alcohol in CO2up to now [5-9], but fewer studies were on isobutanol in supercritical CO2[10]. In the present study, new vapor-liquid equilibrium data of isobutanol in CO2from 313.2 K to 353.2 K were measured in a variable-volume visual high pressure cell. Meanwhile, Peng-Robinson equation of state and van der Waals mixing rule were applied to predict vapor- liquid equilibria for CO2+isobutanol binary system.

    2 EXPERIMENTAL

    2.1 Materials and apparatus

    2.1.1

    Carbon dioxide was supplied by Shanxi Xinghua BOC Ltd. with a purity of 99.99%. Isobutanol(purity> 99%, by mass) was analytical reagent.

    2.1.2

    A schematic diagram of a variable-volume visual cell was shown in Fig. 1. The cell was produced by Hai’an Petroleum Research Instrument Plant, Nantong, Jiangsu. The apparatus had two visual windows and its internal maximum volume was 60 ml. The maximum operating temperature and pressure of the apparatus were 423 K with an accuracy of 0.1 K and 20 MPa with an accuracy of 0.01 MPa, respectively. The main parts of the apparatus were a variable volume cell, piston and screw-driven pump. The equilibrium pressure in the cell was measured by a differential pressure gauge; cell temperature was controlled by HA120-50-01 constant temperature liquid bath controller and measured by XT-7000 intelligent temperature regulation indicator. A magnetic stirrer was used for mixing the fluid in the cell.

    Figure 1 The schematic diagram of experimental apparatus

    2.2 Experimental procedure

    Before each experiment, the piston was moved to the upper dead position, thus, the volume of the view cell was made maximal. The entire internal loop of the apparatus including the equilibrium cell was rinsed several times with carbon dioxide. Then, the equilibrium cell was evacuated with a vacuum pump. The cell was charged with a given amount of isobutanol. Then, it was slightly pressurized with carbon dioxide to the initial pressure and was heated to the temperature. Different pressures were reached by different initial pressures and moving piston to different places. Once the pressure and temperature were adjusted to pre-set values, the mixture was stirred for a few hours. Then, the stirrer was switched off and after about one hour the coexisting phases were separated completely. Phase interface could be observed by visual window. Samples of vapor and liquid phase were collected respectively with small steel vessel by their own sampling valve.

    Table 1 Vapor-liquid phase equilibrium data of isobutanol(2) in CO2(1)

    2.3 Analytical method

    The analytical method was applied to determine the phase compositions at different temperatures and different pressures. The small sampling steel vessel was placed in an ice-water bath and connected with a desorption tank by capillary and needle-type valve. After the desorption tank was evacuated, carbon dioxide was desorbed to desorption tank slowly until pressure of the tank did not change; then, the temperature and pressure were recorded. Because the pressure in the desorption tank was far below the atmosphere pressure, the mass of CO2could be calculated by equation of state of ideal gas. The mass of isobutanol was equal to the sample mass minus CO2mass. Finally the molar fractions of two phases could be obtained at given temperature and pressure.

    3 RESULTS AND DISCUSSION

    3.1 Experimental data

    Vapor-liquid equilibrium data of isobutanol in CO2at 313.2 K, 323.2 K, 333.2 K, 343.2 K, 353.2 K were measured and listed in Table 1, where1and2were equilibrium constant of CO2(1) and isobutanol(2), respectively.

    3.2 Results and discussion

    Figure 2 indicated--diagram of CO2-isobutanol at different temperatures. As could be showed from Fig. 2, solubility of CO2would increase in liquid phase and would decrease in vapor phase with increasing pressure at the same temperature. At the same pressure, the solubility of CO2would decrease in liquid phase with increasing temperature, but the solubility of isobutanol would increase in vapor phase because its vapor pressure increased with increasing temperature. Since all thermodynamics properties of vapor phase and liquid phase were equal completely at critical point [11, 12], the composition of vapor and liquid phase must be equal completely at the critical point. Thus, critical point could be obtained by extrapolating vapor and liquid curve to their inflexion point.

    Figure 2--diagram of CO2-isobutanol at different temperatures ●?liquid phase;○?vapor phase;★?estimated critical points/K: 1—313.2; 2—323.2; 3—333.2; 4—343.2; 5—353.2

    Figure 3-diagram of CO2-isobutanol at different temperatures●?liquid phase;○?vapor phase/K: 1—313.2; 2—323.2; 3—333.2; 4—343.2; 5—353.2

    Figure 4 was the-diagram at different temperatures. The results in Fig. 4 showed that the density of the liquid phase decreased with the increasing pressure owing to enhancement of CO2content in liquid phase, but the density of vapor phase increased with increasing pressure. Thus, the densities of vapor and liquid phase would approach gradually and the pressure and density corresponding to the intersecting point of two curves were critical pressure and critical density, respectively.

