• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of Sucrose Esters with Long Acyl Chain by Coupling ofHPLC-ELSD with ESI-MS System*

    2009-05-15 01:39:46ZHUJinli朱金麗TANGYanfeng湯艷峰LIJianhua李建華andZHANGShufen張淑芬
    關(guān)鍵詞:李建華淑芬

    ZHU Jinli (朱金麗), TANG Yanfeng (湯艷峰),** , LI Jianhua (李建華) and ZHANG Shufen (張淑芬)

    ?

    Analysis of Sucrose Esters with Long Acyl Chain by Coupling ofHPLC-ELSD with ESI-MS System*

    ZHU Jinli (朱金麗)1, TANG Yanfeng (湯艷峰)1,**, LI Jianhua (李建華)1and ZHANG Shufen (張淑芬)2

    1School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China2State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China

    The analysis of sucrose esters with long acyl chain by improved high performance liquid chromatographic method with evaporative light scattering detection (HPLC-ELSD) and electrospray ionization mass spectrum (ESI-MS) is investigated. The improved HPLC-ELSD method for the separation and quantitation of commercial and synthesized sucrose esters is described. Samples are analyzed by means of a reversed-phase (RP) HPLC using a Hypersil C8 column (250 mm×4.6 mm, 5 μm particle size) with methanol-tetrahydrofuran (volume ratio of 90︰10) and water under gradient condition as the mobile phase, in which the flow rate is 1.0 ml·min-1and the column temperature is set at 40°C. This procedure provides a complete separation and determination of monoester, diester, triester and higher esters with different acyl chain lengths in each fraction by a single run, in combination with the ESI-MS technology. With this method, it is possible to determine the approximate compositions of mono- to polyesters in one analysis and quantitate pure positional isomers precisely using an external standard method. It is found that the method of ESI-MS coupling with HPLC system for the analysis of sucrose esters is straight forward, rapid and inexpensive, and can be readily applied in synthesis, puri?cation and structure studies.

    sucrose esters, long acyl chain, analysis, high performance liquid chromatographic method with evaporative light scattering detection, electrospray ionization mass spectrum

    1 INTRODUCTION

    With an increasing concern about environment and natural resources, researches and development of surfactants focus on environmental friendly procedures and natural reproducible resources. Sucrose esters (SE) have been the subject investigated intensively for decades, as they can be produced from renewable, inexpensive, and inexhaustible natural resources. They are widely employed as biodegradable, nontoxic, skin-compatible additives in cosmetics, pharmaceuticals and foods [1-4]. In recent years, application of SE in preparation of nanoparticles is widely studied also [5, 6].

    Since the first paper about SE prepared by dimethylformamide (DMF) process published in 1956 [7], there have been several classic methods for the production of SE,.., transparent emulsion process [8], water process [9], solvent-free process [10] and enzyme process [11]. The preparation of SE by these transesterification methods yields a complicated mixture of unreacted sucrose, sucrose monoesters (SME), diesters (SDE) and polyesters (SPE) with fatty acyl groups of various chain lengths and other residues and impurities. Even the acylation of sucrose with a single fatty acid can, theoretically, yield 255 possible isomers from mono- to octaesters [12]. Generally, industrial fatty acid esters in the preparation of SE are mixture of fatty acid esters with different lengths of acyl chains which makes the separation and identification of SE more complicated.

    In order to separate and identify different fractions, some methods have hitherto been developed. The most common method of analysis is based on thin layer chromatography (TLC), which gives the ratio of mono-, di-, and higher esters [13]. Gas chromatographic (GC) and gas chromatographic-mass spectrometric (GC-MS) methods were used for quantitative and qualitative analysis after derivatization [14, 15]. As for fast and quantitative methods of analysis, HPLC with UV detection and HPLC with refractive index (RI) detection were used for the separation of different fractions of SE [16, 17]. These methods are either inadequate for the separation of positional isomers or necessary to separately elute SME and SDE using different polar mobile phases. More recently, a gradient high performance liquid chromatographic method with evaporative light scattering detection (HPLC-ELSD) was used to separate SE [18-21]. Moh. [18] reported the separation of SE isomers with long-chain, but only sucrose mono- and dieters were separated and polyesters were retained in the column. Wang. [19, 20] also applied this method in the analysis of SE with short acyl chain. However, the HPLC-ELSD method is not adequate for the characterization of SE only.

    In this study an improved reversed-phase high performance liquid chromatography (RP-HPLC) methodis used with a C8 column and an improved mobile phase (methanol-tetrahydrofuran, volume ratio of 90︰10, and water) for the separation of SE with long acyl chain. The sucrose mono-, di- and higher esters are detected using an evaporative light scattering detector (ELSD) by a single run using gradient elution, in combination with the electrospray ionization mass spectrum (ESI-MS) technology. An easy and rapid method for analysis of sucrose esters with different positional isomers in each fraction is also developed to meet all requirements of qualitative and quantitative analytical procedures.

