• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Comparative Study of the Performance of Symmetric and Asymmetric Mixed-conducting Membranes*

    2009-05-15 00:25:36CHANGXianfeng常先鋒ZHANGChun張春HEYanjun何艷君DONGXueliang董學(xué)良JINWanqin金萬(wàn)勤andXUNanping徐南平
    關(guān)鍵詞:張春南平先鋒

    CHANG Xianfeng (常先鋒), ZHANG Chun (張春), HE Yanjun (何艷君), DONG Xueliang (董學(xué)良), JIN Wanqin (金萬(wàn)勤) and XU Nanping (徐南平)

    ?

    A Comparative Study of the Performance of Symmetric and Asymmetric Mixed-conducting Membranes*

    CHANG Xianfeng (常先鋒), ZHANG Chun (張春), HE Yanjun (何艷君), DONG Xueliang (董學(xué)良), JIN Wanqin (金萬(wàn)勤)**and XU Nanping (徐南平)

    State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China

    According to the configuration, mixed-conducting membranes are classified as symmetric membranes and asymmetric membranes consisting of a thin dense layer and a porous support. In this study, these two kinds of SrCo0.4Fe0.5Zr0.1O3-oxide-based membranes were systematically compared in terms of oxygen permeability and chemical stability, and their differences were elucidated by means of the theoretical calculation. For the oxygen permeability, the asymmetric membrane was greater than the symmetric membrane due to the significant decrease of bulk diffusion resistance in the thin dense layer of the asymmetric membrane. In regard to the chemical stability, the increase of oxygen partial pressure on the asymmetric membrane surface at CH4side produced the stable time of over 1032 h in partial oxidation of methane at 1123 K, while the symmetric membrane was only of 528 h. This studydemonstrated that the asymmetric membrane was a promising geometrical configuration for the practical application.

    comparison,mixed-conducting oxide, symmetric membrane, asymmetric membrane, oxygen permeability, chemical stability

    1 INTRODUCTION

    Mixed ionic and electronic conducting (MIEC) oxides have both the oxygen ionic conductivity and the electronic conductivity at the temperature typically higher than 700°C [1]. Because of this excellent property, the membranes based on MIEC oxides have drawn considerable attention in many applications including the separation of oxygen-containing gas [2], partial oxidation of methane (POM) to syngas [3-6] and thermal decomposition of CO2[7].

    For the commercial utilization of these MIEC membranes, the high oxygen permeability and especially good chemical stability are necessary. One route is to develop new membrane materials with high oxygen permeability and chemical stability. Sammells. [8] developed a brownmillerite-derived membrane material and the prepared membrane was continuously operated for over one year in the reactor for POM to syngas, but they did not reveal the specific composition of materials. Another promising route is believed to develop asymmetric membranes consisting of a thin dense layer and a porous support [9, 10]. In previous studies [3, 9-11], the membranes used were mainly composed of a single thick dense layer, which was called as symmetric membranes. However, there are some considerable challenges to prepare an asymmetric membrane [12, 13]. Fortunately, a great progress has been made after several years of endeavor [14-18]. For example, in our previous work [14], we proposed a co-sintering route and successfully prepared a La0.6Sr0.4Co0.2Fe0.8O3-δasymmetric membrane.

    After the challenges in preparing asymmetric membranes were overcome successfully, the asymmetric membranes were gradually used in the practical application to investigate if they could effectively solve the problems of symmetric membranes in the oxygen permeability and chemical stability [14-18]. From the viewpoint of the comparison of their oxygen permeability, the asymmetric membranes were preliminarily demonstrated to be better than the symmetric membranes [14-18]. However, a clear illustration was not given for their differences, and the oxygen permeation flux through asymmetric membranes was generally lower than the expected values under the assumption of the oxygen permeation flux in direct proportion to the reciprocal of the thickness of dense layer [14, 15, 17]. The understanding of these phenomena might be helpful to deepen the knowledge of oxygen permeation mechanism and further improve the membrane performance effectively. As for the chemical stability, to the best of our knowledge, few papers have reported for the asymmetric membranes and made a detailed comparison with the performance of the symmetric membranes.

    Therefore, the objectives of this work were to systematically compare the oxygen permeability and chemical stability of symmetric and asymmetric membranes and make a clear elucidation of their differences. The co-sintering route [14] was used to prepare the asymmetric membranes and in order to avoid the thermal expansion mismatch and reaction between the support and the thin dense layer, the support and the thin dense layer consisted of the same composition. SrCo0.4Fe0.5Zr0.1O3-δ(SCFZ) perovskite-type oxide, one of MIEC oxides, was selected as the representative membrane material, which was found to be structurally stable with higher oxygen permeability in our previous study [19].

    2 THEORY

    2.1 Calculation of the overall oxygen permeation resistance through a membrane

    The oxygen flux through a membrane can be related to the overall driving force for oxygen permeation (Δ, in unit of J·mol-1) and the overall permeation resistance (overall, in unit of J·s·mol-2) as

    where(cm2) is the membrane area. Δis equal to the difference between the chemical potentials at the upstream and downstream sides of membrane.

    Transforming Eq. (3) yieldsoverallas

    2.2 Proportion of transport resistance of support in the overall permeation resistance through an asymmetric membrane

    Taking the reciprocal of Eq. (5) gives Eq. (6).

    2.3 Estimation of the oxygen partial pressure on the membrane surface at CH4 side

    3 Experimental

    3.1 Synthesis of SCFZ powders and preparation of membranes

    SCFZ powders were synthesized by the conventional solid-state reaction method, which was similar to that in our previous study [19].