    Figure 4-diagram of CO2-isobutanol at different temperatures ●?liquid phase;○?vapor phase; ★?calculated critical points/K: 1—313.2; 2—323.2; 3—333.2; 4—343.2; 5—353.2

    The correspondingm--diagram was drawn in Fig. 5, where the thin line indicated isopiestic conjugating line. The intersecting point of vapor phase and liquid phase curves corresponded to critical molar volume and critical composition.

    The critical values obtained from the above figures were summarized in Table 2, in which the critical properties of pure components readily available in the calculation were from literature [13].

    The results in Table 2 showed that the critical temperature of CO2-isobutanol dinary system was between critical temperatures of two pure components and critical pressure was above any of pure components. Moreover, critical temperature and critical pressure decreased with increasing critical composition of CO2, but critical density had a maximum value and critical molar volume had a minimum value in the measurement range.

    Figure 5m--diagram of CO2-isobutanol at different temperature●?liquid phase; ○?vapor phase; ★?calculated critical points

    Table 2 The critical values of CO2-isobutanol

    4 CORRELATION

    If the system arrived to equilibrium state, the partial fugacities were equal for each component in all the phases [14-16].

    For allcomponents, CO2and isobutanol, the fugacity could be calculated using the fugacity coefficient:

    The fugacity coefficient was calculated with Eq. (4):

    Thus, the pressure dependence of thecompressibility factor was necessary. This could be derived from an equation of state (EOS).

    In the work, the cubic Peng-Robinson equation of state, van der Waals-1 and van der Waals-2 mixing rule were chosen to describe vapor-liquid equilibria.

    4.1 Phase equilibrium description model [17-22]

    The expansion of compressibility factorof Peng-Robinson equation of state (PREOS) was Eq.(5)

    The constantsandwere calculated from the pure fluid critical data:

    The parameterwas calculated using, the Pitzer acentric factor:

    van der Waals-1 mixing rule was:

    van der Waals-2 mixing rule was:

    The integral equation of fugacity coefficient with PR and van der Waals-1 mixing rule(PR-1) was calculated by the following formula:

    The integral equation of fugacity coefficient with PR and van der Waals-2 mixing rule(PR-2) was calculated by the following formula:

    The objective function applied in the work was:

    Whereandwere the number of acquired phase equilibrium and the number of components in the system, respectively.was the objective function.

    Table 3 Vapor-liquid phase equilibrium calculated results of CO2(1)+isobutanol(2) system

    4.2 Calculated results and discussion

    The simplex optimization was done with metlab7.0 software according to the above-mentioned equations. The optimized model parameters and deviation analysis were summarized in Table 3.

    The results in Table 3 showed that a bigger deviation produced from the value with PR-1 model than from PR-2. Deviation analysis of molar fraction of vapor and liquid in Table 3 also showed that the adaptable model was influenced significantly by mixing rule, and Peng-Robinson equation of state and van der Waals-2 mixing regulation could be applied to better understanding of the phase behavior for CO2+isobutanol dinary system at high pressures and near-critical area. Due to the density of solution increased at high pressure and near-critical area, the short-course repulsive between molecules played a dominant role. It was necessary to revise the parameters representing molecule volume or molecule diameter. Accordingly, van der Waals-2 mixing rule including the two revising parameters was adaptable.

    5 CONCLUSIONS

    The phase equilibrium composition, density, molar volume and equilibrium constant of isobutanol in CO2were measured in a variable-volume visual cell from 313.2 K to 353.2 K. The phase equilibrium model was established by Peng-Robinson equation of state and van der Waals-2 mixing regulation. Consequently, the prediction model was expected to be a useful tool for the process design and operations of isobutanol from solutions including isobutanol with supercritical CO2.