    2 EXPERIMENTAL

    2.1 Chemicals and reagents

    HPLC grade tetrahydrofuran and methanol were purchased from Shenyang Chemical Reagents Factory (Shenyang, China). Water was obtained by distillation of deionized water. Commercial SE were obtained from Mitsubishi-Kagaku Foods Corp., Tokyo, Japan (Ryoto S1670, S1570, S1170 and S970).

    2.2 Improved solvent-free synthesis of crude sucrose esters

    100.00 g powdered white granulated sucrose, 69.71 g methyl stearate, 2.55 g anhydrous potassium carbonate and 25.46 g potassium stearate were added to a 500 ml three-necked flask. The mixture was heatedwith stirring for about 3 hours at 130-140°C and 664.5 Pa. When the reaction was over, the crude SE were obtained. TLC [toluene-ethyl acetate-methanol-water (10︰5︰4.5︰0.2, by volume) as developing solvent and urea-phosphoric acid-butanol as detection reagent] analysis indicated that the mixture comprised 62% sucrose stearate, 25% soaps and fatty acids, 12% unreacted sucrose and 1% other constituents.

    2.3 Purification of SE

    The purification of SE followed the procedure described in Ref. [22]. A 500 ml three-necked flask was charged with 250 ml butanone, 150 ml water and 50.0 g crude SE. The mixture was stirred vigorously at 50°C. After the pH was adjusted to about 6.5, 3.8 g anhydrous calcium chloride was added, and then a precipitate was formed. After the precipitate was filtered out, the remaining filtrate formed an upper organic layer and a lower water layer. The organic layer was dried in a rotary evaporator to yield 31.0 g of SE.

    2.4 Characterization of SE

    2.4.1

    The HPLC system consisted of the following components: a Hewlett-Packard Model 1050 series, equipped with an autosampler, an Alltech 2000 evaporative light scattering detector (ELSD), and Agilent chemstation. The chromatographic separation was performed using gradient elution. The mobile phase components were methanol-tetrahydrofuran/water, and delivered at a flow rate of 1.0 ml·min-1. The separation was carried out at 40°C, on a reversed-phase C8 column (250 mm′4.6 mm, 5 μm particle size) purchased from Elite Analytical Instruments Co., Ltd. (Dalian, China). All injections were 10 μl in volume. Solvent gradient conditions are reported in Table 1. The column ef?uent was directed to ELSD. The eluent was nebulized in the ELSD by a stream of dried air using an air compressor at a ?ow rate of 2.4 L·min-1. The nebulization was performed at room temperature and the nebulized ef?uents was evaporated at 80°C. An external standard method is used for the quantitation of samples.

    Table 1 Gradient elution program

    2.4.2

    The components of SE were identified with a quadrupole HP-1100 MS system in the electrospray positive mode. The method was described in Ref. [23]. The mass ions (/) were recorded in a full scan mode with a mass range of 200-1600. In positive or negative mode, the ion source conditions were as follows: ion-spray voltage: +3.5 kV; collision-induced degradation voltage: +50 V. The sample solutions (10 mg·ml-1) used for ESI-MS analysis were prepared by dissolving SE in tetrahydrofuran/methanol (80︰20, by volume). The sample was infused directly into the ion source at a flow rate of 0.2 ml·min-1. Nitrogen was used as a drying gas at a flow rate of 5.0 L·min-1. The temperature of drying gas was 350°C, and the nebulizer pressure was 137.86 kPa.

    3 RESULTS AND DISCUSSION

    3.1 The improved HPLC-ELSD conditions

    We ever tried to use reproduce the HPLC method for the separation of sucrose monoesters and sucrose diesters of commercial SE as described by Moh. [18], but we were not able to obtain anticipated results. In Moh’s method, the binary gradient consists initially of 75% methanol and 25% water. After 70 min, the ratio is changed to 95% methanol and 5% water. This procedure provides a separation of sucrose monoesters and sucrose diesters. However, we found that it is difficult to obtain the reproducible results for two injections of one sample under the identical conditions.

    Figure 1 Reversed-phase HPLC separation of S-1670and S-1170

    1—sucrose; 2—sucrose monopalmitate; 3—sucrose monostearate; 4—sucrose dipalmitate; 5—sucrose distearate; 6—sucrose triester containing palmitic and stearic acid moieties; 7—sucrose tetraester containing palmitic and stearic acid moieties

    In this study, after sucrose monoesters and sucrose diesters were eluted, a mixture of methanol and tetrahydrofuran (90︰10, by volume) was used as eluent and several groups of peaks with high intensity were detected. This result revealed that parts of sucrose diesters and all higher esters were retained in the column, resulting in errors. Higher esters are less polar due to a greater substitution of hydroxyl groups of the sucrose molecule. In order to avoid the retention of sucrose diesters and higher esters and obtain accurate results, less polar mobile phase and highly polar column are needed. By using methanol-tetrahydrofuran and water as the mobile phase instead of methanol and water, and using a Hypersil C8 column instead of C18 column, under the new solvent gradient condition (Table 1), two groups of sucrose monoesters and diesters were identified, which were similar to those reported by Moh. [18], and an additional group of peaks belonging to S1670 or S1170 was also detected by ELSD (Fig. 1). These peaks are not reported by previous studies. Based on the ESI-MS data of S1670 (Fig. 2) and S1170 (Fig. 3), this group of peaks should be identified as sucrose triesters or tetraesters.

