• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Removal of Uranium (VI) by Fixed Bed Ion-exchange Column Using Natural Zeolite Coated with Manganese Oxide*

    2009-05-15 00:26:02ZOUWeihua鄒衛(wèi)華ZHAOLei趙蕾andHANRunping韓潤(rùn)平

    ZOU Weihua (鄒衛(wèi)華), ZHAO Lei (趙蕾) and HAN Runping (韓潤(rùn)平)

    ?

    Removal of Uranium (VI) by Fixed Bed Ion-exchange Column Using Natural Zeolite Coated with Manganese Oxide*

    ZOU Weihua (鄒衛(wèi)華)1, ZHAO Lei (趙蕾)1and HAN Runping (韓潤(rùn)平)2,3,**

    1School of Chemical and Energy Engineering, Zhengzhou Univerity, Zhengzhou 450001, China2Department of Chemistry, Zhengzhou University, Zhengzhou 450001, China3Luoyang Company of China Petrolum & Chemical Corporation, Luoyang 471012, China

    The adsorption of uranium (VI) on the manganese oxide coated zeolite (MOCZ) from aqueous solution was investigated in a fixed-bed column. The experiments were conducted to investigate the effects of bed height, flow rate, particle size, initial concentration of uranium (VI), initial pH, presence of salt and competitive ions. The U-uptake by MOCZ increased with initial uranium (VI) concentration and bed height, but decreased as the flow rate and particle size increased. In the presence of salt and competitive ions, the breakthrough time was shorter. The adsorption capacity reached a maximum at pH of 6.3. The Thomas model was applied to the experimental data to determine the characteristic parameters of the column for process design using linear regression. The breakthrough curves calculated from the model were in good agreement with the experimental data. The BDST model was used to study the influence of bed height on the adsorption of uranium (VI). Desorption of uranium (VI) in the MOCZ column was investigated. The column could be used for at least four adsorption-desorption cycles using 0.1 mol·L-1NaHCO3solution as the elution. After desorption and regeneration with deionized water, MOCZ could be reused to adsorb uranium (VI) at a comparable capacity. Compared to raw zeolite, MOCZ showed better capacity for uranium (VI) removal.

    adsorption, uranium (VI), manganese oxide coated zeolite, regeneration

    1 INTRODUCTION

    Uranium is one of the most serious contamination concerns because of its radioactivity and heavy-metal toxicity. Uranium and its compounds are highly toxic, which is a threat to human health and ecological balance. Dissolved uranium usually occurs in most natural waters at very low concentrations, but uranium mining, milling, processing, enriching, and disposal all contribute to contaminate surface water and groundwater, where the concentrations of uranium may increase to above 1 μg·L-1. Hence the research on separation of uranium from wastewater is important. Adsorption by lowcost adsorbents provides an environmentally and economically favorable method for removing uranium from wastewaters. Although their adsorption capacities are usually less than those of synthetic or modified adsorbents, the minerals may be inexpensive substitutes for the treatment of heavy metal-laden wastewaters. To enhance the adsorption capacity of natural adsorbents for heavy metals, many attempts have been made,.., chemical modification for their surfaces using metal oxides[1-3].

    Natural zeolites have received considerable attention for heavy metal removal due to their valuable properties, such as ion exchange ability. The physical structure is highly porous, enclosing interconnected cavities, in which the metal ions and water molecules are captured [4]. In order to improve the performance, such as adsorption capacity, mechanical strength, and resistance to chemical environments, several physical and chemical methods have been used to modify zeolite.

    The objective of this study is to test the properties of manganese oxide coated zeolite (MOCZ) as an adsorbent for removing uranium (VI) from synthetic solutions using a fixed-bed column. The effects of main variables, such as bed height, flow rate, particle size, initial uranium (VI) concentration, initial pH, presence of salt and competitive ions, on the adsorption of uranium (VI) are investigated.

    2 MATERIALS AND METHODS

    2.1 Preparation of MOCZ

    The raw zeolite sample was crushed and sieved through the mesh screens, and a fraction of particles with an average size were soaked in tap water for 24 h to decrease its alkalescence, rinsed with distilled water and dried at 373 K in the oven for preparation of surface coating. Manganese oxide coated zeolite (MOCZ) was prepared in a reductive procedure to precipitate colloids of manganese oxide on the particle surface. A boiling solution containing potassium permanganate was poured over dried zeolite particles in a beaker, and then hydrochloric acid (mass fraction 37.5%) was added dropwise into the solution. After stirring for 1 h, the material was filtered (60-80 μm, 80-100 μm, 160-200 μm), washed to reach pH 7.0 using distilled water, dried at room temperature and stored in a polypropylene bottle until use.

    2.2 Reagents and solution

    All chemicals and reagents used for experiments and analyses were of analytical grade. The solution of uranium (VI) was prepared by dissolving appropriate amount of UO2(NO3)2·6H2O (A.R.) in deionized water. Arsenazo III solution with 0.5 g·L-1was prepared by dissolving 0.5 g of the reagent in 1000 ml of deionized water. Samples were analyzed by the Arsenazo III colorimetric method for uranium (VI) concentration.

    2.3 Determination of uranium contents in solution

    A simple and sensitive spectrophotometric method based on colored complexes with Arsenazo III in an aqueous medium was used for determination of uranium (VI) [13]. The concentration in the solution was determined with a Shimadzu Brand UV-3000 spectrophotometer by measuring absorbance atmaxof 588 nm for uranium complex.

    2.4 Methods for adsorption studies

    2.5 Analysis of experimental data

    The fraction of uranium (VI) uptake from a solution in a fixed-bed is usually expressed by/0as a function of time or volumetric flow rate for a given bed height, resulting in a breakthrough curve [14]. The maximum column capacity,total(mg), for a given feed concentration and the flow rate, is equal to the area under the curve of the adsorbed uranium (VI) concentrationad(ad0)time (min) and is calculated by Eq. (1).

    The equilibrium uptake (eq), the amount of uranium (VI) adsorbed per unit mass of dry adsorbent (mg·g-1) in the column, is calculated as follows:

    whereis the total mass of dry adsorbent in the column.