    The asymmetric SCFZ membranes were prepared by the dry-pressing technique [15, 20]. Appropriate amounts of SCFZ powders were first poured into a stainless module. The surface of the SCFZ powders was leveled off at an intermediate pressure of 60 MPa. Then, the mixture of SCFZ powders and an inorganic porous former was added into the die to act as the support of asymmetric membranes. Pressing at a pressure of 240 MPa was followed to form the green SCFZ asymmetric membranes. Finally, green asymmetric SCFZ membranes were sintered at 1473 K for 2 h. For comparison, a dense symmetric SCFZ membrane and a porous SCFZ support were also fabricated under the identical condition with the asymmetric membranes.

    3.2 Characterization

    The crystal phase of membrane was determined by X-ray diffraction (XRD) with Cu Karadiation (Bruker, model D8 Advance, Germany). The diffraction patterns were collected at room temperature by step scanning at an increment of 0.05° in the range of 20°≤2≤80°. The morphology of membrane was examined by scanning electron microscopy (SEM) (FEI, model QUANTA-200, Netherlands) and the average pore size of support was evaluated by nitrogen permeability at room temperature. The tightness of membranes was checked by the N2gas-tight test at room temperature. A sintered membrane was first placed into a stainless module. After sealing the module, N2was introduced to one side of membrane. The other side of membrane was connected with a bubble flower. If the membrane was not dense, N2would permeate into the other side of membrane, and then the permeation of N2through the membrane could be detected by the bubble flower.

    3.3 Oxygen permeation and membrane reaction measurement

    The measurement of oxygen permeation and POM to syngas of membranes was conducted using an apparatus reported in our previous study [21]. Air was introduced into the upstream side (the porous support side of asymmetric membrane) of membrane at a rate of 100 ml(STP) per minute. He or a mixture of CH4and He was fed to the downstream side (the thin dense layer side of asymmetric membrane) of membrane. Both the upstream side and the downstream side of membrane were maintained at the atmospheric pressure. The effluent streams were analyzed by two on-line gas chromatographs (Shimadzu, model GC-8A, Japan) with about 1 cm3sample loop. A 2 m 5A molecular sieve column was used for the separation of H2, O2, N2, CH4and CO, and a 1 m TDX-01 column was for the separation of CO2and hydrocarbons. Fig. 1 illustrates the arrangement for comparison of performance of the symmetric and asymmetric membranes. Their oxygen permeabilities were compared and He was used as the sweeping gas in the permeation side in Fig. 1 (a). Fig. 1 (b) investigated their chemical stability, where CH4[2.9 ml·min-1(STP)] diluted by He [17.9 ml·min-1(STP)] was introduced into the reaction side of membrane. The CH4conversion and CO selectivity for the POM to syngas were defined as follows, respectively.

    whereF(mol·s-1) is the flow rate of species. The oxygen permeation flux through membranes was calculated by

    The blue-green 17.5% NiO/g-Al2O3catalyst used in the membrane reaction was preheated in 1︰1 mixture of H2︰He for 3 h at 700°C. In all membrane reaction experiments, 100 mg of the preheated 17.5% NiO/g-Al2O3catalysts were packed on the surface of membrane.

    Figure 1 Schematic diagram for comparison of performance of symmetric and asymmetric membranes: (a) oxygen permeability; (b) partial oxidation of methane

    4 RESULTS AND DISCUSSION

    4.1 Membrane formation

    The SCFZ symmetric and asymmetric membranes were prepared under the same conditions by means of the dry-pressing method [15, 20]. The morphology of prepared SCFZ asymmetric membranes was similar to that of La0.6Sr0.4Co0.2Fe0.8O3-δasymmetric membrane in our previous work [14]. The thin dense layer had a thickness of about 200 μm. Based on the nitrogen permeability of the sintered support at room temperature and the reports of Lin. [22], the support was estimated to be an average pore size of 1.18 μm and its nitrogen permeation was mainly controlled by the viscous flow, indicating that the porous support had a low gas transport resistance. Meanwhile, the XRD characterization confirmed that both the symmetric membrane and the asymmetric membrane exhibited a good perovskite-type structure.

    The tightness of membranes was further checked by the N2gas-tight test at room temperature. When up to 0.2 MPa (absolute pressure) of N2was applied into one side of membrane, the permeation of N2was still not detected at the other side of membrane, which was at 0.1 MPa. However, in our oxygen permeation and membrane reaction experiments, the two sides of membrane were both maintained at the atmospheric pressure (0.1 MPa). The pressure difference in the oxygen permeation and membrane reaction experiments was less than that in the N2gas-tight test, indicating that the membranes prepared in our work was tight enough for the oxygen permeation and membrane reaction experiments.

    4.2 Oxygen permeability

    Figure 2 The temperature dependence of oxygen permeation fluxes of symmetric and asymmetric membranes at the oxygen partial pressure gradient of 2.1×104/1×102Pa△?asymmetric membrane;●?symmetric membrane

    It could also be found from Fig. 2 that the apparent activation energy for oxygen permeation was decreased from 50.2 kJ·mol-1for the symmetric membrane to 30.8 kJ·mol-1for the asymmetric membrane, indicating that the asymmetric membrane had a greater capability for the oxygen permeation than the symmetric membrane. Similar phenomenon was observed by Teraoka. [12] and Ikeguchi[15].