    Figure 2 Mass spectrum of S1670 (positive mode)

    Figure 3 Mass spectrum of S1170 (positive mode)

    Figure 4 Reversed-phase HPLC separation of SS-3 and sucrose palmitate

    1—sucrose; 2—sucrose monopalmitate; 3—sucrose monostearate; 4—sucrose dipalmitate; 5—sucrose distearate; 6—sucrose triester containing palmitic and stearic acid moieties; 7—sucrose tetraester containing palmitic and stearic acid moieties

    Commercial SE S1670 and S1170 are analyzed by means of a RP-HPLC using a Hypersil C8 column and methanol-tetrahydrofuran (90︰10, by volume) and water as the mobile phase under improved gradient conditions. This procedure provides a complete separation and determination of monoester, diester, triester and tetraesters with different acyl chain lengths in each fraction by a single run, in combination with the ESI-MS technology.

    3.2 Separation and identification of synthesized SE with long acyl chain

    The chromatograms of the sucrose stearates (SS-3) synthesized by the improved solvent-free process are shown in Fig. 4 (a). The peaks are similar to those of commercial SE. To further identify the several groups of peaks, sucrose palmitate without stearic acid moieties is prepared and its reversed-phase chromatograms are shown in Fig. 4 (b). Peak 1 is attributed to sucrose according to the standard compound injected. Groups of peaks 2 and 3 are sucrose monopalmitate and sucrose monostearate, respectively. Groups of peaks 4 and 5 are sucrose dipalmitate and sucrose distearate, respectively. Group of peaks 6 in Fig. 4 (b) is sucrose tripalmitate and group of peaks 6 in Fig. 4 (a) is mixtures of sucrose tripalmitate, sucrose tristearate and sucrose triester containing palmitic and stearic acid moieties. Group of peaks 7 is sucrose tetrapalmitate, sucrose tetrastearate and sucrose tetraester containing palmitic and stearic acid moieties.

    (c) SP-3

    Figure 5 Reversed-phase HPLC separation of sucrose palmitates: (a) SP-1, (b) SP-2 and (c) SP-3

    1— sucrose; 2—sucrose monopalmitate; 3—sucrose dipalmitate; 4—sucrose tripalmitate; 5—sucrose tetrapalmitate

    Figure 6 Mass spectrum of SP-3

    Table 2 Ratio of monopalmitate to monostearate andcomponents of SE analyzed by HPLC and ES-MS

    ①P—palmitate, S—stearate.②T—triester.③TT—tetraester; T+TT means polyesters contain tri- and tetraesters.

    The results from the above analysis give estimate of the ratio between monopalmitate and monostearate, as shown in Table 2 which also gives the percentage of monoester, diester and polyester of commercial and synthesized SE. In contrast to Moh’s method, by combining HPLC-ELSD and ESI-MS system, not only sucrose monoester and diester are separated, but also sucrose triester and sucrose tetraester are separated and identified.

    4 CONCLUSIONS

    A new method for the separation and identification of SE with long acyl chain was developed based on coupling of ESI-MS with HPLC technology. In this method, improved RP-HPLC conditions of a Hypersil C8 column, methanol-tetrahydrofuran (90︰10, by volume) and water as eluent, and new solvent gradient conditions as the mobile phase were adopted. This procedure provides a complete separation and determination of monoester, diester, triester and higher esters with different acyl chain lengths in each fraction by a single run. It is found that the method coupling of ESI-MS with HPLC system for the analysis of SE with long acyl chain is straightforward, rapid and inexpensive, and can be readily applied for the analysis of SE in synthesis, puri?cation, and structure studies.

    1 Sangnark, A., Noomhorm, A., “Effect of dietary fiber from sugarcane bagasse and sucrose ester on dough and bread properties”,, 37 (7), 697-704 (2004).

    2 Cázares-Delgadillo, J., Naik, A., Kalia, Y.N., “Skin permeation enhancement by sucrose esters: A pH-dependent phenomenon”,, 297 (1-2), 204-212 (2005).

    3 Yamauchi, N., Tokuhara, Y., Ohyama, Y., “Inhibitory effect of sucrose laurate ester on degreening in Citrus nagato-yuzukichi fruit during storage”,, 47 (3), 333-337 (2008).

    4 Simonovska, B., Srbinoska, M., Vovk, I., “Analysis of sucrose esters-insecticides from the surface of tobacco plant leaves”,, 1127 (1-2), 273-277 (2006).

    5 Asim, N., Radiman, S., Bin Yarmo, M.A., “Synthesis of WO3in nanoscale with the usage of sucrose ester microemulsion and CTAB micelle solution”,, 61 (13), 2652-2657 (2007).

    6 Khiew, P.S., Radiman, S., Huang, N.M., “Studies on the growth and characterization of CdS and PbS nanoparticles using sugar-ester nonionic water-in-oil microemulsion”,, 254 (1-2), 235-243 (2003).

