• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Dynamics Simulation of Effect of Salt on the Compromise of Hydrophilic and Hydrophobic Interactions in Sodium Dodecyl Sulfate Micelle Solutions*

    2009-05-15 00:25:52GAOJian高健RENYing任瑛andGEWei葛蔚

    GAO Jian (高健), REN Ying (任瑛),2 and GE Wei (葛蔚),**

    ?

    Molecular Dynamics Simulation of Effect of Salt on the Compromise of Hydrophilic and Hydrophobic Interactions in Sodium Dodecyl Sulfate Micelle Solutions*

    GAO Jian (高健)1, REN Ying (任瑛)1,2and GE Wei (葛蔚)1,**

    1State Key Lab of Multi-phase Complex System, Institute of Process Engineering, CAS, Beijing 100190, China2Graduate University of the Chinese Academy of Sciences, Beijing 100039, China

    The presence of salt has a profound effect on the size, shape and structure of sodium dodecyl sulfate (SDS) micelles. There have been a great number of experiments on SDS micelles in the presence and absence of salt to study this complex problem. Unfortunately, it is not clear yet how electrolyte ions influence the structure of micelles. By describing the compromise between dominant mechanisms, a simplified atomic model of SDS in presence of salt has been developed and the molecular dynamics (MD) simulations of two series of systems with different concentrations of salt and charges of ion have been performed. Polydispersity of micelle size is founded at relatively high concentration of SDS and low charge of cation. Although the counter-ion pairs with head groups are formed, the transition of micelle shape is not observed because the charge of cation is not enough to neutralize the polar of micelle surface.

    molecular dynamics simulation, compromise, sodium dodecyl sulfate, salt, micelle

    1 INTRODUCTION

    Two surfactant molecules in aqueous solution above a critical micelle concentration (CMC) tend to self-aggregate to form micelles of various shapes, spherical, ellipsoidal, rodlike or disk-like,[1]. In a sense, the micelles are formed due to compromise between hydrophilic and hydrophobic interactions [2]. Different composition of the solution will lead to different balance points presenting this compromise. Among which, the transition in size and shape from spherical to rodlike micelles with increasing concentration or addition of salt in the ionic surfactant systems is a well-known phenomenon [3]. Furthermore, salt ions play a significant role in biomolecular systems [4]. For an anionic surfactant, the repulsion between head groups determines the shape and size of micelles formed by different amphiphiles [5]. This interaction is considerably affected by the counter-ions present in the head group region of the micelle, because an increase in surfactant concentration or adding salt leads to a screening of electrostatic repulsions between the charges on the micellar surface. However, how the salt affects the properties of micelles is not well understood. It is a topic of great interest, and Rharbi. [6] have provided a good summarization.

    Sodium dodecyl sulfate (SDS) is one of the most important surfactants in common use. In the absence of salt, SDS has a critical micelle concentration of 8.3 mmol·L-1and aggregation number (agg) of 50 [7]. Properties of aqueous sodium dodecyl sulfate micelles with and without salt have received extensive study [8-18]. It is widely assumed that the shape of SDS micelles at low ionic strength is spherical and changes to more ellipsoidal with salt addition.

    Small-angle neutron diffraction (SANS) experiments [8] suggested that, in the absence of added electrolyte, SDS micelles grow as

    At higher salt and surfactant concentrations, SDS micelles undergo a transition from spherical to rodlike or wormlike shape [10]. Almgren. [11] used a combination of SANS and time-resolved fluorescence quenching (TRFQ) to examine the properties of SDS in concentration ranging from 10 to 80 mmol·L-1with NaCl concentration of 800 mmol·L-1. The short rodlike structures were found at the lowest temperature (25°C) and the highest surfactant concentration. Deeper insights into the shape of these aggregates were provided by the SANS measurements of Bergstr?m and Pedersen [12]. Moreover, Ikeda. [10] studied the rodlike micelles of SDS in sodium halide solutions through light scattering measurements, and concluded that the sphere-rod transition of the SDS micelle is not influenced by the halide ion species of added salt. It means that the transition is mainly caused by the electrostatic effect of counter-ion binding on the micelle.

    Molecular dynamics (MD) simulation has become a unique tool for investigating surfactant systems. In particular, MD simulations can shed light on the atomistic details of the structure and dynamics of surfactant systems. The experimental studies were completed and, more importantly, the access to various static and dynamic properties was provided, which is not accessible by current experimental methods. But MD simulation studies on effect of salt on micelles are insufficient so far. In this work the dependence of the micelle properties, such as size, shape and structure of SDS micelles, on the cation charge and concentration in SDS/NaCl/water systems is investigated. As far as know, our simulation systems are the largest system on scale in the reported MD simulation researches.

    2 MODEL AND SIMULATION METHOD

    Currently, it is technologically not feasible to perform all-atom simulations with explicit solvent since at practical concentrations of micelles the size of the simulation cell is on the order of 10-20 nm, which would imply introduction of 105-106water molecules [19]. We have simplified atomistic model and simulated the formation of SDS micelles in absence of salt in a previous work [20]. Based on this model, the salt ions with a certain quantity of static electricity are added. The model has been detailed previously [20] and a concise introduction is followed.