    Figure 3 The membrane thickness dependence of the oxygen permeation flux of symmetric membrane at 1123 K and the oxygen partial pressure gradient of 2.1×104/1×102Pa

    4.3 Chemical stability

    Figure 4 gives the performance of the POM to syngas of asymmetric SCFZ membranes (200 μm-thick thin dense layer and 1.3 mm-thick support) as a function of the temperature. Both the CH4conversion and the oxygen permeation flux through the membrane increase with an increase in the temperature. At 1123 K, the CH4conversion is 85.23% and the oxygen permeation flux is 4.20×10-6mol·cm-2·s-1. However, in the membrane reaction of symmetric membrane (1.5 mm thick), the CH4conversion and the oxygen permeation flux at 1123 K and the above conditions are only 66.47% and 3.14×10-6mol·cm-2·s-1, respectively. This was due to the greater bulk diffusion resistance in the symmetric membrane, which slowed down the supply of oxygen for the CH4reaction and then decreased the CH4conversion.

    Figure 4 Plot of reaction performance of asymmetric membranestemperature

    In order to examine the chemical stability of symmetric and asymmetric membranes at the elevated temperature and the reducing atmosphere, the long-term stability of membranes was performed in the POM reaction at 1123 K, as shown in Fig. 5. For the asymmetric membrane, the CH4conversion and the oxygen permeation flux are steadily kept at around 85.23% and 4.20×10-6mol·cm-2·s-1 in the first 696 h, respectively. After 696 h, the CH4conversion and the oxygen permeation flux show a remarkable increase. The CH4conversion increases from 85.23% to 92.21%, and the oxygen permeation flux is from 4.20×10-6to 4.63×10-6mol·cm-2·s-1. This was attributed to the formation of porous layer on the membrane surface at the CH4side, as shown in Fig. 6. The asymmetric SCFZ membrane prepared in our work was made of an oxide. At the CH4side, the membrane was surrounded by the reducing gases of CH4, H2and CO. These reducing gases were to destruct the membrane structure and break the membrane surface into some small grains to form the porous layer. It can be seen from Fig. 6 that although the perovskite-type characteristic peaks of membrane material on the membrane surface are remarkably weakened after being etched by the reducing gases, the membrane surface is still mainly composed of the perovskite-type oxide. Thus, this porous layer was acting as the surface modification of the membrane surface and increasing the area for the oxygen surface exchange on the membrane surface. The increase in the area for the oxygen surface exchange accelerated the oxygen surface exchange rate, and then enhanced the oxygen permeation flux through the membrane in the last 336 h. The increasing oxygen permeation flux through the membrane supplied the more amount of oxygen for the CH4reaction and led to an increase in the CH4conversion. This similar phenomenon was found by Tong. [24] and Wu[25]. When the POM reaction lasted for 1032 h, the experiment was voluntarily stopped. In the whole course, the CO selectivity was kept at about 95% and the H2/CO ratio was slightly lower than 2, which was caused by the instance that more amount of O2was permeated through the membrane from the air side and then consumed some of the product H2. Meanwhile, EDS analysis confirmed that no carbon was deposited on the catalyst after use in the POM reaction.

    Figure 5 Long-term stability of membranes for the partial oxidation of methane to syngas at 1123 K

    Figure 6 SEM images and XRD patterns of surface of asymmetric SrCo0.4Fe0.5Zr0.1O3-δmembranes

    5 CONCLUSIONS

    A comparison was systematically carried out between SrCo0.4Fe0.5Zr0.1O3-δsymmetric and asymmetric membranes in terms of oxygen permeability and chemical stability, and their differences were elucidated by means of the theoretical calculation. The main conclusions were as follows.

    (1) For the oxygen permeability, the asymmetric membrane exhibited about two times that of the symmetric membrane in the range of 1073-1223 K under Air/He atmospheres, which was due to the significant decrease of bulk diffusion resistance in the thin dense layer of the asymmetric membrane.

    (2) For the chemical stability, a remarkable extension of operating lifetime in POM was observed in the asymmetric membrane compared with the symmetric membrane because of the increase in the oxygen partial pressure on the membrane surface at CH4side. In the asymmetric membrane-based reactor, the steady time was over 1032 h at 1123 K, while there was only 528 h in the symmetric membrane-based reactor.

    This study demonstrated that the asymmetric membrane-based reactor was a promising structure for the practical application.

    NOMENCLATURE

    membrane area, cm2

    Fflow rate of species, mol·s-1

    thickness of dense layer, cm

    bbulk diffusion resistance in the dense layer, J·s·mol-2

    doxygen permeation resistance in the dense layer, J·s·mol-2

    overalloverall resistance for oxygen permeation, J·s·mol-2

    poxygen transport resistance in the support, J·s·mol-2

    sresistance of oxygen exchange process in the dense layer, J·s·mol-2

    COCO selectivity

    temperature, K

    Superscript

    S membrane surface

    1 Bouwmeester, H.J.M., Burggraaf, A.J., Fundamentals of Inorganic Membrane Science Technology, Elsevier Science B.V., Amsterdam (1996).

    2 Schiestel, T., Kilgus, M., Peter, S., Caspary, K.J., Wang, H., Caro, J., “Hollow fibre perovskite membranes for oxygen separation”,.., 258, 1-4 (2005).