    NOMENCLATURE

    ARD average relative deviation

    f,φpartial fugacity and partial fugacity coefficient ofcomponent

    12,12dinary action parameter

    pressure, MPa

    temperature, K

    mmolar volume, cm3·mol-1

    xmolar fraction ofcomponent in liquid phase

    ymolar fraction ofcomponent in vapor phase

    compressibility factor

    density, g·cm-3

    Superscripts

    liquid phase

    v vapor phase

    Subscripts

    c critical point

    cal calculated value

    exp experimental data

    1 Zhu, Z.Q., “Supercritical fluid extraction”, Supercritical Fluid Technology—The Principle and Application, Chemical Industry Press, Beijing (2001). (in Chinese)

    2 Kamel, K., Paolo, A., Ireneo, K., Abdallah, D., “Solubility of diamines in supercritical carbon dioxide experimental determination and correlation”,.., 41, 10-19 (2007). (in Chinese)

    3 Zhang, J.C., WU, X.Y., CAO, W.L., “Study on critical properties for CO2+cosolvent binary system and ternary system”,...., 10 (2), 223-227 (2002).

    4 Tatsuru, S., Naoki, T., Kunio, N., “Solubilities of ethanol, 1-prjopanol, 2-propanol and 1-butanol in supercritical carbon dioxide at 313 K and 333 K”,, 67, 213-226 (1991).

    5 Catinca, S., Viorel, F., Dan, G., “Phase behavior for carbon dioxide+ethanol system: experimental measurements and modeling with a cubic equation of state”,.., 47, 109-116 (2008).

    6 Hirotoshi, H., Tanimoto, I.Y., “ Phase equilibrium study for the separation of ethanol-water solution using subcritical and supercritical hydrocarbon solvent extraction”,, 84 (1), 297-320 (1993).

    7 Wang, W.L., Zhang, X.D., Liu, X.W., “Phase equilibria calculation for supercritical carbon dioxide and alcohol”,...., 24 (4), 1-3 (2003). (in Chinese)

    8 Luo, Z.C., Wei,Y. L, Hu, Y., “Phase equilibria study for isopropanol extraction from aqueous solution by using supercritical carbon dioxide”,...., 41 (4), 395-401 (1990). (in Chinese)

    9 Tian, Y.L., Han, M., Chen, L., Feng, J., Qin,Y., “Vapor-liquid equilibrium of CO2-ethanol binary system at high pressure”,..., 17 (2), 155-160 (2001).

    10 Yun, Z., Shi, M.R., Shi, J., “High pressure vapor-liquid phase equilibrium for carbon dioxide –-butanol and carbon dioxide--butanol”,.., 24 (1), 87-92 (1996).

    11 Chen, L., “High pressure equilibrium and critical curves of binary systems containing supercritical CO2”, Ph.D.Thesis, Tianjin University, Tianjin (2004). (in Chinese)

    12 Han, B.X., “Mixing supercritical fluid”, Supercritical Fluid Science and Technology, Chinese Petrol Chemical Engineering Press, Beijing (2005). (in Chinese)

    13 Bruce, E.P, John, M.P., John, P.O., The Properties of Gases and Liquids, Chemical Industry Press, Beijing, 260-266 (2006). (in Chinese)

    14 Chen, Z.X., Gu, F.Y., Hu, W.Y., “Vapor-liquid equilibrium”, The Thermodynamics of Chemical Engineering, Chemical Industry Press, Beijing, 183-187 (2005). (in Chinese)

    15 Fleur, B., Jean, P.P., Thierry, C., Roland, T., Jean, F.B., “Modelling solutions of hydrocarbons in dense CO2gas”,...., 21, 1219-1227 (2001).

    16 Wang, L.S., “The theory progress of generalized van der Waals partition function”, High Pressure Phase Equilibrium and Transport Property of Fluid, Science Press, Beijing, 75-85 (2002). (in Chinese)

    17 John, M.P., Rüdiger, N.L., Edmundo, G.A., “High pressure vapor-liquid equilibrium calculation”, Molecular Thermodynamics of Fluid-Phase Equilibria, Chemical Industry Press, Beijing, 435-441 (2006). (in Chinese)

    18 Abolghasem, J., Chan, H.K., Foster, N.R., “Mathematical representation of solute solubility in supercritical carbon dioxide using empirical expression”,.., 24 (1), 19-35 (2002).

    19 Zhu, H.G., Tian,Y.L., Chen, L., Qin, Y., Feng, J.J., “High-pressure phase equilibria for binary ethanol system containing supercritical CO2”,...., 9 (3), 322-325 (2001).

    20 Wu, J.L., Pan, Q.M., “Prediction of phase behavior for styrene/CO2/ polystyrene mixtures”,...., 10 (6), 706-710 (2002).