    The structure of the SDS molecule is showed in Fig. 1. Sulfur and oxygen atoms are explicitly represented by five particles, however, each CHradical in SDS is modeled as a single particle C. Each water molecule or salt ion is also simulated as a single particle. The total potential energy of the system can be expressed as

    Figure 1 Simplified molecular structure of SDS

    The computation cost of long-range electrostatic forces is tremendous, which is the primary reason for the lack of simulations for larger systems and longer time. To cope with this problem, truncation method that neglects the long-range Coulombic tail and truncates the interactions at some suitable distance can save computational cost considerably. In the present work, the truncation method considering computational cost is chosen. In order to investigate the relationship between the charge of the sodium ion and the properties of SDS micelles separately, the electrostatics of water and the chloride ion are neglected, and only those of sodium ion and SDS head groups are considered. The truncation distance is chosen as 2.5for convenience. For the sake of running smoothly on the parallel computers, theNain different systems is divided by 2.5, 3.0, 3.5 and 4.0, respectively. The charge of particles [25] is showed in Table 1.

    Table 1 Partial charges of the various atom types used in our MD simulations

    3 SIMULATION RESULTS AND DISCUSSIONS

    To understand the effect of charge and concentration of cation on micelles, a series of classical molecular dynamics simulations are performed. Two series of systems are treated in the simulations. Series A includes four systems of different concentrations with equal charge of cation, while Series B contains four systems of equal concentration of cation with different charges. The number of salt ion in the two series of systems is shown in Table 2.

    Table 2 The numbers of particles and charge of cation in systems

    The magnitude of this reduced charge (0.4-0.64 C) is merely a parameter. In physical terms, the reduced charge mimics the implicit screening of the first hydration shell,.., the particle represents a hydrated ion. The number of water and SDS molecule are 37650 and 343 respectively, resulting in a SDS concentration of about 0.44 mol·L-1. Among these systems, A2 is same as B4. The SDS molecules are evenly distributed in a uniform matrix at the beginning of the simulations. For each system, the simulations are performed for four nanoseconds on 12 PIII 1.13G CPUs. Figs. 2 and 3 show the variations of the total potential energy of the systems in Series A and the interaction potential energy between the head group and the sodium ions of the systems in Series B, respectively. As illustrated in Fig. 2, the total potential energy reaches a stationary state in about 1 ns, thus the data after 1 ns are collected to analyze its statistical properties. In Fig. 3 the curves fluctuate along with the formation of micelles. The fluctuation is larger after 2 ns for B1 system. The reason is likely that the error induced by truncation is relatively larger because the charge of sodium ion here is the maximum among all systems.

    Figure 2 Time evolution of the total potential energy of systems in the Series A

    Figure 3 Time evolution of the interaction potential energy between head group and Na ion of systems in the Series B

    3.1 Monodispersity or polydispersity

    A matter of some controversy is the influence of the salt concentration on the distribution of micelle sizes. The size distribution is finite but narrow at low ionic strength. The width of the distribution has been obtained as a fitting parameter in micelle relaxation kinetics experiments and from scattering experiments. Several authors [17] have concluded from SANS measurements that, even at low salt concentrations, there is a significant polydispersity in micelle size. More extensive time-resolved fluorescence quenching (TRFQ) experiments has supported a narrow SDS micelle size distribution [28]. Hall responded to these results with a theoretical analysis that supports the possibility of larger micelles maintaining a narrow size distribution [29]. He showed that a narrow size distribution can be maintained if the “effective degree of micellar dissociation”decreases with increasing aggregation number. In our simulations, the numbers of aggregates formed in systems and the numbers of molecules in these aggregates are shown in Table 3. The results show polydispersity when the concentration of salt is low with less charge of Na ion. The size distribution becomes narrow as the concentration of salt and the charge of Na ion increase.

    Table 3 The numbers of aggregates and SDS molecules in these aggregates of systems by the end of simulations

    3.2 Degree of counter-ion dissociation

    The effect of electrolyte on the degree of counter-ion dissociationis a very complex problem. Some researchers considered that the degree of dissociation of micelles does not depend on the concentration of electrolyte [30], whereas others report its increase [31] or decrease [32] with increasing concentration of electrolyte. We calculatedthrough taking count of all Na ions within 0.35 nm of the head groups in the systems of Series A. As showed in Table 4, the degree of counter-ion dissociation decreases with increasing concentration of Na ion. In aqueous solutions with high ionic strengths, a greater number of counter-ions bind to the micelle surface, causing a decrease in the degree of micelle dissociation.

    Table 4 Values of α, Nagg, r, Nagg,eq2, Nagg,eq5, S, Vp, pm for different concentrations of SDS or NaCl at 298 K

    ① The number of SDS molecules in micelle selected.

    3.3 Micelle structure and size

    The effect of salt on the structure and size of micelles is investigated in this work. Anézo. [33] performed simulations of lipid bilayer, and concluded that with the right combination of methodology and force field, lipid bilayers with areas close to the experimentally determined one can be obtained irrespective of the way long-range electrostatics is treated. We assume it holds for SDS molecules too. However, the aggregation number of micelle cannot be determined, because it in all systems is not enough in a statistical sense. One micelle in each system of the two series is selected for the calculation of area per molecule. We select a larger micelle in the higher SDS or cation concentration system based on the knowledge that aggregation number will increase with SDS or cation concentration.

    The aggregation numberaggand the radius of gyrationof eight micelles selected are shown in Table 4. The aggregation number (agg,eq2) of each system is calculated by Eq. (2). It is found that the values ofagg,eq2are larger than those of micelles obtained from the simulated systems. The possible reason is that the charges of Na ion in those systems are much smaller than in reality. Moreover, presuming the micelle to be spherical in shape,aggis computed from the following relation (agg,eq5) [31].

    The area per head group,, in the micelle can be calculated from [35]

    As shown in Table 4, the values ofdecrease as the aggregation number increases. Jakubowska measured the area per SDS molecule at different NaCl concentration at 25°C. He obtained values from 0.66 to 0.47 nm2in a NaCl concentration range from 0.0 to 0.4 mol·L-1[36]. The value we obtained are a little larger than that of the experiment, but is still reasonable.