    3 Balachandran, U., Dusek, J.T., Mieville, R.L., Poeppel, R.B., Kleefisch, M.S., Pei, S., Kobylinski, T.P., Udovich, C.A., Bose, A.C., “Dense ceramic membranes for partial oxidation of methane to syngas”,..:., 133, 19-29 (1995).

    4 Tsai, C.Y., Dixon, A.G., Moser, W.R., Ma, Y.H., “Dense perovskite membrane reactors for the partial oxidation of methane to syngas”,., 43, 2741-2750 (1997).

    5 Jin, W., Gu, X., Li, S., Huang, P., Xu, N., Shi, J., “Experimental and simulation study on a catalyst packed tubular dense membrane reactor for partial oxidation of methane to syngas”,..., 55, 2617-2625 (2000).

    6 Balachandran, U., Ma, B., “Mixed-conducting dense ceramic membranes for air separation and natural gas conversion”,.., 10, 617-624 (2006).

    7 Jin, W., Zhang, C., Zhang, P., Fan, Y., Xu, N., “Thermal decomposition of carbon dioxide coupled with POM in a membrane reactor”,., 52, 2545-2550 (2006).

    8 Sammells, A.F., Schwartz, M., Mackay, R.A., Barton, T.F., Peterson, D.R., “Catalytic membrane reactors for spontaneous synthesis gas production”,., 56, 325-328 (2000).

    9 Bouwmeester, H.J.M., “Dense ceramic membranes for methane conversion”,., 82, 141-150 (2003).

    10 Thursfield, A., Metcalfe, I.S., “The use of dense mixed ionic and electronic conducting membranes for chemical production”,..., 14, 2475-2485 (2004).

    11 Pei, S., Kleefisch, M.S., Kobylinski, T.P., Faber, K., Udovich, C.A., Zhang-Mccoy, V., Dabrowski, B., Balachandran, U., Mieville, R.L., Poeppel, R.B., “Failure mechanisms of ceramic membrane reactors in partial oxidation of membrane to synthesis gas”,.., 30, 201-212 (1995).

    12 Teraoka, Y., Fukuda, T., Miura, N., Yamazoe, N., “Development of oxygen semipermeable membrane using mixed conductive perovskite-type oxides (Part 2)”,......, 97, 523-529 (1989).

    13 Liu, Y., Tan, X., Li, K., “Mixed conducting ceramics for catalytic membrane processing”,.., 48, 145-198 (2006).

    14 Jin, W., Li, S., Huang, P., Xu, N., Shi, J., “Preparation of an asymmetric perovskite-type membrane and its oxygen permeability”,.., 185, 237-243 (2001).

    15 Ikeguchi, M., Uchida, Y., Sekine, Y., Kikuchi, E., Matsukata, M., “Solid state synthesis of SrFeCo0.5Oasymmetric membranes for oxygen separation”,...., 38, 502-508 (2005).

    16 Yin, X., Hong, L., Liu, Z.L., “Oxygen permeation through the LSCO-80/CeO2asymmetric tubular membrane reactor”,.., 268, 2-12 (2006).

    17 Kovalevsky, A.V., Kharton, V.V., Maxim, F., Shaula, A.L., Frade, J.R., “Processing and characterization of La0.5Sr0.5FeO3-supported Sr1-xFe(Al)O3-SrAl2O4composite membranes”,.., 278, 162-172 (2006).

    18 Büchler, O., Serra, J.M., Meulenberg, W.A., Sebold, D., Buchkremer, H.P., “Preparation and properties of thin La1-xSrCo1-yFeyO3-δperovskite membranes supported on tailored ceramic substrates”,, 178, 91-99 (2007).

    19 Yang, L., Tan, L., Gu, X., Jin, W., Zhang, L., Xu, N., “A new series of Sr(Co, Fe, Zr)O3-perovskite-type oxides for oxygen permeation”,...., 42, 2299-2305 (2003).

    20 Chang, X., Zhang, C., Jin, W., Xu, N., “Match of thermal performances between the membrane and the support for supported dense mixed-conducting membranes”,.., 285, 232-238 (2006).

    21 Li, S., Jin, W., Huang, P., Xu, N., Shi, J., Hu, M., Payzant, E., Ma, Y., “Perovskite-related ZrO2-doped SrCo0.4Fe0.6O3-membrane for oxygen permeation”,., 45, 276-284 (1999).

    22 Lin, Y.S., Burggraaf, A.J., “Experimental studies on pore size change of porous ceramic membranes after modification”,.., 79, 65-82 (1993).

    23 Chang, X., Zhang, C., Wu, Z., Jin, W., Xu, N., “Contribution of the surface reactions to the overall oxygen permeation of the mixed conducting membranes”,...., 45, 2824-2829 (2006).

    24 Tong, J., Yang, W., Cai, R., Zhu, B., Lin, L., “Novel and ideal zirconium-based dense membrane reactors for partial oxidation of methane to syngas”,.., 78, 129-137 (2002).

    25 Wu, Z., Jin, W., Xu, N., “Oxygen permeability and stability of Al2O3-doped SrCo0.8Fe0.2O3-δmixed conducting oxides”,.., 279, 320-327 (2006).

    26 Hendriksen, P.V., Larsen, P.H., Mogensen, M., Poulsen, F.W., Wiik, K., “Prospects and problems of dense oxygen permeable membranes”,., 56, 283-295 (2000).

    2008-06-13,

    2009-04-16.

    the National Basic Research Program of China (2009CB623406), the National Natural Science Foundation of China (20636020), the National High Technology Research and Development Program of China (2006AA030204) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20060291003).