    21 Yusuke, S., Toshio, I., “Prediction of vapor-liquid equilibria for supercritical alcohol+fatty acid ester systems by SRK equation of state with Wong-Sandler mixing rule based on COSMO theory”,.., 46, 4-9 (2008).

    22 Berna, A., Chafer, A., Monton, J.B., Subirats, S., “High-pressure solubility data of system ethanol(1)+catechin (2)+CO2(3)”,.., 20, 157-162 (2001).

    2008-12-23,

    2009-04-16.

    * To whom correspondence should be addressed. E-mail: kxchen@nwu.edu.cn

    猜你喜歡
    王琳
    敦煌壁畫(huà)里的“她們”
    云鬢簪花入畫(huà)來(lái)
    Influence of carbon sources on the performance of carbon-coated nano-silicon
    Cabbage Connections
    找出隱含的全等三角形
    王琳油畫(huà)作品
    大眾文藝(2020年22期)2020-12-13 11:37:14
    一年級(jí)下冊(cè)第二單元檢測(cè)題
    王琳等
    王琳
    王琳
    香蕉av资源在线| 精品熟女少妇av免费看| 黄色一级大片看看| 免费看光身美女| 少妇的逼水好多| 亚洲在线观看片| 久久久a久久爽久久v久久| 男女那种视频在线观看| 真实男女啪啪啪动态图| 又黄又爽又刺激的免费视频.| 亚洲图色成人| 美女高潮的动态| 在线看三级毛片| 乱码一卡2卡4卡精品| 成人精品一区二区免费| 国产爱豆传媒在线观看| 床上黄色一级片| 丝袜美腿在线中文| 99热这里只有是精品在线观看| 国产精品一区二区免费欧美| 国产精品亚洲一级av第二区| 国产精品久久久久久精品电影| 18禁在线播放成人免费| 欧美色欧美亚洲另类二区| 亚洲在线自拍视频| 永久网站在线| 亚洲综合色惰| 午夜老司机福利剧场| 老司机午夜福利在线观看视频| 啦啦啦观看免费观看视频高清| 精品福利观看| 婷婷六月久久综合丁香| 久久综合国产亚洲精品| 非洲黑人性xxxx精品又粗又长| 十八禁国产超污无遮挡网站| av.在线天堂| 少妇丰满av| 嫩草影院精品99| 久99久视频精品免费| 乱码一卡2卡4卡精品| 免费无遮挡裸体视频| av中文乱码字幕在线| 久久精品国产清高在天天线| 亚洲精品久久国产高清桃花| 国产精品久久电影中文字幕| 亚洲色图av天堂| 91av网一区二区| 噜噜噜噜噜久久久久久91| 欧美色视频一区免费| 久久久久精品国产欧美久久久| 国产精品乱码一区二三区的特点| 亚洲精品在线观看二区| 中国国产av一级| 老司机影院成人| 久久久久精品国产欧美久久久| 99久久九九国产精品国产免费| 自拍偷自拍亚洲精品老妇| 麻豆国产97在线/欧美| 国产精品1区2区在线观看.