    7 Osipow, L., Snell, F.D., York, W.C., Finchler, A., “Methods of preparation-fatty acid esters of sucrose”,, 48, 1459-1462 (1956).

    8 Osipow, L., Rosenblatt, W., Snell, F.D., “Micro-emulsion preparation of sucrose esters ”,, 44 (5), 307-309 (1967).

    9 Fumiaki, Y., Funio, E., Hideki, O., “Process for synthesizing sucrose esters of fatty acids”, U.S.Pat., 3792041 (1974).

    10 Feuge, R.O., Zeringue, H.J., Weiss, T. J., “Preparation of sucrose esters by interesterification”,, 47 (2), 56-60 (1970).

    11 Hajime, E., suyoshi, U., “Enzymatic synthesis of carbohydrate of fatty acid (I) Esterification of sucrose, glucose, fructose and sorbitol”,, 61 (11), 1761-1765 (1984).

    12 Torres, M.C., Dean, M.A., Wagner, F.W., “Chromatographic separations of sucrose, monostearate structure isomers”,, 522, 245-253 (1990).

    13 Li, Y.K., Zhang, S.F., Yang, J.Z., “Analysis of sucrose esters by thin-layer chromatography”,, 20 (5), 476-478 (2002). (in Chinese)

    14 Gupta, R.K., James, K., Smith, F.J., “Analysis of sucrose dono- and diesters prepared from triglycerides containing C12-C18fatty acids”,, 60,1908-1913 (1983).

    15 Karrer, H., Herberg, H., “Analysis of sucrose fatty acid esters by high temperature gas chromatography”,, 15, 585-589 (1992).

    16 Kaufman, V.R., Garti, N., “Analysis of sucrose esters composition by HPLC”,, 7, 1195-1205 (1981).

    17 Jaspers, M.E.A.P., van Leewen, F.F., Nieuwenhuls, H.J.W., Vianen, G.M., “High performance liquid chromatographic separation of sucrose fatty acid esters”,, 64, 1020-1025 (1987).

    18 Moh, M.H., Tang, T.S., Tan, G.H., “Improved separation of sucrose ester isomers using gradient high performance liquid chromatography with evaporative light scattering detection”,, 69, 105-110 (2000).

    19 Wang, Q.H., Zhang, S.F., Zhang, P., “Separation and quantitation of sucrose esters using HPLC with evaporative light scattering detection”,, 29, 2399-2412 (2006).

    20 Wang, Q.H., Zhang, S.F., Yang, J.Z., “HPLC analysis of sucrose ester analogs using evaporative light scattering detection”,, 30, 2395-2407 (2007).

    21 Breda, S., Marija S., Irena, V., “Analysis of sucrose esters-insecticides from the surface of tobacco plant leaves”,, 1127, 273-277 (2006).

    22 Zhu, J.L., Zhang, S.F., Yang, J.Z., “Study on production of high-monoester sucrose fatty acid esters by improved metallic salt method and alcoholic separation”,,,, 43 (2), 106-110 (2006).

    23 Zhu, J.L., Zhang, S.F., Yang, J.Z., “Analysis of the sucrose fatty acid esters by atmospheric-pressure ionization MS with electrospray ionization spectrometry”,,,, 43 (4), 178-183 (2006).

    2009-05-01,

    2009-09-07.

    the National Natural Science Foundation of China (20906052), the Science Foundation of Nantong City Municipality (K2007011, K2008023), the Science Foundation of Nantong University (08R08) and the University Science Research Project of Jiangsu Province (09KJB530008).