    ** To whom correspondence should be addressed. E-mail: wqjin@njut.edu.cn

    猜你喜歡
    張春南平先鋒
    借 刀
    借刀
    南平:婦聯(lián)干部當(dāng)好“五員”助力婦女脫貧增收
    海峽姐妹(2020年6期)2020-07-25 01:26:04
    閱讀先鋒榜
    閱讀先鋒榜
    閱讀先鋒榜
    閱讀先鋒榜
    借刀
    基于CBERS數(shù)據(jù)的福建南平地質(zhì)災(zāi)害動(dòng)態(tài)遙感解譯
    服從后遺癥
    青春(2012年9期)2012-04-29 18:47:55
    我要看黄色一级片免费的| 在线观看人妻少妇| 国产亚洲欧美在线一区二区| 成人黄色视频免费在线看| 成年女人毛片免费观看观看9 | 在线天堂中文资源库| 久久久久国内视频| 国产精品免费大片| 午夜激情av网站| videos熟女内射| 国产精品九九99| 丝袜人妻中文字幕| 久久影院123| 亚洲精品一卡2卡三卡4卡5卡 | 视频区图区小说| 天堂8中文在线网| 狂野欧美激情性bbbbbb| 国产又色又爽无遮挡免| 免费看十八禁软件| 欧美另类一区| 日韩中文字幕欧美一区二区| 两个人免费观看高清视频| 最近最新中文字幕大全免费视频| 欧美一级毛片孕妇| 男人爽女人下面视频在线观看| 午夜福利视频在线观看免费| 国产男女超爽视频在线观看| 日本一区二区免费在线视频| 午夜日韩欧美国产| videos熟女内射| 亚洲性夜色夜夜综合| 黄色片一级片一级黄色片| 精品少妇久久久久久888优播| 亚洲中文字幕日韩| 国产一卡二卡三卡精品| 在线观看免费日韩欧美大片| 欧美大码av| 一级a爱视频在线免费观看| 男人添女人高潮全过程视频| a级毛片在线看网站| 老司机福利观看| 欧美性长视频在线观看| 国产精品麻豆人妻色哟哟久久| 天天添夜夜摸| 老司机午夜福利在线观看视频 | 啦啦啦视频在线资源免费观看| 久久久久久免费高清国产稀缺| 宅男免费午夜| 成人黄色视频免费在线看| 黄片播放在线免费| 黄色视频在线播放观看不卡| 80岁老熟妇乱子伦牲交| 汤姆久久久久久久影院中文字幕| 黄色怎么调成土黄色| 国产亚洲一区二区精品| 大香蕉久久网| 中文欧美无线码| 成人18禁高潮啪啪吃奶动态图| 精品少妇一区二区三区视频日本电影| 蜜桃在线观看..| 丝袜人妻中文字幕| 精品国产乱子伦一区二区三区 | 热99re8久久精品国产| 窝窝影院91人妻| 成人av一区二区三区在线看 | 一本大道久久a久久精品| av天堂在线播放| 亚洲性夜色夜夜综合| 日韩制服骚丝袜av| 不卡av一区二区三区| 亚洲国产毛片av蜜桃av| 最近最新中文字幕大全免费视频| 搡老乐熟女国产| 午夜两性在线视频| 国产精品九九99| 热99re8久久精品国产| 王馨瑶露胸无遮挡在线观看| 亚洲欧美色中文字幕在线| 肉色欧美久久久久久久蜜桃| www.熟女人妻精品国产| 亚洲五月色婷婷综合| 欧美老熟妇乱子伦牲交| 亚洲精品久久久久久婷婷小说| 中文字幕最新亚洲高清| 午夜视频精品福利| 视频区欧美日本亚洲| 久久精品成人免费网站| 欧美精品啪啪一区二区三区 | av网站免费在线观看视频| 免费久久久久久久精品成人欧美视频| 免费日韩欧美在线观看| 在线永久观看黄色视频| 99精品久久久久人妻精品| 国产1区2区3区精品| 99久久人妻综合| 丝袜美腿诱惑在线| 男女国产视频网站| 亚洲精品国产av蜜桃| 国产欧美亚洲国产| 国产成人欧美在线观看 | 欧美国产精品一级二级三级| 黄色 视频免费看| www.av在线官网国产| 热99re8久久精品国产| 亚洲国产欧美网| 午夜免费成人在线视频| 免费女性裸体啪啪无遮挡网站| 精品欧美一区二区三区在线| 亚洲国产精品成人久久小说| 男女床上黄色一级片免费看| 国产麻豆69| 亚洲专区字幕在线| 国产不卡av网站在线观看| 国产黄频视频在线观看| 精品国产国语对白av| 在线观看人妻少妇| 嫁个100分男人电影在线观看| 国产成人av激情在线播放| 午夜精品国产一区二区电影| 亚洲一码二码三码区别大吗| 少妇粗大呻吟视频| 国产欧美亚洲国产| 人妻久久中文字幕网| 777久久人妻少妇嫩草av网站| 国产精品国产av在线观看| 亚洲五月婷婷丁香| 中文字幕高清在线视频| 一个人免费看片子| 欧美亚洲 丝袜 人妻 在线| 天堂8中文在线网| 亚洲精品国产av蜜桃| 俄罗斯特黄特色一大片| 国产激情久久老熟女| 欧美成人午夜精品| 美女脱内裤让男人舔精品视频| 成年女人毛片免费观看观看9 | 欧美日韩亚洲国产一区二区在线观看 | 久久精品国产亚洲av高清一级| 