| 久久久午夜欧美精品| 亚洲熟妇熟女久久| 国产精品美女特级片免费视频播放器| 国产乱人偷精品视频| 亚洲性久久影院| 日韩精品青青久久久久久| 国产欧美日韩精品一区二区| 22中文网久久字幕| 露出奶头的视频| 国产精品嫩草影院av在线观看| 亚洲av不卡在线观看| 国产又黄又爽又无遮挡在线| 亚洲三级黄色毛片| 一个人看视频在线观看www免费| 女同久久另类99精品国产91| 日韩人妻高清精品专区| 深夜a级毛片| 国产高清激情床上av| 免费高清视频大片| 综合色av麻豆| 少妇裸体淫交视频免费看高清| 久久久精品欧美日韩精品| 色哟哟·www| 亚洲最大成人av| 男女之事视频高清在线观看| 卡戴珊不雅视频在线播放| 国模一区二区三区四区视频| av女优亚洲男人天堂| 日本黄色片子视频| 日本在线视频免费播放| 免费观看精品视频网站| 小蜜桃在线观看免费完整版高清| 看免费成人av毛片| 亚洲中文字幕一区二区三区有码在线看| 久久久久久伊人网av| 夜夜爽天天搞| 久久精品国产鲁丝片午夜精品| 欧美绝顶高潮抽搐喷水| 亚洲成人久久性| 免费看a级黄色片| 舔av片在线| 韩国av在线不卡| 中文字幕av在线有码专区| 午夜福利高清视频| 深爱激情五月婷婷| 亚洲av电影不卡..在线观看| 亚洲成av人片在线播放无| 亚洲精品日韩在线中文字幕 | 欧美精品国产亚洲| 国产麻豆成人av免费视频| 亚洲丝袜综合中文字幕| 国产av在哪里看| 中国国产av一级| 最新在线观看一区二区三区| 婷婷亚洲欧美| 99久久中文字幕三级久久日本| 一本久久中文字幕| 少妇的逼水好多| 人人妻人人澡欧美一区二区| 深爱激情五月婷婷| 别揉我奶头 嗯啊视频| 白带黄色成豆腐渣| 美女黄网站色视频| 少妇人妻精品综合一区二区 | 久久久久久久久久成人| 日韩制服骚丝袜av| 久久久久九九精品影院| a级一级毛片免费在线观看| 久久热精品热| 久久综合国产亚洲精品| 久久久久久久久久久丰满| 免费av不卡在线播放| 丰满的人妻完整版| 国产人妻一区二区三区在| av专区在线播放| 久久精品人妻少妇| 噜噜噜噜噜久久久久久91| 免费看av在线观看网站| 国产精品1区2区在线观看.| av免费在线看不卡| 秋霞在线观看毛片| 日韩国内少妇激情av| 国产高清激情床上av| 18禁裸乳无遮挡免费网站照片| 精品一区二区三区av网在线观看| 1000部很黄的大片| 深爱激情五月婷婷| 老师上课跳d突然被开到最大视频| 日本黄色视频三级网站网址| 五月玫瑰六月丁香| 久久久国产成人精品二区| 久久鲁丝午夜福利片| 午夜a级毛片| 亚洲婷婷狠狠爱综合网| 可以在线观看毛片的网站| 国产人妻一区二区三区在| 国产高清三级在线| 久久热精品热| 夜夜爽天天搞| 午夜视频国产福利| 97碰自拍视频| 欧美成人a在线观看| 一本精品99久久精品77| 神马国产精品三级电影在线观看| 丝袜美腿在线中文| 日韩大尺度精品在线看网址| 亚洲自拍偷在线| 女人十人毛片免费观看3o分钟| 精品人妻一区二区三区麻豆 | 亚洲av熟女| 国产又黄又爽又无遮挡在线| 村上凉子中文字幕在线| 亚洲精品久久国产高清桃花| 中国美白少妇内射xxxbb| 亚洲精品日韩av片在线观看| 亚洲精品影视一区二区三区av| 亚洲av成人精品一区久久| 欧美+亚洲+日韩+国产| 中国国产av一级| 免费av观看视频| 亚洲自拍偷在线| 成人亚洲精品av一区二区| 亚洲欧美日韩东京热| 婷婷六月久久综合丁香| 99热6这里只有精品| 精品少妇黑人巨大在线播放 | 亚洲av五月六月丁香网| 亚洲精品粉嫩美女一区| 校园春色视频在线观看| 国产高清视频在线播放一区| av在线天堂中文字幕| 色av中文字幕| 亚洲一区二区三区色噜噜| 露出奶头的视频| 国产91av在线免费观看| 国产极品精品免费视频能看的| 女生性感内裤真人,穿戴方法视频| 久久99热6这里只有精品| 少妇高潮的动态图| 国产一区亚洲一区在线观看| 成人二区视频| 欧美日韩一区二区视频在线观看视频在线 | 精品一区二区三区视频在线| 免费看光身美女| 亚洲一级一片aⅴ在线观看| 久99久视频精品免费| 国产免费男女视频| 长腿黑丝高跟| 久久久久久久久久久丰满| ponron亚洲| 成人漫画全彩无遮挡| 午夜精品国产一区二区电影 | 不卡一级毛片| 最近视频中文字幕2019在线8| 老司机午夜福利在线观看视频| 夜夜看夜夜爽夜夜摸| 丰满乱子伦码专区| 成年av动漫网址| 日本黄大片高清| 在线观看美女被高潮喷水网站| 老女人水多毛片| 日韩av不卡免费在线播放| 亚洲欧美日韩卡通动漫| 一级毛片aaaaaa免费看小| 亚洲成人精品中文字幕电影| 精品欧美国产一区二区三| 日韩成人伦理影院| 男人舔女人下体高潮全视频| 一个人免费在线观看电影| 亚洲人成网站高清观看| 热99在线观看视频| 国产日本99.