    The total amount of uranium (VI) added to the column (total) is

    The total removal percent of uranium (VI) is the ratio of the maximum capacity of the column,total, to the total amount of uranium (VI) added to column,total.

    The effluent volume,eff, can be calculated by Eq. (5)

    2.6 Mathematical model

    The Thomas model [15] was used to predict the adsorption performance. The non-linearized and linearized form of the model are given as Eqs. (6) and (7), respectively.

    3 RESULTS AND DISCUSSION

    3.1 Effects of main variables on the adsorption of uranium (VI) by MOCZ

    3.1.1

    The bed height of column for uranium (VI) adsorption was about 5, 10, 15, and 20 cm, corresponding to 5, 10, 15, and 20 g of MOCZ, respectively. The breakthrough curves at flow rate of 5.45 ml·min-1and initial uranium (VI) concentration of 50 mg·L-1are illustrated in Fig. 1 (a). The total adsorbed amount, the maximum uranium (VI) uptake and removal percent with respect to the bed height are presented in Table 1.

    Table 1 Comparison of adsorption capacities on MOCZ and raw zeolite for removal of uranium (VI)

    Figure 1 (a) shows thatbandeincrease with the bed height. The slopes of the curves from breakthrough time to exhaustion time decrease as the bed height increases from 5 to 20 cm, and the shape and gradient of the breakthrough curves are slightly different. The uranium (VI) uptake capacity,total, increases from 65.4 to 286 mg with the increase of bed height in the column. The increase in adsorption with higher bed height is due to the increase in adsorbent mass, providing more adsorption sites for uranium (VI). The removal efficiencies and equilibrium capacities (eq) also increase, as shown in Table 1.

    Figure 1 Effect of bed height on breakthrough curve of uranium (VI) (a) and pH value of effluent (b)

    The effluent pH is changed dramatically, as shown in Fig. 1 (b). The pH value drops rapidly at the beginning, and then increases to about 4.8 at the exhausting point. The pH profile can be explained by the surface ion exchange between uranium (VI) and H+. At the beginning of adsorption, more uranium (VI) ions are bounded on MOCZ, and more H+are released into the solution by ion exchange, so the value of pH decreases rapidly. As the bed height increases from 5 to 20 cm, the minimum pH value decreases from 4.3 to 4.1, since more adsorbent mass releases more H+by exchanging with uranium (VI) ions. Although the H+diffusivity is higher, the concentration fronts of H+and uranium (VI) move at the same velocity for maintaining the electro-neutrality of solution. Therefore, the breakthrough curve of pH may be used as an indicator of metal breakthrough, which is a simple method for ending a column cycle since monitoring pH values is easier than monitoring metal concentrations.

    Bed depth service time (BDST) is a simple model, in which the bed heightand service timeof a column bears a linear relationship. The equation can be expressed as follows [16, 17]:

    wherebis the breakthrough uranium (VI) concentration (mg·L-1). The value of0was found to be 6.0 cm, below which the column of MOCZ would be not efficient enough under the condition. The parameters in the BDST model will be helpful to scale up the process.

    3.1.2

    The breakthrough curves at different pH are shown in Fig. 2. The influent concentration of uranium (VI) was 50 mg·L-1, the mass of MOCZ in the column was 15 g, and the flow rate was 7.69 ml·min-1. The precipitate of uranium (VI) and colloid formation were not observed in the pH range of 3.2 to 8.1 under the experimental condition. As shown in Fig. 2, the pH of aqueous phase is a controlling factor in uranium (VI) adsorption. As pH increases from 3.2 to 6.3, the breakthrough time reaching saturation increases significantly, and the uptake capacityeqalso increases from 8.2 to 15.4 mg·g-1. The highest maximum bed capacity and the longest breakthrough time are obtained at pH 6.3. At lower pH, H+competes with uranium (VI) ions for the surface of adsorbent, so that the uranium (VI) uptake is less. It was also observed that the uptake capacity of uranium (VI) decreases from 15.4 to 11.5 mg g–1as pH increases from 6.3 to 8.1. Such a pH-dependence of uranium (VI) sorption on MOCZ is similar to that for uranium (VI) adsorption on ferrihydrite, hematite, goethite, and amorphous iron hydroxide with solutions exposing to the atmosphere [18-20]. This behavior may be explained by that the carbonate concentration increases with pH at a constant carbon dioxide partial pressure, resulting in an increase in the concentration of soluble uranium (VI) carbonate complexes. They compete with uranium (VI) for adsorption sites, so that the adsorption of uranium (VI) ions decreases as the concentration of dissolved carbonate and bicarbonate anions increase [21].

    Predicted breakthrough curves with respect to solution pH are also shown in Fig. 2, which are in good agreement with experimental data. The correlation coefficients () at pH from 3.2 to 8.1 are between 0.966 and 0.985. The calculated0values are similar to experimentaleqvalues.

    3.1.3

    The effect of initial concentration of uranium (VI) on adsorption by MOCZ was investigated for flow rate 5.45 ml·min-1and bed height 15 cm, shown in Fig. 3. The initial concentration of uranium (VI) varied from 50 to 120 mg·L-1.

    Figure 3 Effect of initial uranium (VI) concentration on breakthrough curve (a) and pH value of effluent (b)

    Table 2 Effect of initial pH on the adsorption of uranium (VI)

    Figure 3 (a) shows that the Thomas model give a good fit of the experimental data in the concentration range studied. The value of0increases from 13.0 to 15.1 mg·g-1, while the value ofThobtained from Thomas model decreases from 0.142 to 0.0727 ml·mg-1·min-1as the initial concentration of uranium (VI) changes from 50 to 120 mg·L-1(Table 3).