    For Series B, the volume per SDS molecule in the polar shell of the spherical micelle,p, is computed from [36]

    The values calculated are shown in Table 4. The SDS molecules arrange more closely, as a result of decreasing the repulsive interactions between the head groups in the micelles (the electrostatic screening effect). The values ofp, therefore, decrease with increasing concentration of the electrolyte added.

    3.4 Headgroup-ion radial distribution functions

    The shape, size, fractional charge of the micelle and the intermicellar interaction depend on the distribution of counterions. It is well known that salts induce pronounced growth of micelles due to charge neutralization on the micellar surface by these salts [37]. It must be pointed out that several studies encompassing only a few hundred picoseconds suggested that the ionic atmosphere was not yet in equilibrium within the micelle. It is manifested that at least 1 ns of dynamical evolution is required to reach a stable counter-ion distribution from work by Bruce[25]. Our simulations last for 4 ns, the equilibrium of ionic atmosphere can be assumed.

    In the majority of studies involving ionic micelles, counter-ions were found to form contact pairs with headgroups as evidenced by the maxima in the head group-ion radial distribution functions (RDFs) observed at positions corresponding to the radius of the counter-ion. As showed in Figs. 4 and 5, the maxima are located at about 0.35 nm, indicating that counter-ion pairs formed between head groups and Na ion are in contact. Except for B1, there is only one peak in these rdfs. For system B1, the second peak of rdfs appears at about 0.7 nm, which is larger than about 0.5 nm reported by Rakitin[38]. The charge of Na ion in system B1 is 0.64 C which is the closest to reality among all simulating systems. These RDFs in Fig. 5 show that the electrostatic quantity of the electrolyte ions changes the distribution of ion around micelles evidently. The second peak will be vanished gradually with reducing charge of Na ion. The locations of peaks increase with decreasing charges of Na ion in B series. At the same time, the density of Na ion around head group decreases, showing that the influence of Na ion on micelles becomes weak gradually. The less charge neutralization on micellar surface finally induces growth of micelles.

    The number of counter-ion pars is also calculated for system B1. The value is 0.7 per head group which is a little larger than the typical value (0.3-0.6 per head group) [38].

    3.5 Transition of micelle shape

    Addition of salt screens the electrostatic repulsion between head groups in a micelle, leading to reduced area per SDS molecule. This gives rise to a new packing condition for the micelles with a lower surface to volume ratio. Therefore, as the salt concentration increases, these micelles will grow in size and undergo a sphere-to-rod transition in shape. The transition will take place at 0.4 mol·L-1Na ions [39].

    The critical packing parameterm(Table 4) is calculated by Eq. (8), which controls the micellar shape [34].

    4 CONCLUSIONS

    The influence of salt on micelle structure is a very complex problem. In this paper, molecular dynamics simulations of spherical SDS micelles in the presence of salt have characterized the shape, dispersity, and degree of neutralization by counter-ions.

    The values ofaggincrease with increasing electrolyte concentration because the repulsive interactions between the head groups in the micelles decrease (the electrostatic screening effect). It is seen that the fractional charge on the micelle decreases when the salt concentration in the micellar solution is increased. The neutralization of the charge at the surface of the micelle by the increase in the counter-ion condensation decreases the area of the effective head group and increases the volume for the surfactant monomer to occupy in the micelle. The degree of counter-ion dissociation decreases gradually with increasing salt concentration. The transition of micelle shape is not observed in the systems simulated, but polydispersity of micelle size is found.

    1 J?nsson, B., Lindman, B., Holmberg, K., Kronberg, B., Surfactants and Polymers in Aqueous Solution, John Wiley, Chichester (1998).

    2 Li, J., Kwauk, M., “Exploring complex system in chemical engineering—The multi-scale methodology”,..., 58, 521-535 (2003).

    3 von Berlepsch, H., St?hler, K., Zana, R., “Micellar properties of sodium sulfopropyl alkyl maleates in aqueous solution. A time-resolved fluorescence quenching study”,, 12, 5033-5041 (1996).

    4 Gurtovenko, A.A., Miettinen, M., Karttunen, M., Vattulainen, I., “Effect of monovalent salt on cationic lipid membranes as revealed by molecular dynamics simulations”,..., 109, 21126-21134 (2005).

    5 Tanford, C., “Theory of micelle formation in aqueous solutions”,..., 78, 2469-2479 (1974).

    6 Rharbi, Y., Chen, L., Winnik, M.A., “Exchange mechanisms for sodium dodecyl sulfate micelles: high salt concentration”,...., 126, 6025-6034 (2004).

    7 Bales, B.L., Messina, L., Vidal, A., Peric, M., Nascimento, O.R., “Precision relative aggregation number determinations of SDS micelles using a spin probe. A model of micelle surface hydration”,..., 102, 10347-10358 (1998).

    8 Bezzobotnov, V.Y., Borbely, S., Cser, L., Farago, B., Gladkih, I.A., Ostanevich, Y.M., “Temperature and concentration dependence of properties of sodium dodecyl sulfate micelles determined from small angle neutron scattering experiments”,..., 92, 5738-5743 (1988).

    9 Quina, F.H., Nassar, P.M., Bonilha, J.B.S., Bales, B.L., “Growth of sodium dodecyl sulfate micelles with detergent concentration”,..., 99, 17028-17031 (1995).

    10 Ikeda, S., Hayashi, S., Imae, T., “Rodlike micelles of sodium dodecyl sulfate in concentrated sodium halide solutions”,..., 85, 106-112 (1981).