免费观看| 黄色日韩在线| 丰满乱子伦码专区| 久久精品国产亚洲av天美| 精品一区二区三区人妻视频| 99久久无色码亚洲精品果冻| 国产亚洲精品综合一区在线观看| 精品午夜福利在线看| 国产亚洲欧美98| av.在线天堂| 观看美女的网站| 久久人妻av系列| 蜜臀久久99精品久久宅男| 18禁在线无遮挡免费观看视频 | 日日摸夜夜添夜夜爱| 可以在线观看毛片的网站| 久久亚洲精品不卡| 国产精品一二三区在线看| av天堂中文字幕网| 校园人妻丝袜中文字幕| 国产av麻豆久久久久久久| 日本 av在线| 一区二区三区四区激情视频 | 熟女电影av网| 91在线精品国自产拍蜜月| 成人一区二区视频在线观看| 一进一出好大好爽视频| 一级黄片播放器| 三级经典国产精品| 嫩草影院新地址| 在线免费十八禁| 不卡视频在线观看欧美| 97在线视频观看| 久久久久久久久久久丰满| 蜜臀久久99精品久久宅男| 春色校园在线视频观看| 欧美不卡视频在线免费观看| 黄色视频,在线免费观看| 天堂影院成人在线观看| 亚洲自拍偷在线| 最近在线观看免费完整版| 97超碰精品成人国产| 神马国产精品三级电影在线观看| 国内揄拍国产精品人妻在线| 一夜夜www| 97超级碰碰碰精品色视频在线观看| 在线国产一区二区在线| 亚洲第一区二区三区不卡| 欧美精品国产亚洲| 久久九九热精品免费| 久久久精品大字幕| av.在线天堂| 我的女老师完整版在线观看| 一边摸一边抽搐一进一小说| 久久久a久久爽久久v久久| 亚洲第一区二区三区不卡| 十八禁网站免费在线| 最近在线观看免费完整版| 免费人成在线观看视频色| 99久久久亚洲精品蜜臀av| 国产精品三级大全| 在线看三级毛片| 亚洲欧美精品自产自拍| 亚洲高清免费不卡视频| 天天一区二区日本电影三级| 嫩草影院精品99| 免费观看精品视频网站| 亚洲av免费在线观看| 成熟少妇高潮喷水视频| 日本色播在线视频| 久久久久性生活片| 亚洲av中文av极速乱| 久久午夜亚洲精品久久| 国产视频一区二区在线看| 午夜亚洲福利在线播放| 18+在线观看网站| 五月玫瑰六月丁香| 十八禁国产超污无遮挡网站| av免费在线看不卡| 高清毛片免费看| 免费看a级黄色片| 别揉我奶头~嗯~啊~动态视频| 国语自产精品视频在线第100页| 色综合站精品国产| 欧美高清性xxxxhd video| 国产日本99.免费观看| 可以在线观看毛片的网站| 欧美一区二区亚洲| 干丝袜人妻中文字幕| 国产伦在线观看视频一区| 精品久久久久久久久亚洲| 两个人视频免费观看高清| 色尼玛亚洲综合影院| 身体一侧抽搐| 女生性感内裤真人,穿戴方法视频| 成年免费大片在线观看| 国产精品一区二区三区四区免费观看 | 国产高清有码在线观看视频| 99精品在免费线老司机午夜| 色在线成人网| а√天堂www在线а√下载| 人妻久久中文字幕网| 22中文网久久字幕| 亚洲成人久久爱视频| 夜夜看夜夜爽夜夜摸| 美女内射精品一级片tv| 欧美绝顶高潮抽搐喷水| 男女之事视频高清在线观看| 欧美绝顶高潮抽搐喷水| 校园人妻丝袜中文字幕| 国产成人freesex在线 | 人人妻人人澡人人爽人人夜夜 | 啦啦啦韩国在线观看视频| 精品一区二区免费观看| 国产91av在线免费观看| 日韩精品有码人妻一区| 色av中文字幕| 久久精品久久久久久噜噜老黄 | 熟女人妻精品中文字幕| 