    Table 3 Effect of initial concentration and flow rate on the adsorption of uranium (VI)

    Figure 4 Effect of flow rate on breakthrough curve (a) and pH value of effluent (b)

    3.1.4

    Flow rate is one of the important parameters in column design [22]. The breakthrough curves at different flow rate are shown in Fig. 4 (a). The initial uranium (VI) concentration is 50 mg·L-1and the bed height is 15 cm. Fig. 4 (a) shows thateincreases significantly as the flow rate decreases from 7.69 to 3.33 ml·min-1. The breakthrough curves are much steeper at higher flow rates. As the flow rate increases from 3.33 to 7.69 ml·min-1, the uranium (VI) uptake capacity,eq, decreases from 16.1 to 13.2 mg·g-1(Table 3), and the minimum value of pH increases from 4.0 to 4.3 [Fig. 4 (b)]. This is because lower liquid velocity in the column results in longer contact time between phases. With the Thomas model, the calculated breakthrough curves are close to the experimental curves, as shown in Fig. 4 (a), and the correlation coefficients are between 0.957 and 0.986. The calculated0values are similar to experimentaleqvalues.

    3.1.5

    Figure 5 shows the experimental results for different particle sizes ranged from 60-200 μm at a flow rate of 5.45 ml·min-1and initial uranium (VI) concentration of 80 mg·L-1. Larger adsorbent particle size gives an earlier breakthrough, and the slope of the breakthrough curve increases as particle size increases. The equilibrium adsorption capacity,eq, increases from 14.2 to 15.1 mg·g-1, and the total removal percent of uranium (VI) increases from 54.6% to 78.8% as particle size decreases, as shown in Table 4. This may be due to the fact that the adsorption is a surface phenomenon and the extent of adsorption is expected to be proportional to the specific surface. The effective surface area increases as particle size decreases and as a consequence, the saturation adsorption per unit mass of adsorbent increases [9, 23].

    In Fig. 5 the Thomas model give a good fit of the experimental data for all tested particle sizes with high correlation coefficient greater than 0.929. As the particle size of MOCZ increases, the value ofThdecreases (Table 4). The calculated0values from Thomas model are similar to experimentaleqvalues.

    Table 4 Effect of particle size of MOCZ on the adsorption of uranium (VI)

    3.1.6

    In order to investigate the effect of coexisting ions on the adsorption of MOCZ, a solution containing Cu(II) or Zn(II) was used, with a concentration of 22 mg·L-1. Fig. 6 shows the experimental results at a flow rate of 5.45 ml·min-1and initial uranium (VI) concentration of 80 mg·L-1. In binary systems, a shorter time was required to attain the breakthrough and saturation in comparison with single metal solutions. This is primarily because the presence of competitive metal ions Cu2+or Zn2+reduces the adsorption capacity of uranium (VI) ions on MOCZ.

    3.1.7

    The effect of coexisting common salt was studied with uranium (VI) of 50 mg·L-1in NaCl or CaCl2of 0.02 mol·L-1as background electrolytes. The flow rate was 5.45 ml·min-1. As shown in Fig. 7, the existence of salt in the solution results in steeper slope and smaller breakthrough time. The effect of CaCl2is stronger than that of NaCl. The result is in good agreement with our previous study in a batch system [24]. The reason may be the competitive effect between uranium (VI) ions and metal cations from the salt for the adsorption sites available. Another reason is that as ionic strength increases, the activity of uranium (VI) and the active sites decrease, so the adsorptive capacity of uranium (VI) decreases. As Ca2+has more contribution to ionic strength and more positive charges than Na+, the effect of Ca2+on the adsorption is more serious than Na+at the same concentration [25].

    3.2 Regeneration

    Disposal of the adsorbent loaded with heavy metal ions creates another environmental problem, as it is a hazardous material to the environment. This problem may be solved to some extent by using one of the elimination methods,.., elution, incineration and pyrolysis. Regeneration of the adsorbent material is of crucial importance in the economic development [26]. The regeneration of MOCZ fixed bed column was studied to assess the possibility for the reuse of adsorbent and recovery of metal ions.

    The column was packed with 15 g MOCZ. The flow rate was 5.45 ml·min-1and initial uranium (VI) concentration was 50 mg·L-1. Once the adsorbent MOCZ was saturated, the ions can be removed by desorbing agents and the MOCZ can be reused in further adsorption processes.

    The elution curves are shown in Fig. 8. The elution curves obtained in all cases exhibit a similar trend. The concentration of the effluent uranium (VI) is very high at the beginning of the desorption process, and then drops quickly to a very low level. The maximum concentrations of uranium (VI) are 7875 mg·L-1for 0.5 mol·L-1HNO3, 5308 mg·L-1for 0.1 mol·L-1HNO3, 5283 mg·L-1for 0.5 mol·L-1NaHCO3, and 3850 mg·L-1for 0.1 mol·L-1NaHCO3. The solution of 0.5 mol·L-1HNO3was the most effective desorbing agent among the eluting agents, but it would destroy the adsorbent MOCZ. The solution of 0.1 mol·L-1NaHCO3did not cause damage to MOCZ and the efficiency of desorption was significant, so that it was selected as the desorbing agent. Following desorption, the bed was washed with distilled water until the pH of the effluent was corresponded to the inlet water. This treatment was carried out after each cycle.

    The regenerated MOCZ was reused for four adsorption-desorption cycles, as shown in Fig. 9 and Table 5. The efficiency of uranium (VI) adsorption- desorption process changes little in the second cycle and remains almost the same in the following cycles. Therefore, MOCZ is an excellent adsorbent for uranium (VI), and has promising potential applications for removal of uranium (VI) from industrial effluents.

    Table 5 Adsorption parameters for four adsorption-desorption cycles

    3.3 Comparison with raw zeolite

    For inlet concentration of uranium (VI) 50 mg·L-1, flow rate 5.45 ml·min-1with a bed height of 15 cm, the breakthrough curves of zeolite column and MOCZ column are given in Fig. 10, respectively. The values of equilibrium uptakeeqand removal percents are also presented in Table 1. The breakthrough time is 180 and 460 min for uranium (VI) to be adsorbed on zeolite and MOCZ, respectively. The MOCZ has higher adsorption capacity than raw zeolite, which is attributed to the highly negative surface charge on the modified surface [27]. Furthermore, the increment of surface area will play a significant role in the overall removal process.The surface area of MOCZ increased from 24.87 to 28.23 m2·g-1after coating manganese oxide on the surface of zeolite[12].