    ** To whom correspondence should be addressed. E-mail: tangyf@ntu.edu.cn

    猜你喜歡
    李建華淑芬
    奔放的青春
    金秋(2023年10期)2023-08-16 07:53:54
    執(zhí)著的追求
    金秋(2023年6期)2023-07-22 09:19:54
    張淑芬辨治血瘀型崩漏的臨床經(jīng)驗
    雙子星
    天津詩人(2021年1期)2021-01-08 05:47:00
    撿到十塊錢
    China
    我要讀一年級了
    下課時間
    A Contraction-expansion Helical Mixer in the Laminar Regime*
    漫畫
    国产精品久久久久成人av| 国产在视频线精品| 国产精品久久久久久人妻精品电影 | 蜜桃国产av成人99| 人体艺术视频欧美日本| 国产精品久久久久久精品古装| 色播在线永久视频| 成人黄色视频免费在线看| 亚洲男人天堂网一区| 在线观看免费高清a一片| 高清黄色对白视频在线免费看| 啦啦啦啦在线视频资源| 国产精品国产三级专区第一集| 国产精品一二三区在线看| 成年女人毛片免费观看观看9 | 久久久久精品性色| 中文天堂在线官网| 一个人免费看片子| 啦啦啦在线免费观看视频4| 一区二区av电影网| 亚洲第一区二区三区不卡| 免费黄频网站在线观看国产| 亚洲欧洲精品一区二区精品久久久 | 另类亚洲欧美激情| 免费看av在线观看网站| 日韩免费高清中文字幕av| 中国国产av一级| 少妇人妻久久综合中文| 久久天躁狠狠躁夜夜2o2o | 精品视频人人做人人爽| 热re99久久精品国产66热6| 亚洲成人手机| 精品一区在线观看国产| 日韩制服骚丝袜av| 亚洲av中文av极速乱| 国产精品二区激情视频| 精品人妻一区二区三区麻豆| 亚洲自偷自拍图片 自拍| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av中文av极速乱| 亚洲av电影在线进入| 久热这里只有精品99| 国产在线一区二区三区精| 亚洲综合精品二区| 久久综合国产亚洲精品| 国产精品亚洲av一区麻豆 | 日韩欧美精品免费久久| 午夜久久久在线观看| 国产熟女午夜一区二区三区| www.av在线官网国产| 熟妇人妻不卡中文字幕| 99久国产av精品国产电影| 久久久久精品国产欧美久久久 | 国产极品天堂在线| 赤兔流量卡办理| 黄网站色视频无遮挡免费观看| 久久ye,这里只有精品| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美xxⅹ黑人| 在线天堂最新版资源| 男人舔女人的私密视频| 大片电影免费在线观看免费| 母亲3免费完整高清在线观看| 日韩精品免费视频一区二区三区| videos熟女内射| 国产精品一区二区精品视频观看| 国产99久久九九免费精品| 99精品久久久久人妻精品| 男女午夜视频在线观看| 亚洲精品av麻豆狂野| 欧美人与性动交α欧美精品济南到| 亚洲成色77777| 日韩一区二区视频免费看| 久久久久久免费高清国产稀缺| 亚洲四区av| 99久久综合免费| 中国国产av一级| 日本wwww免费看| 亚洲一区二区三区欧美精品| 国产高清不卡午夜福利| 80岁老熟妇乱子伦牲交| 午夜免费男女啪啪视频观看| 97在线人人人人妻| 国产精品99久久99久久久不卡 | 亚洲精品日本国产第一区| av国产精品久久久久影院| 美女扒开内裤让男人捅视频| 中文字幕人妻熟女乱码| 视频在线观看一区二区三区| 久久久久久久久久久免费av| 亚洲精品久久成人aⅴ小说| 国产乱人偷精品视频| 伊人久久大香线蕉亚洲五| 欧美精品亚洲一区二区| 国产精品熟女久久久久浪| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩视频高清一区二区三区二| 国产成人啪精品午夜网站| 亚洲一级一片aⅴ在线观看| 亚洲天堂av无毛| 又大又爽又粗| 国产男女超爽视频在线观看| 黄片小视频在线播放| 欧美黑人精品巨大| 免费少妇av软件| av线在线观看网站| 中文字幕制服av| 另类精品久久| 日韩一区二区三区影片| 国产精品嫩草影院av在线观看| 人妻人人澡人人爽人人| 好男人视频免费观看在线| 国产精品欧美亚洲77777| 又大又黄又爽视频免费| av在线观看视频网站免费| 91国产中文字幕| 纵有疾风起免费观看全集完整版| 你懂的网址亚洲精品在线观看| 99re6热这里在线精品视频| 青春草视频在线免费观看| 视频区图区小说| 两个人免费观看高清视频| 丁香六月天网| 在线免费观看不下载黄p国产| 高清不卡的av网站| 亚洲av福利一区| 欧美日韩视频精品一区| 人体艺术视频欧美日本| 