大型黄色视频在线免费观看| 三级毛片av免费| 免费在线观看影片大全网站| 久久久色成人| 欧美激情久久久久久爽电影| 国产成年人精品一区二区| 亚洲av免费在线观看| 久久久久久伊人网av| 亚洲高清免费不卡视频| 大又大粗又爽又黄少妇毛片口| av天堂在线播放| 亚洲av一区综合| 中出人妻视频一区二区| 免费一级毛片在线播放高清视频| 亚洲第一区二区三区不卡| 色哟哟·www| 午夜爱爱视频在线播放| 波多野结衣巨乳人妻| 九九在线视频观看精品| 黑人高潮一二区| 一进一出抽搐动态| 久久鲁丝午夜福利片| 丰满人妻一区二区三区视频av| 日韩欧美免费精品| 欧美日韩乱码在线| 日本撒尿小便嘘嘘汇集6| 久久亚洲国产成人精品v| eeuss影院久久| 在线观看午夜福利视频| 在线免费观看不下载黄p国产| 在线国产一区二区在线| 少妇丰满av| 别揉我奶头~嗯~啊~动态视频| 伊人久久精品亚洲午夜| 亚州av有码| 国产精品一二三区在线看| 久久久久国产网址| 久久亚洲精品不卡| 日韩亚洲欧美综合| 亚洲无线观看免费| 亚洲18禁久久av| 亚洲av免费高清在线观看| 国产精品不卡视频一区二区| 成人三级黄色视频| 国产成人a∨麻豆精品| 看黄色毛片网站| 国产一区二区在线av高清观看| 国产色婷婷99| 国产一区二区亚洲精品在线观看| 天堂av国产一区二区熟女人妻| 变态另类丝袜制服| 真人做人爱边吃奶动态| av在线天堂中文字幕| 国产午夜精品论理片| 俄罗斯特黄特色一大片| 成人高潮视频无遮挡免费网站| 一区二区三区四区激情视频 | av.在线天堂| 99久国产av精品国产电影| 不卡一级毛片| 欧美xxxx性猛交bbbb| 97碰自拍视频| 成人二区视频| 亚洲欧美成人综合另类久久久 | 国产真实乱freesex| 欧美最新免费一区二区三区| 国产精品,欧美在线| 亚洲成人久久性| 亚洲国产精品成人综合色| 成人欧美大片| 成人国产麻豆网| 欧美3d第一页| 夜夜看夜夜爽夜夜摸| 欧美激情在线99| 免费av观看视频| 97超视频在线观看视频| 成人亚洲精品av一区二区| 三级经典国产精品| 欧美一区二区亚洲| 国产高清三级在线| av中文乱码字幕在线| 一夜夜www| 99精品在免费线老司机午夜| 一区福利在线观看| 秋霞在线观看毛片| 九九在线视频观看精品| 18禁在线播放成人免费| 久久精品国产鲁丝片午夜精品| 亚洲精品一区av在线观看| 美女cb高潮喷水在线观看| 欧美日本视频| 亚洲精品色激情综合| 如何舔出高潮| 国产精品综合久久久久久久免费| av视频在线观看入口| 小蜜桃在线观看免费完整版高清| 亚洲欧美日韩无卡精品| 热99re8久久精品国产| 熟女电影av网| 免费观看的影片在线观看| 久久久久久九九精品二区国产| 麻豆乱淫一区二区| 18禁黄网站禁片免费观看直播| 国产久久久一区二区三区| 高清日韩中文字幕在线| 日日摸夜夜添夜夜添小说| 亚洲无线在线观看| 精品少妇黑人巨大在线播放 | 亚洲综合色惰| 可以在线观看毛片的网站| 国产一区二区三区在线臀色熟女| 国产探花极品一区二区| 天天躁日日操中文字幕| av在线蜜桃| 在线看三级毛片| 欧美bdsm另类| 尤物成人国产欧美一区二区三区| 亚洲熟妇熟女久久| 国产精品亚洲美女久久久| 免费人成视频x8x8入口观看| 精品一区二区三区视频在线观看免费| 国产人妻一区二区三区在| 2021天堂中文幕一二区在线观| 老熟妇仑乱视频hdxx| 亚洲国产精品成人综合色| 成人亚洲欧美一区二区av| 国产欧美日韩一区二区精品| 国产精品福利在线免费观看| 直男gayav资源| 国产亚洲91精品色在线| 国产成人一区二区在线| 免费搜索国产男女视频| 亚洲电影在线观看av| 热99re8久久精品国产| 国产 一区精品| 亚洲精品乱码久久久v下载方式| 国产成年人精品一区二区| 欧美高清成人免费视频www| av视频在线观看入口| 