    3.4 Comparison with other solid adsorbents

    Various forms of natural and synthetic adsorbents were used in heavy metal removal from aqueous solutions and wastewaters. Uranium adsorption on various minerals was widely described in the literature. Table 6 provides a comparison on uranium (VI) uptake capacities of some natural and synthetic adsorbents, based on mg of uranium (VI) ion adsorbed per gram mass of adsorbent.

    Table 6 Comparison of adsorption/retention capacities of MOCZ and various adsorbents for uranium (VI)

    From Table 6, the adsorption capacity of chelate modified resin is higher than that of natural and modified minerals reported in literature so far. However, the flow rate for natural and modified minerals may be higher than that for resin due to their larger particle sizes in the column. On the other hand, the particle shapes of natural and modified minerals do not deform in water treatment. The size of MOCZ is larger than that of ion-exchange resin, so the process can be operated at higher flow rate in a fixed-bed column. The adsorption capacity of MOCZ is comparable to other adsorbents. The maximum adsorption capacityeqachieved with MOCZ is 18.1 mg·g-1, which is satisfactory for MOCZ to be an adsorbent, with the advantage of easy handling and cost effectiveness.

    4 CONCLUSIONS

    The adsorption of uranium (VI) from aqueous solutions on MOCZ was investigated in a continuous fixed bed column. The uranium (VI) adsorption capacity increased with decreasing initial uranium (VI) concentration, flow rate, and particle size, but increased with bed height. Presence of Cu2+or Zn2+resulted in a shorter breakthrough period, as compared to the single uranium (VI) system. The Thomas model was applied to the experimental data to predict the breakthrough curves and to determine the kinetic parameters for the column. MOCZ was regenerated and used for four cycles with almost the same efficiency. Compared to raw zeolite and other mineral adsorbents, MOCZ had better ability to adsorb uranium (VI) from the solution, so that MOCZ can be used to remove uranium (VI) from aqueous solutions.

    NOMENCLATURE

    area under the breakthrough curve

    effluent uranium (VI) concentration, mg·L-1

    bbreakthrough uranium (VI) concentration, mg·L-1

    0influent or initial uranium (VI) concentration, mg·L-1

    pparticle size of MOCZ, μm

    influent linear velocity, cm·min-1

    arate constant in BDST model, L·mg-1·min-1

    Thrate constant in Thomas model, ml·min-1·mg-1

    0adsorption capacity from BDST model, mg·L-1

    volumetric flow rate, ml·min-1

    eqequilibrium uranium (VI) uptake per gram of adsorbent from experiment, mg·g-1

    totaltotal adsorbed quantity of uranium (VI) in the column, mg

    0equilibrium uranium (VI) uptake per gram of adsorbent from Thomas model, mg×g-1

    btime at breakthrough, min

    etime at exhaustion, min

    totaltotal flow time, min

    effeffluent volume, ml

    totaltotal amount of uranium (VI) added into the column, mg

    amount of adsorbent in the column, g

    total removal percent of uranium (VI), %

    bed height, cm

    0critical bed height, cm

    1 Al-Degs, Y., Khraisheh, M.A.M., “The feasibility of using diatomite and Mn-diatomite for remediation of Pb2+, Cu2+, and Cd2+from water”,...,35, 2299-2310 (2000).

    2 Edwards, M., Benjamin, M.M., “Adsorption filtration using coated sand: a new approach for treatment of metal-bearing wastes”,...,61, 1523-1533 (1989).

    3 Kuan, W.H., Lo, S.L., Wang, M.K., “Removal of Se (IV) and Se (VI) from water by aluminum oxide coated sand”,., 32, 915-923 (1998).

    4 Al-Haj, A.A., El-Bishtawi, R., “Removal of lead and nickel ions using zeolite tuff”,...., 69, 27-34 (1997).

    5 Birsen, A., Timothy, A.D., “Application of MnO2coated scintillating and extractive scintillating resins to screening for radioactivity in groundwater”,.., 505, 458-461 (2003).

    6 Catts, J.G., Langmuir, D., “Adsorption of Cu, Pb, and Zn byd-MnO2: Applicability of the side binding-surface complexation model”,.., 1, 255-264 (1986).

    7 Fu, G., Allen, H.E., Cowan, C.E., “Adsorption of cadmium and copper by manganese oxide”,., 152, 72-81 (1991).

    8 Zou, W.H., Liu, C.X., Jiang, L., Han, R.P., “Single and binary component adsorption of copper cation and lead cation from aqueous solutions using fresh δ-MnO2”,.. (..), 26, 15-19 (2005).

    9 Al-Degs, Y., Khrasisheh, M.A.M., Tutunji, M.F., “Sorption of lead ions on diatomite and manganese oxides modified diatomite”,., 35, 3724-3728 (2001).

    10 Han, R.P., Zou, W.H., Zhang, Z.P., Shi, J., Yang, J.J., “Removal of copper (II) and lead (II) from aqueous solution by manganese oxide coated sand (I) Characterization and kinetic study”,..., 137, 384-395 (2006).

    11 Han, R.P., Zou, W.H., Li, H.K., Li, Y.H., Shi, J., “Copper (II) and lead (II) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite”,..., 137, 934-942 (2006).

    12 Zou, W.H., Han, R.P., Chen, Z.Z., Shi, J., Liu, H.M., “Characterization and properties of manganese oxide coated zeolite (MOCZ) as adsorbent for removal of copper (II) and lead (II) ions from solution”,..., 51, 534-541 (2006).

    13 Misaelides, P., Godelitsas, A., Filippidis, A., Charistos, D., Anousi, I., “Thorium and uranium uptake by natural zeolitic materials”,..,173/174, 237-246 (1995).

    14 Guibal, E., Lorenzelli, R., Vincent, T., Cloirec, L., “Application of silica gel to metal ion sorption: static and dynamic removal of uranyl ions”,.., 16, 101-114 (1995).

    15 Thomas, H.C., “Heterogeneous ion exchange in a flowing system”,....,66, 1664-1666 (1944).

    16 Goel, J., Kadirvelu, K., Rajagopal, C., Garg, V.K., “Removal of lead (II) by adsorption using treated granular activated carbon: batch and column studies”,..., 125, 211-220 (2005).