    11 Almgren, M., Gimel, J.C., Wang, K., Karlsson, G., Edwards, K., Brown, W., Mortensen, K., “SDS micelles at high ionic strength. A light scattering, neutron scattering, fluorescence quenching, and CryoTEM investigation”,.., 202, 222-231 (1998).

    12 Bergstr?m, M., Pedersen, J.S., “Structure of pure SDS and DTAB micelles in brine determined by small-angle neutron scattering (SANS)”,...., 1, 4437-4446 (1999).

    13 Warr, G.G., Grieser, F., “Determination of micelle size and polydispersity by fluorescence quenching. Theory and numerical results”,...,., 82, 1813-1828 (1986).

    14 Siemiarczuk, A., Ware, W.R., Liu, Y.S., “A novel method for determining size distributions in polydisperse micelle systems based on the recovery of fluorescence lifetime distributions”,..., 97, 8082-8091 (1993).

    15 Reekmans, S., Bernik, D., Gehlen, M., van Stam, J., Van der Auweraer, M., de Schryver, F.C., “Change in the micellar aggregation number or in the size distribution? A dynamic fluorescence quenching study of aqueous cetyltrimethylammonium chloride”,, 9, 2289-2296 (1993).

    16 Mazer, N.A., Benedek, G.B., Carey, M.C., “An investigation of the micellar phase of sodium dodecyl sulfate in aqueous sodium chloride solutions using quasielastic light scattering spectroscopy”,..., 80, 1075-1085 (1976).

    17 Cabane, B., Duplessix, R., Zemb, T., “High-resolution neutron-scattering on ionic surfactant micelles - SDS in water”,.., 46, 2161-2178 (1985).

    18 Bhaskar, D.G., van Stam, J., de Schryver, F.C., “Are aqueous sodium dodecyl sulfate micelles in the presence of added salt polydisperse? A time-resolved fluorescence quenching study with global analysis”,, 13, 1957-1963 (1997).

    19 Keiper, J., Romsted, L.S., Yao, J., Soldi, V., “Interfacial compositions of cationic and mixed non-ionic micelles by chemical trapping: A new method for characterizing the properties of amphiphilic aggregates”,.., 176, 53-67 (2001).

    20 Gao, J., Ge, W., Hu, G.H., Li, J.H., “From homogeneous dispersion to micelles. A molecular dynamics simulation on the compromise of the hydrophilic and hydrophobic effects of sodium dodecyl sulfate in aqueous solution”,, 21, 5223-5229 (2005).

    21 Salaniwal, S., Cui, S.T., Cochran, H.D., Cummings, P.T., “Molecular simulation of a dichain surfactant/water/carbon dioxide system (I) structural properties of aggregates”,, 17, 1773-1783 (2001).

    22 Brown, D., Clarke, J.H.R., “A molecular dynamics study of chain configurations in-alkane-like liquids”,..., 100, 1684-1692 (1994).

    23 Salaniwal, S., Cui, S.T., Cummings, P., Cochran, H.D., “Self-assembly of reverse micelles in water/surfactant/carbon dioxide systems by molecular simulation”,, 15, 5188-5192 (1999).

    24 Allen, M.P., Tildesley, D.J., Computer Simulation of Liquids, Clarendon Press, Oxford (1987).

    25 Bruce, C.D., Berkowitz, M.L., Perera, L., Forbes, M.D.E., “Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution”,..., 106, 3788-3793 (2002).

    26 Rapaport, D.C., The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge (1995).

    27 Maiti, P.K., Lansac, Y., Glaser, M.A., Clark, N.A., “Self-assembly in surfactant oligomers: A coarse-grained description through molecular dynamics simulations”,, 18, 1908-1918 (2002).

    28 Almgren, M., Lofroth, J.E., “Determination of micelle aggregation numbers and micelle fluidities from time-resolved fluorescence quenching studies”,.., 81, 486-499 (1981).

    29 Hall, D.G., “Polydispersity of sodium dodecyl sulfate (SDS) micelles”,, 15, 3483-3485 (1999).

    30 Ranganathan, R., Peric, M., Bales, B.L., “Time-resolved fluorescence quenching measurements of the aggregation numbers of normal sodium alkyl sulfate micelles well above the critical micelle concentrations”,..., 102, 8436-8439 (1998).

    31 Paul, B.C., Islam, S.S., Ismail, K., “Effect of acetate and propionate co-ions on the micellization of sodium dodecyl sulfate in water”,..., 102, 7807-7812 (1998).

    32 Ikeda, S., “Stability of spherical and rod-like micelles of ionic surfactants, in relation to their counterion binding and modes of hydration”,.., 269, 49-61 (1991).

    33 Anézo, C., de Vries, A.H., H?ltje, H., Tieleman, D.P., Marrink, S., “Methodological issues in lipid bilayer simulations”,..., 107, 9424-9433 (2003).

    34 Turner, D., Gracie, K., Taylor, T., Palepu, R., “Micellar and thermodynamic properties of sodium dodecyl sulfate in binary aqueous solutions of di-, tri-, and tetraethylene glycols”,.., 202, 359-368 (1998).

    35 Briganti, P., Puvvada, S., Blankschtein, D., “Effect of urea on micellar properties of aqueous solutions of nonionic surfactants”,..., 95, 8989-8995 (1991).

    36 Dutkiewicz, E., Jakubowska, A., “Effect of electrolytes on the physicochemical behaviour of sodium dodecyl sulphate micelles”,.., 280, 1009-1014 (2002).