亚洲国产高清在线一区二区三| 午夜爱爱视频在线播放| 18禁黄网站禁片免费观看直播| 中文在线观看免费www的网站| 亚洲熟妇中文字幕五十中出| 伦精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 亚洲中文字幕一区二区三区有码在线看| 美女 人体艺术 gogo| 91av网一区二区| 亚洲天堂国产精品一区在线| 男女边吃奶边做爰视频| 亚洲欧美日韩东京热| 春色校园在线视频观看| av在线观看视频网站免费| 校园春色视频在线观看| АⅤ资源中文在线天堂| 天天一区二区日本电影三级| 久久九九热精品免费| 嫩草影视91久久| 干丝袜人妻中文字幕| 久久精品国产清高在天天线| 日日摸夜夜添夜夜添小说| 91在线精品国自产拍蜜月| 成年女人看的毛片在线观看| 热99re8久久精品国产| 久久精品久久久久久噜噜老黄 | 高清毛片免费看| 丰满人妻一区二区三区视频av| 午夜日韩欧美国产| 欧美xxxx黑人xx丫x性爽| 男女啪啪激烈高潮av片| 亚洲不卡免费看| 国产精品三级大全| 欧美不卡视频在线免费观看| 国产人妻一区二区三区在| av国产免费在线观看| 又爽又黄a免费视频| 欧美性猛交黑人性爽| 国产精品不卡视频一区二区| 欧美成人一区二区免费高清观看| 国内少妇人妻偷人精品xxx网站| 精品日产1卡2卡| 国产一区亚洲一区在线观看| 内射极品少妇av片p| 欧美成人一区二区免费高清观看| 久久久午夜欧美精品| 久久久久久久久久久丰满| 久久精品综合一区二区三区| 国语自产精品视频在线第100页| 国产精品一区www在线观看| 亚洲精品日韩在线中文字幕 | 亚洲成人av在线免费| 一级黄片播放器| 精品一区二区免费观看| 亚洲精华国产精华液的使用体验 | 国产在视频线在精品| 成人特级av手机在线观看| 国产精品不卡视频一区二区| 亚洲va在线va天堂va国产| 亚洲av中文av极速乱| 欧美丝袜亚洲另类| 久久精品人妻少妇| 精品日产1卡2卡| 99在线人妻在线中文字幕| 亚洲欧美成人精品一区二区| 日韩高清综合在线| 欧美又色又爽又黄视频| av黄色大香蕉| 美女xxoo啪啪120秒动态图| 插逼视频在线观看| 国产69精品久久久久777片| 精品乱码久久久久久99久播| 久久久欧美国产精品| 久久午夜福利片| av天堂在线播放| 亚洲国产精品久久男人天堂| 深夜精品福利| 少妇熟女aⅴ在线视频| 麻豆国产av国片精品| 少妇被粗大猛烈的视频| 国产av麻豆久久久久久久| 免费搜索国产男女视频| 亚洲激情五月婷婷啪啪| 国产精品永久免费网站| 中国国产av一级| 全区人妻精品视频| 国产视频内射| 丰满人妻一区二区三区视频av| 熟妇人妻久久中文字幕3abv| 午夜精品在线福利| 亚洲国产精品sss在线观看| 啦啦啦韩国在线观看视频| 男女视频在线观看网站免费| 日本五十路高清| 亚洲在线观看片| 狠狠狠狠99中文字幕| 日韩人妻高清精品专区| 一本精品99久久精品77| 超碰av人人做人人爽久久| 悠悠久久av| 亚洲久久久久久中文字幕| 成人特级av手机在线观看| 熟女电影av网| 特大巨黑吊av在线直播| 亚洲无线在线观看| 你懂的网址亚洲精品在线观看 | 久久精品国产亚洲网站| 日韩三级伦理在线观看| 日韩,欧美,国产一区二区三区 | 亚洲精品国产av成人精品 | 中文在线观看免费www的网站| 日本免费a在线| 两个人的视频大全免费| 成年av动漫网址| 亚洲性夜色夜夜综合| 精品熟女少妇av免费看| 精品99又大又爽又粗少妇毛片| 狂野欧美激情性xxxx在线观看| 国产老妇女一区| 欧美成人精品欧美一级黄| 国产一区二区激情短视频| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久久久免| 久久久精品94久久精品| 亚洲成人av在线免费| 如何舔出高潮|