    17 Othman, M.Z., Roddick, F.A., Snow, R., “Removal of dissolved organic compounds in fixed-bed columns: evaluation of low-rank coal adsorbents”,., 35, 2943-2949 (2001).

    18 Lenhart, J.J., Honeyman, B.D., “Uranium VI sorption to hematite in the presence of humic acid”,..., 63, 2891-2901 (1999).

    19 Waite, T.D., Davis, J.A., Payne, T.E., Waychunas, G.A., Xu, N., “Uranium(VI) adsorption to ferrihydrite: Application of a surface complexation model”,..., 58, 5465-5478 (1994).

    20 Wazne, M., Korfiatis, G.P., Meng, X., “Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide”,..., 37, 3619-3624 (2003).

    21 Barnett, M.O., Jardine, P.M., Brooks, S.C., Selim, H.M., “Adsorption and transport of uranium(VI) in subsurface media”,...., 64, 908-917 (2000).

    22 Chu, K.H., “Improve fixed bed models for metal biosorption”,...,97, 233-239 (2004).

    23 Banergee, K., Cheremisinoff, P.N., Cheng, L.S., “Adsorption kinetics of-xylene by fly ash”,., 31, 249-261 (1997).

    24 Han, R.P., Zou, W.H., Wang, Y., Zhu, L., “Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect”,..., 93, 127-143 (2007).

    25 Han, R.P., Zhang, J.J., Han, P., Wang, Y.F., Zhao, Z.H., Tang, M.S., “Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite”,..., 145, 496-504 (2009).

    26 Han, R.P., Zou, L.N., Zhao, X., Xu, Y.F., Xu, F., Li, Y.L., Wang, Y., “Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper (II) from solution in fixed bed column”,..., 149, 123-131 (2009).

    27 Kanungo, S.B., Paroda, K.M., “Interfacial behavior of some synthetic MnO2samples during their adsorption of Cu2+and Ba2+from aqueous solution at 300 K ”,.., 98, 252-260 (1984).

    28 Tran, H.H., Roddick, F.A., O'Donnell, J.A., “Comparison of chromatography and desiccant silica gels for the adsorption of metal ions (I) Adsorption and kinetics”,., 33, 2992-3000 (1999).

    29 Kilislioglu, A., “The effect of various cations and pH on the adsorption of U(VI) on Amberlite IR-118H resin”,.., 58, 713-717 (2003).

    30 Gabriel, U., Gaudet, J.P., Spadini, L., Charlet, L., “Reactive transport of uranyl in a goethite column: an experimental and modelling study”,.., 151, 107-128 (1998).

    31 ?tamberg, K., Venkatesan, K.A., Vasudeva Rao, P.R., “Surface complexation modeling of uranyl ion sorption on mesoporous silica”,, 221, 149-162 (2003).

    33 Sylwester, E.R., Hudson, E.A., Allen, P.G., “The structure of uranium(VI) sorption complexes on silica, alumina, and montmorillonite”,..., 64, 2431-2438 (2000).

    34 Barton, C.S., Stewart, D.I., Morrisb, K., Bryant, D.E., “Performance of three resin-based materials for treating uranium-contaminated groundwater within a PRB”,..., 116, 191-204 (2004).

    35 Kütahyal, C., Eral, M., “Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation”,...,40, 109-114 (2004).

    2008-07-08,

    2009-03-30.

    the National Science Foundation for Postdoctoral Scientists of China (20070420811) and the Science and Technology Department of Henan Province in China (200510459016).