成人午夜精彩视频在线观看| 性色av一级| 91精品国产国语对白视频| 国产熟女午夜一区二区三区| 不卡视频在线观看欧美| 女的被弄到高潮叫床怎么办| 99久国产av精品国产电影| 午夜免费鲁丝| 狂野欧美激情性xxxx| 一区在线观看完整版| 在线天堂最新版资源| 亚洲成人国产一区在线观看 | 亚洲伊人色综图| 桃花免费在线播放| 在线亚洲精品国产二区图片欧美| 成人国产麻豆网| 国产精品二区激情视频| 久久 成人 亚洲| 18禁裸乳无遮挡动漫免费视频| 午夜福利免费观看在线| 国产亚洲一区二区精品| 欧美另类一区| 中文字幕人妻丝袜制服| 波多野结衣av一区二区av| 国产极品粉嫩免费观看在线| 精品酒店卫生间| 秋霞在线观看毛片| svipshipincom国产片| 国产极品天堂在线| videosex国产| 国产亚洲精品第一综合不卡| 不卡av一区二区三区| 各种免费的搞黄视频| 国产福利在线免费观看视频| 男女无遮挡免费网站观看| 丝袜在线中文字幕| 美国免费a级毛片| 久久久亚洲精品成人影院| 秋霞伦理黄片| 丝袜美足系列| 亚洲精品国产一区二区精华液| 美女高潮到喷水免费观看| 一区二区三区乱码不卡18| 欧美日韩视频精品一区| 日韩熟女老妇一区二区性免费视频| 国产在线一区二区三区精| netflix在线观看网站| 免费av中文字幕在线| 国产熟女午夜一区二区三区| 婷婷色麻豆天堂久久| www.av在线官网国产| 80岁老熟妇乱子伦牲交| 亚洲国产看品久久| 黑人巨大精品欧美一区二区蜜桃| 国产老妇伦熟女老妇高清| 国产激情久久老熟女| 日本91视频免费播放| 成年女人毛片免费观看观看9 | av视频免费观看在线观看| 九色亚洲精品在线播放| 亚洲精品久久午夜乱码| 亚洲欧美成人综合另类久久久| 亚洲av国产av综合av卡| 欧美日韩综合久久久久久| 熟妇人妻不卡中文字幕| 国产精品一区二区在线不卡| 亚洲美女黄色视频免费看| 永久免费av网站大全| 男女床上黄色一级片免费看| 高清视频免费观看一区二区| 狂野欧美激情性bbbbbb| 99九九在线精品视频| 国产一区二区 视频在线| 99久久精品国产亚洲精品| 亚洲精品久久久久久婷婷小说| 狠狠精品人妻久久久久久综合| 亚洲欧美激情在线| 日韩欧美精品免费久久| 啦啦啦在线观看免费高清www| 69精品国产乱码久久久| 大陆偷拍与自拍| 亚洲欧美成人精品一区二区| 国产乱人偷精品视频| 久久青草综合色| 又大又爽又粗| 国产伦人伦偷精品视频| 久久毛片免费看一区二区三区| 91成人精品电影| 日韩免费高清中文字幕av| 制服人妻中文乱码| xxx大片免费视频| 看免费成人av毛片| 美女中出高潮动态图| 久久亚洲国产成人精品v| 欧美最新免费一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品日韩在线中文字幕| 少妇人妻 视频| svipshipincom国产片| 高清不卡的av网站| 国产视频首页在线观看| 人人妻人人添人人爽欧美一区卜| 热re99久久国产66热| 日韩免费高清中文字幕av| 日韩欧美精品免费久久| 久久久久久免费高清国产稀缺| 女人高潮潮喷娇喘18禁视频| 99精国产麻豆久久婷婷| xxx大片免费视频| 在线 av 中文字幕| 国产又爽黄色视频| 男的添女的下面高潮视频| 亚洲欧洲日产国产| 亚洲精品成人av观看孕妇| 亚洲男人天堂网一区| 在线观看三级黄色| 在线免费观看不下载黄p国产| 精品国产一区二区三区久久久樱花| 一区二区av电影网| 亚洲四区av| 日韩一区二区视频免费看| 中文天堂在线官网| 日本爱情动作片www.在线观看| 激情视频va一区二区三区| 九草在线视频观看| 中文天堂在线官网| 美国免费a级毛片| 男人添女人高潮全过程视频| 十八禁人妻一区二区| 亚洲自偷自拍图片 自拍| 国产精品香港三级国产av潘金莲 | 人妻一区二区av| 精品欧美一区二区三区在线| 黄网站色视频无遮挡免费观看| 99在线人妻在线中文字幕| 亚洲男人的天堂狠狠| 亚洲专区国产一区二区| videosex国产| 欧美成人免费av一区二区三区| 一进一出抽搐gif免费好疼| 午夜福利免费观看在线| √禁漫天堂资源中文www| 亚洲五月色婷婷综合| 亚洲欧美一区二区三区黑人| 精品久久久久久久久久免费视频| 在线永久观看黄色视频| 久久久精品国产亚洲av高清涩受| 日韩精品中文字幕看吧| 亚洲人成77777在线视频| a在线观看视频网站| 中文字幕高清在线视频| 日韩中文字幕欧美一区二区| 日韩av在线大香蕉| 最新美女视频免费是黄的| 日本黄色视频三级网站网址| 久久天躁狠狠躁夜夜2o2o| 两个人看的免费小视频| 精品人妻1区二区| 99在线视频只有这里精品首页| 搡老熟女国产l中国老女人| 国产精品久久久av美女十八| 极品人妻少妇av视频| 国产熟女xx| 国产一区在线观看成人免费| 午夜福利一区二区在线看| 