    37 Aswal, V.K., Goyal, P.S., Thiyagarajan, P., “Small-angle neutron-scattering and viscosity studies of CTAB/NaSal viscoelastic micellar solutions”,..., 102, 2469-2473 (1998).

    38 Rakitin, A.R., Pack, G.R., “Molecular dynamics simulations of ionic interactions with dodecyl sulfate micelles”,..., 108, 2712-2716 (2004).

    39 Dutkiewicz, E., Jakubowska, A., “Water activity in aqueous solutions of inhomogeneous electrolytes”,..., 103, 9898-9902 (1999).

    2008-11-12,

    2009-05-25.

    the Outstanding Overseas Research Team Project of the Chinese Academy of Sciences, the National Natural ScienceFoundation of China (20221603), and the Research Fund of Key Lab for Nanomaterials, Ministry of Education, China (2006-1).

    ** To whom correspondence should be addressed. E-mail: wge@home.ipe.ac.cn

    国产男女超爽视频在线观看| 亚洲一区二区三区欧美精品| 黄网站色视频无遮挡免费观看| 亚洲国产精品一区三区| 久久天躁狠狠躁夜夜2o2o | 男女之事视频高清在线观看 | 精品国产一区二区三区久久久樱花| 亚洲第一av免费看| 日韩一区二区三区影片| 亚洲色图综合在线观看| 人人妻人人澡人人看| 成人亚洲精品一区在线观看| av在线老鸭窝| 侵犯人妻中文字幕一二三四区| 这个男人来自地球电影免费观看| 亚洲av在线观看美女高潮| 国产精品一区二区免费欧美 | 亚洲人成77777在线视频| 亚洲五月色婷婷综合| 亚洲五月婷婷丁香| 男女之事视频高清在线观看 | 人人妻,人人澡人人爽秒播 | 免费黄频网站在线观看国产| 波多野结衣av一区二区av| 午夜视频精品福利| 777久久人妻少妇嫩草av网站| 精品第一国产精品| 久久天躁狠狠躁夜夜2o2o | 大陆偷拍与自拍| 精品人妻一区二区三区麻豆| 亚洲一区中文字幕在线| 国产男人的电影天堂91| av网站免费在线观看视频| www.999成人在线观看| 另类亚洲欧美激情| 考比视频在线观看| 国产伦理片在线播放av一区| 人人妻人人爽人人添夜夜欢视频| 欧美黑人欧美精品刺激| 黄色视频不卡| 久久久久精品人妻al黑| 亚洲人成网站在线观看播放| 亚洲三区欧美一区| 在线观看国产h片| 成人国语在线视频| 中文字幕人妻熟女乱码| 男女下面插进去视频免费观看| 亚洲国产日韩一区二区| 久久亚洲精品不卡| 久久久久国产精品人妻一区二区| 99香蕉大伊视频| 日韩一卡2卡3卡4卡2021年| 国产成人精品在线电影| 亚洲精品一区蜜桃| 欧美精品亚洲一区二区| xxxhd国产人妻xxx| 久久久久国产一级毛片高清牌| 老鸭窝网址在线观看| 国产在线免费精品| 日韩电影二区| 免费看av在线观看网站| 人妻人人澡人人爽人人| 两个人看的免费小视频| 男女边吃奶边做爰视频| 性少妇av在线| 成人手机av| 色精品久久人妻99蜜桃| av有码第一页| 1024香蕉在线观看| 丁香六月天网| 丝瓜视频免费看黄片| 激情视频va一区二区三区| 啦啦啦视频在线资源免费观看| 久久久久精品国产欧美久久久 | 国产亚洲av高清不卡| 久久精品国产综合久久久| av一本久久久久| 国产精品秋霞免费鲁丝片| 丝袜人妻中文字幕| 天天操日日干夜夜撸| 尾随美女入室| av在线app专区| 91九色精品人成在线观看| 在线观看免费高清a一片| 国产成人av激情在线播放| 精品少妇久久久久久888优播| 美女福利国产在线| 色婷婷久久久亚洲欧美| 一级黄片播放器| 亚洲精品国产av蜜桃| 免费黄频网站在线观看国产| 在线观看www视频免费| 婷婷色综合www| 精品高清国产在线一区| 久久ye,这里只有精品| 欧美黄色淫秽网站| 欧美人与性动交α欧美精品济南到| 大话2 男鬼变身卡| 久久人妻福利社区极品人妻图片 | 国产97色在线日韩免费| 日韩大码丰满熟妇| 在线观看免费日韩欧美大片| 美女大奶头黄色视频| 国产熟女欧美一区二区| 国产免费现黄频在线看| 成人亚洲精品一区在线观看| 精品免费久久久久久久清纯 | 