    ** To whom correspondence should be addressed. E-mail: rphan67@zzu.edu.cn

    人妻系列 视频| 18禁裸乳无遮挡免费网站照片| 国产在视频线精品| 青春草亚洲视频在线观看| 久久久久九九精品影院| 又黄又爽又刺激的免费视频.| 看十八女毛片水多多多| 又大又黄又爽视频免费| 亚洲精品乱久久久久久| 在线 av 中文字幕| 久久精品国产a三级三级三级| 亚洲人成网站在线观看播放| 国产亚洲5aaaaa淫片| 国国产精品蜜臀av免费| 男人和女人高潮做爰伦理| 又爽又黄a免费视频| 看免费成人av毛片| 最新中文字幕久久久久| 王馨瑶露胸无遮挡在线观看| 国产精品蜜桃在线观看| 一个人看的www免费观看视频| 哪个播放器可以免费观看大片| 久久ye,这里只有精品| 亚洲国产精品成人久久小说| 日韩欧美一区视频在线观看 | 久久精品国产亚洲网站| 99久久精品一区二区三区| 九九在线视频观看精品| 亚洲av男天堂| 日本欧美国产在线视频| 久久精品国产鲁丝片午夜精品| 岛国毛片在线播放| 3wmmmm亚洲av在线观看| 国产免费一区二区三区四区乱码| 成人亚洲精品av一区二区| 91狼人影院| 午夜福利在线在线| 在线观看美女被高潮喷水网站| 亚洲精品成人av观看孕妇| 成人一区二区视频在线观看| 亚洲av国产av综合av卡| 深爱激情五月婷婷| 男人狂女人下面高潮的视频| 亚洲在久久综合| 国产午夜精品久久久久久一区二区三区| 亚洲最大成人av| 亚洲欧美一区二区三区国产| 人人妻人人爽人人添夜夜欢视频 | 欧美成人精品欧美一级黄| 免费看不卡的av| 欧美三级亚洲精品| 日本猛色少妇xxxxx猛交久久| 亚洲精品日本国产第一区| 国产一区有黄有色的免费视频| 插逼视频在线观看| 一边亲一边摸免费视频| 国产精品国产三级国产专区5o| 国产又色又爽无遮挡免| av免费观看日本| 色视频在线一区二区三区| 欧美丝袜亚洲另类| 久久鲁丝午夜福利片| 日本午夜av视频| 日韩成人av中文字幕在线观看| 欧美3d第一页| 免费av不卡在线播放| 五月伊人婷婷丁香| 能在线免费看毛片的网站| 国产乱人偷精品视频| 岛国毛片在线播放| 一区二区av电影网| 中文乱码字字幕精品一区二区三区| 精品一区二区三卡| 国产极品天堂在线| 亚洲欧美日韩卡通动漫| 中文字幕制服av| 黄色一级大片看看| 精品国产三级普通话版| 国语对白做爰xxxⅹ性视频网站| 国产高清三级在线| 亚洲av国产av综合av卡| 黄色怎么调成土黄色| 亚洲精品456在线播放app| 日本熟妇午夜| 亚洲av.av天堂| 丰满少妇做爰视频| 久久久精品免费免费高清| av在线蜜桃| 九色成人免费人妻av| 国产成人aa在线观看| 免费看不卡的av| 久久99蜜桃精品久久| 国产一区亚洲一区在线观看| 女人十人毛片免费观看3o分钟| 亚洲av不卡在线观看| 看十八女毛片水多多多| 丰满人妻一区二区三区视频av| 亚洲四区av| 国产色婷婷99| 日本与韩国留学比较| 视频中文字幕在线观看| 极品少妇高潮喷水抽搐| 人人妻人人澡人人爽人人夜夜| 国产成人91sexporn| 午夜福利视频1000在线观看| av在线老鸭窝| 边亲边吃奶的免费视频| 国产av不卡久久| 在现免费观看毛片| 亚洲,欧美,日韩| 久久久久精品久久久久真实原创| 国产亚洲av嫩草精品影院| 国产探花在线观看一区二区| 深夜a级毛片| 男男h啪啪无遮挡| 中文字幕人妻熟人妻熟丝袜美| 亚洲电影在线观看av| 日韩三级伦理在线观看| 成人鲁丝片一二三区免费| 久久鲁丝午夜福利片| 九九久久精品国产亚洲av麻豆| 日韩欧美精品免费久久| 国产午夜精品一二区理论片| 久久久久精品久久久久真实原创| 国产片特级美女逼逼视频| 久久久欧美国产精品| 深夜a级毛片| 王馨瑶露胸无遮挡在线观看| 日韩视频在线欧美| 蜜臀久久99精品久久宅男| 国产黄片视频在线免费观看| tube8黄色片| 国产永久视频网站| 日本av手机在线免费观看| 欧美成人午夜免费资源| 午夜福利高清视频| 亚洲aⅴ乱码一区二区在线播放| videos熟女内射| 亚洲av日韩在线播放| av一本久久久久| 蜜桃亚洲精品一区二区三区| 亚洲欧美精品自产自拍| 久久ye,这里只有精品| 18禁动态无遮挡网站| 色网站视频免费| 一级片'在线观看视频| 少妇人妻精品综合一区二区| 五月开心婷婷网| 丰满人妻一区二区三区视频av| 人妻少妇偷人精品九色| 一个人看视频在线观看www免费| 国产精品秋霞免费鲁丝片| 一区二区三区乱码不卡18| 一级毛片aaaaaa免费看小| 只有这里有精品99| 国模一区二区三区四区视频| 欧美潮喷喷水| 日本色播在线视频| 一本一本综合久久| 国产一区二区三区综合在线观看 | 国内精品宾馆在线| 高清视频免费观看一区二区| 高清日韩中文字幕在线| 建设人人有责人人尽责人人享有的 | 国内精品宾馆在线| 欧美激情久久久久久爽电影| 少妇的逼好多水| 免费看av在线观看网站| 在线天堂最新版资源| 亚洲国产欧美人成| 亚洲精品国产av蜜桃| 亚洲欧美一区二区三区黑人 | 一级毛片电影观看| 免费黄网站久久成人精品| 免费观看在线日韩| 日韩成人av中文字幕在线观看| 国产日韩欧美亚洲二区| 久久99精品国语久久久| 日韩免费高清中文字幕av| 国产又色又爽无遮挡免| 日韩大片免费观看网站| 一级av片app| 在线天堂最新版资源| 国产精品爽爽va在线观看网站| 特大巨黑吊av在线直播| 中文字幕av成人在线电影| av国产精品久久久久影院| 国产高清三级在线| 精品国产乱码久久久久久小说| 亚洲最大成人手机在线| 久久久久久久久久成人| 久久人人爽人人爽人人片va| 99久久人妻综合| 欧美精品人与动牲交sv欧美| 欧美成人a在线观看| 免费人成在线观看视频色| 亚洲成人中文字幕在线播放| 国产精品一区www在线观看| 人妻制服诱惑在线中文字幕| 一级a做视频免费观看| 国产精品伦人一区二区| 中文天堂在线官网| 最后的刺客免费高清国语| 人人妻人人看人人澡| 少妇人妻 