777米奇影视久久| 欧美精品亚洲一区二区| 黄片小视频在线播放| 精品熟女少妇八av免费久了| 欧美 亚洲 国产 日韩一| 久久精品aⅴ一区二区三区四区| 久久精品成人免费网站| 一级毛片精品| av欧美777| 黄片大片在线免费观看| 搡老熟女国产l中国老女人| 精品一区二区三卡| 欧美日韩一级在线毛片| 欧美日韩av久久| 国产精品二区激情视频| 亚洲成国产人片在线观看| 老司机在亚洲福利影院| 高清视频免费观看一区二区| 一本—道久久a久久精品蜜桃钙片| 欧美激情久久久久久爽电影 | 大香蕉久久成人网| 一本久久精品| 午夜免费观看性视频| 亚洲色图 男人天堂 中文字幕| 久久精品国产综合久久久| 男人添女人高潮全过程视频| 最黄视频免费看| 日韩免费高清中文字幕av| 国产主播在线观看一区二区| 国产黄频视频在线观看| 在线 av 中文字幕| 深夜精品福利| 成年女人毛片免费观看观看9 | 淫妇啪啪啪对白视频 | av福利片在线| 三上悠亚av全集在线观看| 国产有黄有色有爽视频| 青青草视频在线视频观看| 亚洲全国av大片| 天堂中文最新版在线下载| 国产高清videossex| 成人av一区二区三区在线看 | 精品国产超薄肉色丝袜足j| 国产欧美日韩精品亚洲av| av片东京热男人的天堂| 少妇 在线观看| 在线天堂中文资源库| 大码成人一级视频| 三上悠亚av全集在线观看| 在线看a的网站| 黄色怎么调成土黄色| av在线老鸭窝| 99精品久久久久人妻精品| 欧美 亚洲 国产 日韩一| 亚洲av美国av| 日韩一卡2卡3卡4卡2021年| 国产精品1区2区在线观看. | 国产野战对白在线观看| 国产色视频综合| 午夜91福利影院| 久久天堂一区二区三区四区| 性少妇av在线| 亚洲专区国产一区二区| 女人久久www免费人成看片| 国产男人的电影天堂91| 久久久久久人人人人人| 国产黄色免费在线视频| 我要看黄色一级片免费的| 人妻一区二区av| 色婷婷av一区二区三区视频| 日韩 亚洲 欧美在线| 国产在线免费精品| 中国国产av一级| 十八禁高潮呻吟视频| 男女边摸边吃奶| 热re99久久国产66热| 久久久精品免费免费高清| 免费在线观看黄色视频的| 9热在线视频观看99| 国产在线免费精品| www.熟女人妻精品国产| 99国产极品粉嫩在线观看| 日韩人妻精品一区2区三区| 亚洲 欧美一区二区三区| 韩国精品一区二区三区| 久久精品亚洲av国产电影网| 高清欧美精品videossex| 国产伦理片在线播放av一区| 2018国产大陆天天弄谢| 国产日韩欧美亚洲二区| 在线观看免费午夜福利视频| 国产视频一区二区在线看| 亚洲av电影在线进入| 高清在线国产一区| 无遮挡黄片免费观看| 国产av又大| 在线 av 中文字幕| 久久女婷五月综合色啪小说| 午夜免费鲁丝| 久久毛片免费看一区二区三区| 操美女的视频在线观看| 不卡一级毛片| 久久天躁狠狠躁夜夜2o2o| 国产免费一区二区三区四区乱码| 成年动漫av网址| 这个男人来自地球电影免费观看| 三级毛片av免费| av有码第一页| 一区在线观看完整版| 欧美少妇被猛烈插入视频| 亚洲va日本ⅴa欧美va伊人久久 | 美女视频免费永久观看网站| 欧美午夜高清在线| 99精品欧美一区二区三区四区| a级毛片在线看网站| 久久性视频一级片| 日本撒尿小便嘘嘘汇集6| 亚洲avbb在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久精品国产欧美久久久 | 91精品国产国语对白视频| 亚洲五月色婷婷综合| 精品乱码久久久久久99久播| 亚洲精品美女久久久久99蜜臀| 久久精品亚洲av国产电影网| svipshipincom国产片| 欧美乱码精品一区二区三区| 亚洲全国av大片| 日韩熟女老妇一区二区性免费视频| 精品熟女少妇八av免费久了| 最新在线观看一区二区三区| 日日爽夜夜爽网站| 三上悠亚av全集在线观看| 日韩视频一区二区在线观看| 国产精品亚洲av一区麻豆| 老司机亚洲免费影院| 一区二区日韩欧美中文字幕| 最新的欧美精品一区二区| 久久热在线av| 悠悠久久av| 成在线人永久免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 欧美成人午夜精品| 国产欧美亚洲国产| 亚洲精品乱久久久久久| 亚洲国产精品成人久久小说| 成人免费观看视频高清| 中文字幕av电影在线播放| 日韩欧美一区二区三区在线观看 | 午夜福利影视在线免费观看| 天堂俺去俺来也www色官网| 在线永久观看黄色视频| 成年人黄色毛片网站| 啦啦啦中文免费视频观看日本| 国产老妇伦熟女老妇高清| 美女午夜性视频免费| 亚洲精品日韩在线中文字幕| 脱女人内裤的视频| videos熟女内射| 美女大奶头黄色视频| 欧美精品av麻豆av| 免费在线观看影片大全网站| 久久人妻福利社区极品人妻图片| 2018国产大陆天天弄谢| 丰满饥渴人妻一区二区三| 91成年电影在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产精品麻豆人妻色哟哟久久| 亚洲av国产av综合av卡| 中文字幕av电影在线播放| 国产在线观看jvid| 18禁裸乳无遮挡动漫免费视频| 自线自在国产av| 中文精品一卡2卡3卡4更新| www.