中文欧美无线码| 国产精品秋霞免费鲁丝片| 国产亚洲午夜精品一区二区久久| 精品一区二区三区av网在线观看 | 日日夜夜操网爽| 少妇的丰满在线观看| 18禁黄网站禁片午夜丰满| 天天躁夜夜躁狠狠久久av| 欧美日韩亚洲综合一区二区三区_| 日本黄色日本黄色录像| 日韩 欧美 亚洲 中文字幕| 9191精品国产免费久久| 亚洲精品乱久久久久久| 色精品久久人妻99蜜桃| 少妇裸体淫交视频免费看高清 | 亚洲午夜精品一区,二区,三区| 中文字幕av电影在线播放| 精品一区二区三区av网在线观看 | 亚洲欧美中文字幕日韩二区| 国产黄色视频一区二区在线观看| 亚洲自偷自拍图片 自拍| 欧美日韩精品网址| 男男h啪啪无遮挡| 自拍欧美九色日韩亚洲蝌蚪91| 国产深夜福利视频在线观看| 国精品久久久久久国模美| 免费在线观看日本一区| 色播在线永久视频| 99久久综合免费| 国产99久久九九免费精品| 国产99久久九九免费精品| 久久热在线av| 国产一区二区 视频在线| 亚洲情色 制服丝袜| 精品欧美一区二区三区在线| 婷婷丁香在线五月| 亚洲中文日韩欧美视频| 在现免费观看毛片| 欧美日韩av久久| 老司机深夜福利视频在线观看 | 欧美日韩视频高清一区二区三区二| 操美女的视频在线观看| 1024视频免费在线观看| bbb黄色大片| 大片电影免费在线观看免费| 老司机午夜十八禁免费视频| √禁漫天堂资源中文www| 真人做人爱边吃奶动态| 一边摸一边抽搐一进一出视频| 每晚都被弄得嗷嗷叫到高潮| 久久亚洲精品不卡| 国产三级黄色录像| 亚洲人成77777在线视频| 日本a在线网址| 麻豆av在线久日| 国产欧美日韩精品亚洲av| 久久久国产精品麻豆| 色94色欧美一区二区| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲一区二区精品| 热re99久久国产66热| 一本大道久久a久久精品| 97人妻天天添夜夜摸| 国产无遮挡羞羞视频在线观看| 纯流量卡能插随身wifi吗| 久久精品国产a三级三级三级| 无遮挡黄片免费观看| 久久狼人影院| 人人妻人人爽人人添夜夜欢视频| 国产免费现黄频在线看| 国产成人精品久久久久久| 母亲3免费完整高清在线观看| 18在线观看网站| 在线观看免费午夜福利视频| 日韩大片免费观看网站| 日本猛色少妇xxxxx猛交久久| 亚洲欧洲日产国产| 黑人欧美特级aaaaaa片| av国产久精品久网站免费入址| 婷婷色综合www| 欧美成人午夜精品| 日本五十路高清| 午夜福利乱码中文字幕| 亚洲男人天堂网一区| 国产熟女欧美一区二区| 十八禁人妻一区二区| 丝袜人妻中文字幕| 成人国产av品久久久| 婷婷色综合www| 妹子高潮喷水视频| 精品亚洲成国产av| 精品视频人人做人人爽| 欧美黑人欧美精品刺激| 亚洲久久久国产精品| 黄频高清免费视频| 欧美亚洲 丝袜 人妻 在线| 精品熟女少妇八av免费久了| 视频区图区小说| av网站在线播放免费| 欧美大码av| 免费在线观看视频国产中文字幕亚洲 | 欧美日韩亚洲高清精品| 亚洲五月色婷婷综合| 免费看av在线观看网站| 国产成人欧美| 午夜免费成人在线视频| 国产精品麻豆人妻色哟哟久久| 亚洲男人天堂网一区| 国产成人精品在线电影| 欧美精品人与动牲交sv欧美| 免费看十八禁软件| 免费观看a级毛片全部| e午夜精品久久久久久久| 亚洲国产中文字幕在线视频| 黄色怎么调成土黄色| 国产黄色视频一区二区在线观看| www.自偷自拍.com| 国产欧美日韩精品亚洲av| 中国美女看黄片| 美女扒开内裤让男人捅视频| 高清欧美精品videossex| 韩国精品一区二区三区| 国产欧美日韩精品亚洲av| 国产成人精品久久久久久| 国产一区二区三区av在线| 新久久久久国产一级毛片| 99热全是精品| 午夜91福利影院| 一级a爱视频在线免费观看| 久久久久久久国产电影| 亚洲国产看品久久| 成年人免费黄色播放视频| 肉色欧美久久久久久久蜜桃| 汤姆久久久久久久影院中文字幕| 少妇人妻 视频| 日韩中文字幕视频在线看片| 国产成人精品久久二区二区免费| 久久国产精品影院| 丝瓜视频免费看黄片| 一区二区日韩欧美中文字幕| 午夜福利,免费看| 日本欧美视频一区| 亚洲成人国产一区在线观看 | 亚洲国产欧美一区二区综合| 国产成人免费观看mmmm| 91精品国产国语对白视频| 麻豆乱淫一区二区| 亚洲av成人不卡在线观看播放网 | 欧美在线黄色| 最近最新中文字幕大全免费视频 | 女人被躁到高潮嗷嗷叫费观| 亚洲国产成人一精品久久久| 久久国产精品男人的天堂亚洲| 欧美激情 高清一区二区三区| 你懂的网址亚洲精品在线观看| 日韩av不卡免费在线播放| 99香蕉大伊视频| √禁漫天堂资源中文www| 亚洲中文日韩欧美视频| 亚洲欧美一区二区三区国产| 美女视频免费永久观看网站| 搡老岳熟女国产| av有码第一页| 十八禁人妻一区二区| 亚洲国产欧美在线一区| 国产99久久九九免费精品| 国产精品免费视频内射| 亚洲精品国产av蜜桃| 