视频| 简卡轻食公司| 在线天堂最新版资源| 中国国产av一级| 久久精品国产鲁丝片午夜精品| 亚洲精品亚洲一区二区| 亚洲va在线va天堂va国产| 日韩在线高清观看一区二区三区| 在线观看三级黄色| 国产爽快片一区二区三区| 两个人的视频大全免费| 六月丁香七月| 精品少妇黑人巨大在线播放| 久久久精品94久久精品| 亚洲人成网站高清观看| 亚洲成人中文字幕在线播放| 久久精品国产亚洲网站| 成人毛片a级毛片在线播放| 免费观看性生交大片5| 成人美女网站在线观看视频| eeuss影院久久| 乱系列少妇在线播放| 国产白丝娇喘喷水9色精品| 欧美另类一区| 久久久a久久爽久久v久久| 自拍偷自拍亚洲精品老妇| 18禁裸乳无遮挡免费网站照片| 国产伦在线观看视频一区| 一本色道久久久久久精品综合| 99热这里只有是精品在线观看| 国产熟女欧美一区二区| 99九九线精品视频在线观看视频| 亚洲图色成人| av国产免费在线观看| 香蕉精品网在线| 国产av码专区亚洲av| 超碰av人人做人人爽久久| 男女那种视频在线观看| 久久久成人免费电影| 免费在线观看成人毛片| 交换朋友夫妻互换小说| 能在线免费看毛片的网站| 国产伦在线观看视频一区| 国产男人的电影天堂91| 最近最新中文字幕大全电影3| 亚洲欧美日韩无卡精品| 51国产日韩欧美| 三级男女做爰猛烈吃奶摸视频| 国产视频首页在线观看| av在线app专区| 国产精品偷伦视频观看了| 一本一本综合久久| 一级毛片黄色毛片免费观看视频| 亚洲,一卡二卡三卡| 日韩一区二区视频免费看| 日韩不卡一区二区三区视频在线| 国产中年淑女户外野战色| 免费大片黄手机在线观看| 亚洲欧洲日产国产| 欧美97在线视频| 成人国产麻豆网| 亚洲精品成人av观看孕妇| 天堂中文最新版在线下载 | 中文资源天堂在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 人妻夜夜爽99麻豆av| 欧美激情在线99| 另类亚洲欧美激情| 自拍欧美九色日韩亚洲蝌蚪91 | 又爽又黄无遮挡网站| 日韩欧美 国产精品| 国模一区二区三区四区视频| 国产毛片a区久久久久| 亚洲精品国产色婷婷电影| 男女那种视频在线观看| 亚洲av成人精品一二三区| 国产精品国产三级国产专区5o| 1000部很黄的大片| 久久国内精品自在自线图片| 女人久久www免费人成看片| 久久影院123| 大又大粗又爽又黄少妇毛片口| www.色视频.com| 如何舔出高潮| 亚洲成人精品中文字幕电影| 韩国高清视频一区二区三区| 国产乱人视频| av女优亚洲男人天堂| 成人亚洲欧美一区二区av| av在线播放精品| 中国美白少妇内射xxxbb| 七月丁香在线播放| 国产欧美日韩一区二区三区在线 | 欧美 日韩 精品 国产| 精品人妻偷拍中文字幕| 午夜福利视频1000在线观看| 成人亚洲精品一区在线观看 | 高清日韩中文字幕在线| 高清毛片免费看| 成人黄色视频免费在线看| 最近的中文字幕免费完整| 国产精品99久久久久久久久| 亚洲综合色惰| 尤物成人国产欧美一区二区三区| 中文欧美无线码| 卡戴珊不雅视频在线播放| 国产午夜精品一二区理论片| 成人特级av手机在线观看| 午夜精品一区二区三区免费看| 免费大片黄手机在线观看| 国内揄拍国产精品人妻在线| 婷婷色av中文字幕| 国产永久视频网站| 亚洲欧美一区二区三区国产| 成人毛片a级毛片在线播放| 亚洲欧美清纯卡通| 国产精品久久久久久久电影| 久久久久九九精品影院| 欧美三级亚洲精品| 日本欧美国产在线视频| 午夜福利在线观看免费完整高清在| 在线观看免费高清a一片| 欧美+日韩+精品| 亚洲精品国产色婷婷电影| 国产淫语在线视频| av又黄又爽大尺度在线免费看| 亚洲av在线观看美女高潮| 在线观看一区二区三区| 中文字幕亚洲精品专区| 国产一区二区在线观看日韩| 韩国高清视频一区二区三区| 亚洲成人精品中文字幕电影| 免费看日本二区| 免费看a级黄色片| 国产中年淑女户外野战色| 国内少妇人妻偷人精品xxx网站| 大香蕉97超碰在线| 寂寞人妻少妇视频99o| 婷婷色综合www| 精品国产一区二区三区久久久樱花 | 免费av不卡在线播放| 日日摸夜夜添夜夜爱| 久久久久久久久久成人| 啦啦啦中文免费视频观看日本| 尾随美女入室| 国产黄a三级三级三级人| av在线老鸭窝| 国产av不卡久久| 夜夜爽夜夜爽视频| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av在线观看美女高潮| 99热国产这里只有精品6| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 高清在线视频一区二区三区| 日韩不卡一区二区三区视频在线| 亚洲国产精品国产精品| 国产精品av视频在线免费观看| 在线亚洲精品国产二区图片欧美 | 成人综合一区亚洲| 国产男女内射视频| 亚洲人成网站在线观看播放| 嫩草影院精品99| 美女被艹到高潮喷水动态| 国产成人福利小说| 人人妻人人看人人澡| 激情五月婷婷亚洲| 国产又色又爽无遮挡免| 青青草视频在线视频观看| av在线亚洲专区| 欧美性感艳星| 欧美+日韩+精品| 欧美日韩视频高清一区二区三区二| 日韩在线高清观看一区二区三区| 国国产精品蜜臀av免费| 在线播放无遮挡| 综合色av麻豆| 国产成人一区二区在线| 国产av国产精品国产| www.av在线官网国产| 在线观看免费高清a一片| 亚洲经典国产精华液单| 午夜福利视频1000在线观看| 男的添女的下面高潮视频| 熟女人妻精品中文字幕| av在线观看视频网站免费| 亚洲欧美一区二区三区国产| 久久99蜜桃精品久久| 免费看日本二区| 国产一区二区在线观看日韩| av在线app专区| 97超视频在线观看视频| 精品视频人人做人人爽| 国产视频首页在线观看| 人人妻人人爽人人添夜夜欢视频 | 三级男女做爰猛烈吃奶摸视频| 性色avwww在线观看| av.