自偷自拍.com| 别揉我奶头~嗯~啊~动态视频 | 久久精品久久久久久噜噜老黄| 久久人人爽人人片av| 久久精品国产亚洲av高清一级| 欧美日韩国产mv在线观看视频| 亚洲精品国产精品久久久不卡| 国产一区二区 视频在线| 80岁老熟妇乱子伦牲交| 男女高潮啪啪啪动态图| 一区二区日韩欧美中文字幕| 午夜成年电影在线免费观看| 国产精品香港三级国产av潘金莲| 国产精品免费大片| 精品人妻在线不人妻| 91麻豆av在线| 国产xxxxx性猛交| 日本撒尿小便嘘嘘汇集6| 久久人人97超碰香蕉20202| 免费观看a级毛片全部| 激情视频va一区二区三区| 久久免费观看电影| 欧美精品亚洲一区二区| 亚洲精品自拍成人| 亚洲熟女毛片儿| 亚洲精品自拍成人| 亚洲成人免费电影在线观看| 超色免费av| 亚洲欧美精品综合一区二区三区| 中文字幕人妻丝袜制服| av不卡在线播放| 亚洲九九香蕉| 欧美性长视频在线观看| 国产成人精品无人区| 日韩免费高清中文字幕av| 午夜福利免费观看在线| 在线观看舔阴道视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av男天堂| 亚洲精品一区蜜桃| 国产一区二区在线观看av| 狠狠精品人妻久久久久久综合| 十八禁人妻一区二区| 99热全是精品| 欧美成狂野欧美在线观看| 久久国产精品影院| 这个男人来自地球电影免费观看| 国产日韩欧美视频二区| 在线观看免费日韩欧美大片| 亚洲成人免费电影在线观看| 亚洲色图 男人天堂 中文字幕| 欧美日韩精品网址| a级毛片在线看网站| 五月天丁香电影| 性色av乱码一区二区三区2| 高清欧美精品videossex| 免费观看av网站的网址| 国产精品久久久久久精品电影小说| cao死你这个sao货| 97精品久久久久久久久久精品| 男女边摸边吃奶| 一级黄色大片毛片| 青草久久国产| 女人被躁到高潮嗷嗷叫费观| 视频区图区小说| 丝瓜视频免费看黄片| 99热国产这里只有精品6| 久久久久久久大尺度免费视频| 久9热在线精品视频| 激情视频va一区二区三区| 国产一区二区三区av在线| 黄色 视频免费看| 99香蕉大伊视频| 飞空精品影院首页| 日韩制服骚丝袜av| 在线观看一区二区三区激情| 多毛熟女@视频| 国产又色又爽无遮挡免| 天堂8中文在线网| 日本黄色日本黄色录像| 91精品国产国语对白视频| 人人妻人人澡人人爽人人夜夜| 亚洲中文日韩欧美视频| 肉色欧美久久久久久久蜜桃| 丝袜脚勾引网站| 男女边摸边吃奶| 亚洲三区欧美一区| 亚洲天堂av无毛| 亚洲 国产 在线| 少妇人妻久久综合中文| 免费少妇av软件| 高清av免费在线| 日韩欧美一区视频在线观看| 制服人妻中文乱码| 日韩三级视频一区二区三区| 丰满少妇做爰视频| 天天操日日干夜夜撸| 一边摸一边抽搐一进一出视频| 亚洲国产欧美一区二区综合| 日韩中文字幕欧美一区二区| 中文字幕人妻熟女乱码| 丝瓜视频免费看黄片| 最新在线观看一区二区三区| 日本欧美视频一区| 一级毛片电影观看| 亚洲精品美女久久久久99蜜臀| 久久 成人 亚洲| 国产男女超爽视频在线观看| 成年人午夜在线观看视频| av超薄肉色丝袜交足视频| 又紧又爽又黄一区二区| 大香蕉久久成人网| 伊人久久大香线蕉亚洲五| 免费不卡黄色视频| 在线观看免费视频网站a站| 中文字幕最新亚洲高清| 岛国毛片在线播放| 亚洲精品国产av成人精品| 男女下面插进去视频免费观看| 一二三四在线观看免费中文在| 18在线观看网站| 悠悠久久av| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲av片在线观看秒播厂| 中文精品一卡2卡3卡4更新| 80岁老熟妇乱子伦牲交| 脱女人内裤的视频| 国内毛片毛片毛片毛片毛片| 午夜激情av网站| 国产精品偷伦视频观看了| 免费在线观看影片大全网站| 两人在一起打扑克的视频| 精品国产一区二区三区四区第35| 欧美大码av| 在线天堂中文资源库| 咕卡用的链子| 老鸭窝网址在线观看| 亚洲精品在线美女| 国产1区2区3区精品| 日韩,欧美,国产一区二区三区| 午夜免费鲁丝| 国产一区二区三区在线臀色熟女 | 丝袜人妻中文字幕| 