欧美人与善性xxx| 电影成人av| 日本猛色少妇xxxxx猛交久久| 亚洲中文日韩欧美视频| 美女视频免费永久观看网站| 国产av一区二区精品久久| 欧美日韩亚洲综合一区二区三区_| 一级片免费观看大全| 日韩一卡2卡3卡4卡2021年| xxxhd国产人妻xxx| 国产黄色视频一区二区在线观看| 在线观看人妻少妇| 岛国毛片在线播放| 国产精品国产三级专区第一集| 国产极品粉嫩免费观看在线| 50天的宝宝边吃奶边哭怎么回事| 午夜视频精品福利| 人人妻人人澡人人爽人人夜夜| 在线观看免费午夜福利视频| 精品高清国产在线一区| 精品亚洲成a人片在线观看| 看免费成人av毛片| 性少妇av在线| 9191精品国产免费久久| 天天躁夜夜躁狠狠躁躁| 男人添女人高潮全过程视频| 捣出白浆h1v1| 日韩大码丰满熟妇| 国产精品免费大片| 真人做人爱边吃奶动态| 日韩一区二区三区影片| 日本欧美视频一区| av有码第一页| 欧美成狂野欧美在线观看| www.精华液| 久久精品国产综合久久久| 美女视频免费永久观看网站| 国产又色又爽无遮挡免| 久久人妻福利社区极品人妻图片 | 一本大道久久a久久精品| 中文字幕亚洲精品专区| 欧美黑人精品巨大| 最近最新中文字幕大全免费视频 | 亚洲精品成人av观看孕妇| 欧美在线黄色| 少妇裸体淫交视频免费看高清 | 亚洲第一青青草原| 大型av网站在线播放| 啦啦啦在线观看免费高清www| 真人做人爱边吃奶动态| 少妇粗大呻吟视频| 午夜福利,免费看| 亚洲精品久久久久久婷婷小说| 国产高清国产精品国产三级| 老司机在亚洲福利影院| 日韩 欧美 亚洲 中文字幕| 欧美激情高清一区二区三区| 亚洲人成电影免费在线| 久久久久久久久免费视频了| 热re99久久精品国产66热6| 美女中出高潮动态图| 大型av网站在线播放| 男女高潮啪啪啪动态图| 97精品久久久久久久久久精品| 国产一卡二卡三卡精品| 人人妻人人澡人人看| 中文乱码字字幕精品一区二区三区| 黄色一级大片看看| 男女之事视频高清在线观看 | 欧美 亚洲 国产 日韩一| 久久精品熟女亚洲av麻豆精品| 国产精品国产三级专区第一集| 啦啦啦在线免费观看视频4| 韩国精品一区二区三区| 交换朋友夫妻互换小说| svipshipincom国产片| 欧美精品啪啪一区二区三区 | 国产成人av激情在线播放| 韩国高清视频一区二区三区| 国产精品久久久人人做人人爽| 永久免费av网站大全| 多毛熟女@视频| 黄网站色视频无遮挡免费观看| 亚洲,欧美精品.| 欧美精品一区二区免费开放| 成人18禁高潮啪啪吃奶动态图| 午夜两性在线视频| 亚洲成av片中文字幕在线观看| 观看av在线不卡| 91九色精品人成在线观看| 91成人精品电影| 捣出白浆h1v1| 一区二区av电影网| 在线观看免费高清a一片| 激情视频va一区二区三区| 成人亚洲精品一区在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av欧美aⅴ国产| 国产精品 欧美亚洲| 久久久久久久国产电影| 国产福利在线免费观看视频| 黄片播放在线免费| 午夜福利视频在线观看免费| 国产黄色免费在线视频| 久久综合国产亚洲精品| 国产日韩欧美亚洲二区| 欧美精品人与动牲交sv欧美| 9191精品国产免费久久| 人妻 亚洲 视频| 婷婷色综合大香蕉| 亚洲精品av麻豆狂野| 老熟女久久久| 在线天堂中文资源库| 视频在线观看一区二区三区| 国产激情久久老熟女| 欧美成人午夜精品| 人妻一区二区av| 丝袜人妻中文字幕| 国产一区二区 视频在线| 欧美日韩黄片免| 亚洲精品美女久久久久99蜜臀 | 一本久久精品| 一个人免费看片子| 交换朋友夫妻互换小说| 久久国产精品人妻蜜桃| 另类精品久久| 亚洲精品美女久久av网站| 一级毛片 在线播放| 一本综合久久免费| 亚洲欧美色中文字幕在线| 亚洲av日韩在线播放| 亚洲国产中文字幕在线视频| 亚洲专区国产一区二区| 一区福利在线观看| 欧美成狂野欧美在线观看| 免费一级毛片在线播放高清视频 | 一级黄色大片毛片| 国产伦理片在线播放av一区| 日本午夜av视频| 国产成人免费无遮挡视频| 精品亚洲成国产av| av网站免费在线观看视频| 91老司机精品| 99久久人妻综合| 亚洲av日韩在线播放| 一边亲一边摸免费视频| 777久久人妻少妇嫩草av网站| 中文字幕人妻丝袜一区二区| 精品熟女少妇八av免费久了| 久久精品国产综合久久久| 精品国产一区二区三区四区第35| 久久天躁狠狠躁夜夜2o2o | 男人添女人高潮全过程视频| 国产黄频视频在线观看| 啦啦啦中文免费视频观看日本| 久久久国产欧美日韩av| 亚洲av欧美aⅴ国产| 黄色怎么调成土黄色| 日本五十路高清| 亚洲av欧美aⅴ国产| 高潮久久久久久久久久久不卡| 99久久人妻综合| 亚洲国产欧美一区二区综合| 91老司机精品| 亚洲成人免费av在线播放| 视频在线观看一区二区三区| 日日摸夜夜添夜夜爱| 久久国产精品男人的天堂亚洲| 欧美日韩成人在线一区二区| 