在线天堂| 亚洲精品国产av成人精品| 国产 一区精品| 嫩草影院入口| 免费观看在线日韩| 人妻少妇偷人精品九色| h日本视频在线播放| 精品少妇黑人巨大在线播放| 日本av手机在线免费观看| 伊人久久精品亚洲午夜| 丝袜美腿在线中文| 欧美日韩综合久久久久久| 丰满少妇做爰视频| 国产成人精品久久久久久| 老司机影院成人| 中文天堂在线官网| 人妻系列 视频| 亚洲成人精品中文字幕电影| 午夜精品国产一区二区电影 | 久久97久久精品| 女人久久www免费人成看片| 天天躁日日操中文字幕| 国产有黄有色有爽视频| 亚洲精品日本国产第一区| 欧美精品人与动牲交sv欧美| 麻豆精品久久久久久蜜桃| 国产精品偷伦视频观看了| 亚洲精品456在线播放app| 欧美bdsm另类| 国产日韩欧美亚洲二区| 午夜激情久久久久久久| 18+在线观看网站| 成人漫画全彩无遮挡| 国产成人一区二区在线| 一二三四中文在线观看免费高清| 久久女婷五月综合色啪小说 | 色综合色国产| 97热精品久久久久久| 熟女电影av网| 精品人妻熟女av久视频| 国产黄频视频在线观看| 欧美 日韩 精品 国产| 一区二区av电影网| 国产成人a区在线观看| 亚洲内射少妇av| 97超碰精品成人国产| 久久综合国产亚洲精品| 国产白丝娇喘喷水9色精品| 免费av毛片视频| videossex国产| 日韩成人伦理影院| 干丝袜人妻中文字幕| 欧美日韩在线观看h| 国产精品蜜桃在线观看| 视频区图区小说| 中文字幕免费在线视频6| 精品久久久久久电影网| 久久久久久久亚洲中文字幕| 成人特级av手机在线观看| 一级爰片在线观看| 91久久精品国产一区二区三区| 亚洲无线观看免费| 毛片一级片免费看久久久久| 天堂中文最新版在线下载 | 熟女av电影| 啦啦啦中文免费视频观看日本| 波野结衣二区三区在线| 2021少妇久久久久久久久久久| 成人毛片a级毛片在线播放| 三级国产精品片| 看非洲黑人一级黄片| 中文在线观看免费www的网站| 久久人人爽人人爽人人片va| av在线亚洲专区| 日日摸夜夜添夜夜爱| 色网站视频免费| av女优亚洲男人天堂| 免费高清在线观看视频在线观看| 欧美极品一区二区三区四区| 日韩三级伦理在线观看| 亚洲精华国产精华液的使用体验| 一二三四中文在线观看免费高清| 午夜福利在线观看免费完整高清在| 国产黄色视频一区二区在线观看| 深夜a级毛片| 日日啪夜夜爽| 色哟哟·www| 亚洲国产精品999| 一二三四中文在线观看免费高清| 永久网站在线| 久久综合国产亚洲精品| av天堂中文字幕网| 久久久久网色| 深夜a级毛片| av黄色大香蕉| 精品一区在线观看国产| 国产欧美亚洲国产| 一本一本综合久久| 黄片无遮挡物在线观看| 尤物成人国产欧美一区二区三区| 国产亚洲午夜精品一区二区久久 | 一区二区三区免费毛片| 91久久精品电影网| 久热久热在线精品观看| 国产精品一及| 小蜜桃在线观看免费完整版高清| 啦啦啦中文免费视频观看日本| 全区人妻精品视频| 秋霞在线观看毛片| 最新中文字幕久久久久| 精品视频人人做人人爽| 日本爱情动作片www.在线观看| 国产av码专区亚洲av| 久久精品夜色国产| 少妇人妻 视频| 国产淫语在线视频| av国产精品久久久久影院| 免费观看av网站的网址| 少妇熟女欧美另类| 亚洲欧美成人综合另类久久久| 精品一区二区三卡| 久久久久久久精品精品| 肉色欧美久久久久久久蜜桃 | 哪个播放器可以免费观看大片| 老师上课跳d突然被开到最大视频| 色哟哟·www| 岛国毛片在线播放| 男人和女人高潮做爰伦理| 国产精品偷伦视频观看了| 又爽又黄a免费视频| 男女边吃奶边做爰视频| 国产欧美亚洲国产| 精品一区二区三区视频在线| 亚洲精品成人久久久久久| 最近最新中文字幕大全电影3| 国产高清国产精品国产三级 | 亚洲综合色惰| 97超碰精品成人国产| 亚洲精品久久午夜乱码| av在线蜜桃| 欧美日韩亚洲高清精品| 午夜激情久久久久久久| 免费大片黄手机在线观看| 亚洲精品日本国产第一区| 日本午夜av视频| 国产精品麻豆人妻色哟哟久久| 欧美性猛交╳xxx乱大交人| 免费av不卡在线播放| 午夜激情福利司机影院| 国产伦精品一区二区三区视频9| 美女被艹到高潮喷水动态| 在线观看免费高清a一片| 精品人妻偷拍中文字幕| 别揉我奶头 嗯啊视频| 有码 亚洲区| 三级经典国产精品| 51国产日韩欧美| 精品国产三级普通话版| 午夜免费观看性视频| 亚洲aⅴ乱码一区二区在线播放| 成人毛片a级毛片在线播放| 精品99又大又爽又粗少妇毛片| 色哟哟·www| 波野结衣二区三区在线| 亚洲精品乱久久久久久| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品成人久久久久久| 免费人成在线观看视频色| 亚洲国产精品成人综合色| 精品人妻偷拍中文字幕| 精品亚洲乱码少妇综合久久| 噜噜噜噜噜久久久久久91| 插逼视频在线观看| 欧美丝袜亚洲另类| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品999| 99久国产av精品国产电影| 亚洲熟女精品中文字幕| 国产淫语在线视频| av卡一久久| 只有这里有精品99| 观看免费一级毛片| 亚洲国产欧美人成| 欧美日韩综合久久久久久| 热re99久久精品国产66热6| 精品午夜福利在线看| 国产成人精品福利久久| 国产精品99久久99久久久不卡 | 日韩在线高清观看一区二区三区| 久久久久九九精品影院| 97人妻精品一区二区三区麻豆| 成年女人在线观看亚洲视频 | 国产永久视频网站| 99久久人妻综合| 深爱激情五月婷婷| 成人毛片60女人毛片免费| 午夜精品国产一区二区电影 | 国产日韩欧美在线精品| 亚洲aⅴ乱码一区二区在线播放| 国产乱人视频| 国产日韩欧美亚洲二区| 美女xxoo啪啪120秒动态图| 国产免费福利视频在线观看| 欧美极品一区二区三区四区| 综合色av麻豆| 永久网站在线| 内地一区二区视频在线| 国产视频首页在线观看| 免费观看av网站的网址| 国产一级毛片在线| 久久久久久国产a免费观看| 精品国产露脸久久av麻豆| 欧美成人精品欧美一级黄| 麻豆国产97在线/欧美| 亚洲经典国产精华液单|