18禁观看日本| 大码成人一级视频| 久久精品aⅴ一区二区三区四区| 成人国语在线视频| 99国产极品粉嫩在线观看| 免费观看a级毛片全部| www日本在线高清视频| 视频区欧美日本亚洲| 两个人看的免费小视频| 两个人免费观看高清视频| 人妻久久中文字幕网| 少妇精品久久久久久久| 欧美日韩亚洲综合一区二区三区_| 极品人妻少妇av视频| 三上悠亚av全集在线观看| 欧美日韩视频精品一区| 动漫黄色视频在线观看| 天天操日日干夜夜撸| 五月天丁香电影| 男女下面插进去视频免费观看| 午夜福利影视在线免费观看| 久久国产精品大桥未久av| 大片免费播放器 马上看| 精品亚洲成国产av| 欧美黄色片欧美黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 国产又爽黄色视频| 一本—道久久a久久精品蜜桃钙片| 国产精品一二三区在线看| 久久99一区二区三区| 午夜福利视频精品| 日韩欧美一区视频在线观看| 法律面前人人平等表现在哪些方面 | 丝瓜视频免费看黄片| 国产精品一区二区精品视频观看| 日韩欧美免费精品| 99久久综合免费| 欧美黑人欧美精品刺激| 男女高潮啪啪啪动态图| av欧美777| 亚洲综合色网址| 欧美精品高潮呻吟av久久| 性少妇av在线| 欧美亚洲日本最大视频资源| 免费高清在线观看视频在线观看| 九色亚洲精品在线播放| 精品国产乱码久久久久久男人| 99九九在线精品视频| 亚洲久久久国产精品| 天堂8中文在线网| 一本一本久久a久久精品综合妖精| 亚洲avbb在线观看| 亚洲第一av免费看| 国产成人免费观看mmmm| 久久精品国产a三级三级三级| 视频区图区小说| 狠狠精品人妻久久久久久综合| 麻豆国产av国片精品| 日韩一区二区三区影片| 欧美xxⅹ黑人| 日韩一区二区三区影片| 两人在一起打扑克的视频| 国产又色又爽无遮挡免| netflix在线观看网站| 一级,二级,三级黄色视频| 男人舔女人的私密视频| 夫妻午夜视频| 90打野战视频偷拍视频| 一级黄色大片毛片| 性少妇av在线| a级片在线免费高清观看视频| 午夜日韩欧美国产| 这个男人来自地球电影免费观看| 精品人妻1区二区| 久久ye,这里只有精品| videosex国产| 久久国产精品影院| 日本vs欧美在线观看视频| 热99久久久久精品小说推荐| 欧美日韩国产mv在线观看视频| 最新的欧美精品一区二区| 成人国产一区最新在线观看| 欧美国产精品一级二级三级| 国产精品一区二区在线观看99| 欧美精品亚洲一区二区| 亚洲国产av新网站| 1024香蕉在线观看| 亚洲欧美清纯卡通| 亚洲色图 男人天堂 中文字幕| 国产在线观看jvid| av国产精品久久久久影院| 亚洲精品中文字幕一二三四区 | 中文字幕人妻丝袜一区二区| 亚洲专区字幕在线| 亚洲熟女精品中文字幕| 美女中出高潮动态图| 久久 成人 亚洲| 国产精品 国内视频| 亚洲精品一区蜜桃| 精品第一国产精品| 少妇裸体淫交视频免费看高清 | 久久久久国产一级毛片高清牌| av欧美777| 亚洲情色 制服丝袜| 视频区欧美日本亚洲| 免费在线观看视频国产中文字幕亚洲 | 久久久久久亚洲精品国产蜜桃av| 国产又爽黄色视频| 黑人猛操日本美女一级片| 国产伦理片在线播放av一区| 中文字幕av电影在线播放| 狠狠婷婷综合久久久久久88av| 777久久人妻少妇嫩草av网站| 国产黄频视频在线观看| 人人妻,人人澡人人爽秒播| 成年女人毛片免费观看观看9 | 可以免费在线观看a视频的电影网站| 国产淫语在线视频| 久久性视频一级片| 亚洲欧美日韩另类电影网站| 国产成人影院久久av| 国产亚洲av高清不卡| 欧美日韩成人在线一区二区| 欧美亚洲日本最大视频资源| 国产成人av教育| 波多野结衣av一区二区av| 老司机福利观看| 欧美激情 高清一区二区三区| 91精品国产国语对白视频| 黄频高清免费视频| 九色亚洲精品在线播放| 国产欧美日韩一区二区精品| 18禁观看日本| e午夜精品久久久久久久| 在线观看免费视频网站a站| 久久久久久久久免费视频了| 视频区欧美日本亚洲| 欧美精品啪啪一区二区三区 | 久久国产精品人妻蜜桃| 青春草视频在线免费观看| 大码成人一级视频| 狠狠精品人妻久久久久久综合| 少妇的丰满在线观看| 国产不卡av网站在线观看| 国产成人免费无遮挡视频| 最近中文字幕2019免费版| 窝窝影院91人妻| 女性生殖器流出的白浆| 国产成+人综合+亚洲专区| 亚洲av欧美aⅴ国产| 一区二区三区激情视频| 午夜激情久久久久久久| 视频区欧美日本亚洲| 国产亚洲一区二区精品| 美女扒开内裤让男人捅视频| 黄色视频,在线免费观看| 欧美亚洲日本最大视频资源| 欧美另类一区| 国内毛片毛片毛片毛片毛片| 午夜视频精品福利|