老司机午夜十八禁免费视频| 亚洲欧美精品综合一区二区三区| 99国产精品一区二区蜜桃av| 精品久久久久久久人妻蜜臀av | 久久精品91无色码中文字幕| 国产精品永久免费网站| 在线观看一区二区三区| 最近最新中文字幕大全免费视频| 女人爽到高潮嗷嗷叫在线视频| 久热这里只有精品99| 欧美色欧美亚洲另类二区 | 精品乱码久久久久久99久播| 精品欧美国产一区二区三| 在线观看66精品国产| www.999成人在线观看| 国产精品秋霞免费鲁丝片| 两性午夜刺激爽爽歪歪视频在线观看 | 免费观看人在逋| 国产成人啪精品午夜网站| 变态另类成人亚洲欧美熟女 | 91在线观看av| 亚洲国产精品999在线| 国产精品久久久久久人妻精品电影| 亚洲欧美精品综合久久99| 成人国产一区最新在线观看| 国内毛片毛片毛片毛片毛片| 久久久久精品国产欧美久久久| 悠悠久久av| 日本免费a在线| 久久久国产成人精品二区| 国产99久久九九免费精品| 亚洲国产精品合色在线| 国产精品一区二区三区四区久久 | 国产精品 国内视频| 日本在线视频免费播放| 天天一区二区日本电影三级 | 日韩一卡2卡3卡4卡2021年| 欧美性长视频在线观看| 亚洲成人精品中文字幕电影| 午夜福利视频1000在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 人成视频在线观看免费观看| 窝窝影院91人妻| 国产精品久久久久久亚洲av鲁大| 一个人观看的视频www高清免费观看 | 国产国语露脸激情在线看| 国产精品亚洲美女久久久| 宅男免费午夜| 成人国语在线视频| 国产亚洲av高清不卡| 美女高潮到喷水免费观看| 中文字幕人妻熟女乱码| 丝袜在线中文字幕| 制服丝袜大香蕉在线| 美女扒开内裤让男人捅视频| 亚洲专区中文字幕在线| 大型av网站在线播放| 久久久精品国产亚洲av高清涩受| 日韩精品青青久久久久久| av超薄肉色丝袜交足视频| 狂野欧美激情性xxxx| 一级黄色大片毛片| 老汉色av国产亚洲站长工具| 亚洲人成伊人成综合网2020| 亚洲熟女毛片儿| 国产一区二区三区在线臀色熟女| 久久精品国产综合久久久| 91麻豆精品激情在线观看国产| 在线观看免费午夜福利视频| 黑人巨大精品欧美一区二区mp4| 啪啪无遮挡十八禁网站| 国产1区2区3区精品| 黄色视频不卡| 中文字幕人妻熟女乱码| 9色porny在线观看| 丰满的人妻完整版| 欧美日韩福利视频一区二区| 一区二区三区国产精品乱码| 国产一区二区三区在线臀色熟女| 人人澡人人妻人| 欧美+亚洲+日韩+国产| 免费在线观看黄色视频的| 日韩精品中文字幕看吧| 国产亚洲欧美在线一区二区| 久久精品国产综合久久久| 免费在线观看完整版高清| 久久人人爽av亚洲精品天堂| 巨乳人妻的诱惑在线观看| 色播亚洲综合网| 亚洲av成人一区二区三| 嫩草影视91久久| 电影成人av| 精品福利观看| 亚洲性夜色夜夜综合| 欧美国产日韩亚洲一区| 亚洲视频免费观看视频| 欧美丝袜亚洲另类 | 久久久久国产精品人妻aⅴ院| 午夜福利免费观看在线| 啦啦啦观看免费观看视频高清 | 黑丝袜美女国产一区| 亚洲av成人一区二区三| 亚洲第一青青草原| 亚洲男人的天堂狠狠| 999久久久精品免费观看国产| 免费搜索国产男女视频| 9热在线视频观看99| 国产成人精品在线电影| 9色porny在线观看| 日韩 欧美 亚洲 中文字幕| 久久性视频一级片| 精品国产亚洲在线| 视频在线观看一区二区三区| 麻豆久久精品国产亚洲av| 老汉色av国产亚洲站长工具| 99精品在免费线老司机午夜| 一区二区日韩欧美中文字幕| 久久人人爽av亚洲精品天堂| 搡老岳熟女国产| 人妻久久中文字幕网| 日韩免费av在线播放| 国产麻豆成人av免费视频| 亚洲成人免费电影在线观看| 久9热在线精品视频| 国产亚洲av高清不卡| 露出奶头的视频| 又黄又粗又硬又大视频| 国产精品九九99| 中文字幕av电影在线播放| av视频免费观看在线观看| 高清毛片免费观看视频网站| 日日夜夜操网爽| 久久久精品欧美日韩精品| 亚洲欧美日韩高清在线视频| 亚洲精品国产精品久久久不卡| 午夜久久久久精精品| 精品乱码久久久久久99久播| 国产成人啪精品午夜网站| 国产精品影院久久| 欧美成人免费av一区二区三区| 麻豆久久精品国产亚洲av| 午夜老司机福利片| 老汉色∧v一级毛片| 免费人成视频x8x8入口观看| 电影成人av| 国产99久久九九免费精品| 免费少妇av软件| 日本撒尿小便嘘嘘汇集6| 久久久久久免费高清国产稀缺| 俄罗斯特黄特色一大片| 可以在线观看毛片的网站| 涩涩av久久男人的天堂| 国产精品秋霞免费鲁丝片| 老汉色∧v一级毛片| 亚洲精品久久国产高清桃花| 在线十欧美十亚洲十日本专区| 亚洲av成人av| 黑人欧美特级aaaaaa片| av欧美777| 亚洲免费av在线视频| 99久久久亚洲精品蜜臀av| 