好男人视频免费观看在线| 国产精品免费大片| 视频区图区小说| 又紧又爽又黄一区二区| 性色av乱码一区二区三区2| av在线播放精品| 97人妻天天添夜夜摸| 看十八女毛片水多多多| 亚洲国产中文字幕在线视频| 伊人久久大香线蕉亚洲五| 欧美精品人与动牲交sv欧美| 一区二区三区四区激情视频| 成年动漫av网址| 国产成人av教育| 丰满饥渴人妻一区二区三| 美女大奶头黄色视频| av在线播放精品| 国产主播在线观看一区二区 | av不卡在线播放| 国产精品国产av在线观看| 午夜福利视频精品| h视频一区二区三区| 亚洲av成人精品一二三区| 国产日韩欧美视频二区| 少妇裸体淫交视频免费看高清 | 久久久久久亚洲精品国产蜜桃av| 亚洲熟女毛片儿| 天堂中文最新版在线下载| 丝袜美足系列| 一二三四社区在线视频社区8| 亚洲欧洲精品一区二区精品久久久| 国产xxxxx性猛交| 日韩人妻精品一区2区三区| 成人18禁高潮啪啪吃奶动态图| av在线老鸭窝| 免费在线观看黄色视频的| 欧美亚洲日本最大视频资源| cao死你这个sao货| 人人妻人人添人人爽欧美一区卜| 国产亚洲av片在线观看秒播厂| 在线观看免费日韩欧美大片| 天天躁日日躁夜夜躁夜夜| 赤兔流量卡办理| 国产成人91sexporn| 黄网站色视频无遮挡免费观看| 天堂中文最新版在线下载| 免费一级毛片在线播放高清视频 | 亚洲国产精品999| 首页视频小说图片口味搜索 | 免费人妻精品一区二区三区视频| 欧美日韩精品网址| 国产熟女欧美一区二区| 啦啦啦中文免费视频观看日本| 国产午夜精品一二区理论片| 国产成人欧美在线观看 | 亚洲少妇的诱惑av| 亚洲av成人精品一二三区| 亚洲欧美日韩另类电影网站| 你懂的网址亚洲精品在线观看| 国产av国产精品国产| 免费看不卡的av| 大片电影免费在线观看免费| 国产深夜福利视频在线观看| 欧美日韩视频精品一区| 热re99久久精品国产66热6| 国产精品 国内视频| 热99国产精品久久久久久7| 亚洲欧美一区二区三区黑人| 高清欧美精品videossex| 叶爱在线成人免费视频播放| 中文字幕精品免费在线观看视频| 肉色欧美久久久久久久蜜桃| 亚洲国产最新在线播放| 亚洲国产精品999| 黄色a级毛片大全视频| 亚洲,欧美精品.| 亚洲精品久久午夜乱码| 国产亚洲欧美在线一区二区| 美女福利国产在线| 久久亚洲国产成人精品v| 精品久久久久久电影网| 亚洲欧美一区二区三区国产| 欧美激情高清一区二区三区| 国产免费一区二区三区四区乱码| 国产精品二区激情视频| 多毛熟女@视频| 精品一区二区三卡| 亚洲伊人久久精品综合| 国产亚洲一区二区精品| 交换朋友夫妻互换小说| 一级毛片我不卡| 色网站视频免费| 久久 成人 亚洲| 日本黄色日本黄色录像| 久久ye,这里只有精品| 在线观看一区二区三区激情| 免费在线观看黄色视频的| 国产精品一二三区在线看| 男的添女的下面高潮视频| 女性被躁到高潮视频| 啦啦啦 在线观看视频| 中国国产av一级| 日韩欧美一区视频在线观看| 啦啦啦在线观看免费高清www| 亚洲成人免费av在线播放| 又大又黄又爽视频免费| 晚上一个人看的免费电影| 观看av在线不卡| 热re99久久精品国产66热6| 中国美女看黄片| 一区二区三区乱码不卡18| 黄色一级大片看看| 久久综合国产亚洲精品| 久久毛片免费看一区二区三区| √禁漫天堂资源中文www| 在线观看免费视频网站a站| 久久久久视频综合| 国产一区有黄有色的免费视频| 精品久久久久久电影网| 天天躁夜夜躁狠狠躁躁| 一区在线观看完整版| 国产一级毛片在线| 欧美日韩福利视频一区二区| 蜜桃国产av成人99| 久久天躁狠狠躁夜夜2o2o | 国产成人一区二区在线| 国产精品欧美亚洲77777| 午夜福利乱码中文字幕| 男女国产视频网站| avwww免费| 久久久国产一区二区| 国产精品久久久av美女十八| 狂野欧美激情性xxxx| 在线观看人妻少妇| 亚洲精品乱久久久久久| 久久国产精品男人的天堂亚洲| 午夜激情久久久久久久| 日韩 欧美 亚洲 中文字幕| 又粗又硬又长又爽又黄的视频| 日韩视频在线欧美| 91麻豆av在线| 美女中出高潮动态图| 亚洲精品国产一区二区精华液| 欧美97在线视频| 亚洲精品国产一区二区精华液| 午夜福利一区二区在线看| 美女扒开内裤让男人捅视频| 亚洲精品久久成人aⅴ小说| 国产成人啪精品午夜网站| 热99久久久久精品小说推荐| 国产精品欧美亚洲77777| 国产精品久久久人人做人人爽| 搡老乐熟女国产| 国产又色又爽无遮挡免| 国产片内射在线| 1024香蕉在线观看| 黄片播放在线免费| 91精品三级在线观看| 99久久综合免费| 成在线人永久免费视频| 久久精品亚洲熟妇少妇任你| 伊人亚洲综合成人网| 一级黄色大片毛片| 午夜av观看不卡| 夫妻午夜视频| 青春草视频在线免费观看| 欧美精品av麻豆av| 日本黄色日本黄色录像| 色视频在线一区二区三区| 日韩熟女老妇一区二区性免费视频| 一本综合久久免费|