亚洲狠狠婷婷综合久久图片| www日本在线高清视频| 国产成人精品在线电影| 中文字幕av电影在线播放| 深夜精品福利| 高清在线国产一区| 纯流量卡能插随身wifi吗| 欧美丝袜亚洲另类 | 视频在线观看一区二区三区| 啦啦啦韩国在线观看视频| 99国产综合亚洲精品| 99精品在免费线老司机午夜| 欧美激情 高清一区二区三区| 多毛熟女@视频| 久久国产乱子伦精品免费另类| 久久九九热精品免费| 久久国产精品影院| 日日干狠狠操夜夜爽| 韩国av一区二区三区四区| 久久久久久久午夜电影| 最新在线观看一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 如日韩欧美国产精品一区二区三区| 一边摸一边抽搐一进一出视频| 久久中文字幕一级| 久久久久久久久中文| 免费在线观看完整版高清| 久久久久久久久中文| 亚洲精品国产精品久久久不卡| 国产日韩一区二区三区精品不卡| 91麻豆精品激情在线观看国产| 成熟少妇高潮喷水视频| 十八禁网站免费在线| 久久人人爽av亚洲精品天堂| 国产一卡二卡三卡精品| √禁漫天堂资源中文www| 欧美日本中文国产一区发布| 最新美女视频免费是黄的| 色综合亚洲欧美另类图片| 视频区欧美日本亚洲| 窝窝影院91人妻| 免费少妇av软件| e午夜精品久久久久久久| 国产蜜桃级精品一区二区三区| 成人亚洲精品av一区二区| 欧美日本亚洲视频在线播放| 在线观看免费午夜福利视频| 日韩 欧美 亚洲 中文字幕| 国产单亲对白刺激| av天堂在线播放| 精品国产一区二区久久| 999久久久国产精品视频| 精品日产1卡2卡| 亚洲国产毛片av蜜桃av| 久久草成人影院| 亚洲精品在线观看二区| 中亚洲国语对白在线视频| 国产精品一区二区精品视频观看| 香蕉丝袜av| 国产亚洲精品av在线| 在线天堂中文资源库| 色婷婷久久久亚洲欧美| 人成视频在线观看免费观看| 岛国在线观看网站| 一区在线观看完整版| 精品国产亚洲在线| 91国产中文字幕| 在线观看免费视频日本深夜| 极品人妻少妇av视频| 日本五十路高清| 97超级碰碰碰精品色视频在线观看| 国产欧美日韩一区二区三区在线| 大香蕉久久成人网| 亚洲人成网站在线播放欧美日韩| 亚洲五月天丁香| 亚洲专区国产一区二区| 变态另类丝袜制服| 欧美性长视频在线观看| 久久久久久久精品吃奶| 97人妻天天添夜夜摸| 亚洲精品中文字幕一二三四区| 手机成人av网站| a级毛片在线看网站| 可以在线观看毛片的网站| 男女之事视频高清在线观看| 久久午夜综合久久蜜桃| 涩涩av久久男人的天堂| 国产成人影院久久av| 亚洲精品国产区一区二| 在线观看日韩欧美| 久久人人97超碰香蕉20202| 99香蕉大伊视频| 超碰成人久久| 亚洲国产精品成人综合色| 国产精品国产高清国产av| 电影成人av| 免费在线观看视频国产中文字幕亚洲| 如日韩欧美国产精品一区二区三区| 丝袜在线中文字幕| 18禁黄网站禁片午夜丰满| 精品电影一区二区在线| 欧美国产日韩亚洲一区| 丰满的人妻完整版| 欧美久久黑人一区二区| 国产精品爽爽va在线观看网站 | 99久久精品国产亚洲精品| 日韩免费av在线播放| 亚洲人成伊人成综合网2020| 99国产极品粉嫩在线观看| 国产日韩一区二区三区精品不卡| 亚洲熟妇中文字幕五十中出| 欧美最黄视频在线播放免费| 国产成人精品久久二区二区91| 国产精品国产高清国产av| 亚洲国产精品成人综合色| 老司机在亚洲福利影院| 国产极品粉嫩免费观看在线| 女人高潮潮喷娇喘18禁视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲美女黄片视频| 一级毛片女人18水好多| 国产一区二区激情短视频| 久久国产亚洲av麻豆专区| 久久精品人人爽人人爽视色| 亚洲成人免费电影在线观看| 欧美成狂野欧美在线观看| 黄色 视频免费看| 亚洲五月婷婷丁香| 亚洲中文字幕一区二区三区有码在线看 | 国产亚洲精品久久久久5区| 757午夜福利合集在线观看| 18禁黄网站禁片午夜丰满| 最好的美女福利视频网| 欧美久久黑人一区二区| 久久久久久久午夜电影| 日韩中文字幕欧美一区二区| 99精品久久久久人妻精品| 国产主播在线观看一区二区| 最新美女视频免费是黄的| 狠狠狠狠99中文字幕| 亚洲专区国产一区二区| 成人国语在线视频| 久久亚洲精品不卡| av电影中文网址| 欧美色视频一区免费| 两个人免费观看高清视频| 久久久久久久久免费视频了| 欧美成人性av电影在线观看| 麻豆成人av在线观看| 久久草成人影院| 日韩欧美一区二区三区在线观看| 欧美最黄视频在线播放免费| 亚洲熟妇熟女久久| 精品少妇一区二区三区视频日本电影| 这个男人来自地球电影免费观看| 国产精品久久久av美女十八| 国产精品永久免费网站| 黄频高清免费视频| 又紧又爽又黄一区二区| 亚洲成国产人片在线观看| 亚洲激情在线av|