• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adsorption Behavior of Methyl Orange onto Modified UltrafineCoal Powder*

    2009-05-15 01:40:08LIUZhuannian劉轉(zhuǎn)年ZHOUAnning周安寧WANGGuirong王貴榮andZHAOXiaoguang趙曉光

    LIU Zhuannian (劉轉(zhuǎn)年), ZHOU Anning (周安寧), WANG Guirong (王貴榮) and ZHAO Xiaoguang (趙曉光)

    ?

    Adsorption Behavior of Methyl Orange onto Modified UltrafineCoal Powder*

    LIU Zhuannian (劉轉(zhuǎn)年)1,**, ZHOU Anning (周安寧)2, WANG Guirong (王貴榮)1and ZHAO Xiaoguang (趙曉光)1

    1College of Geology and Environment, Xi’an University of Science & Technology, Xi’an 710054, China2College of Chemistry and Chemical Engineering, Xi’an University of Science & Technology, Xi’an 710054, China

    ultrafine coal powder, methyl orange, adsorption, wastewater treatment

    1 INTRODUCTION

    Dye is used in many industries such as food, paper, carpets, rubbers, plastics, cosmetics, and textiles. The discharge of colored wastewater from these industries causes many significant environmental problems. Methyl orange is a representative contamination in industrial wastewater and shows poor biodegradability. Many physical-chemical methods have been tested to remove the dye from aqueous solutions, and adsorption is considered superior to other techniques.

    Activated carbon is one of the most widely used adsorbents for removing dye from aqueous solutions [1], but it is limited due to the high operation costs. Many low cost adsorbents are used to remove dye from aqueous solutions, such as coal fly ash [2], sepiolite [3], montmorillonite [4], clay [5], agricultural waste [6], unburned carbon [7] and low-rank coal [8]. Coal is an efficient natural adsorbent with special porous structure, plentiful functional groups such as carboxylic acids and phenolic hydroxyl. Many researchers believe that natural coal is a promising material for the removal of various organic compounds from aqueous solutions [9]. However, the adsorption capacity of natural coal is not good enough to use in industry. Activation of coal is an efficient way to improve its adsorption capacity. The most common methods for coal activation include heat treatment and/or treatment with chemical reagent, such as alkali metal hydroxides [10], oxides [11], hydrogen peroxide [12] and other chemical reagents [13]. These methods enhance the adsorptive properties of coal by increasing the surface functionality and/or increasing the porosity of coal. Some study on natural coal showed that the contribution of closed pores in total porosity in most cases exceeded 60% [14]. The investigation on physical structure and combustion properties for superfine pulverized coal particles of eight Chinese coals showed that the particle specific surface area (SSA) and pore volume increased as coal particle size decreased [15]. The adsorption properties of aniline and Ni2+on coal powder with different particle size showed that the adsorption capacity of aniline and Ni2+exponentially increased with the decreasing mean diameter of Shenfu coal powder. The adsorption ability of ultrafine coal powder was much better than that of normal size coal powder [16, 17].

    Part of the closed pores in coal will be opened when the coal is ground. The specific surface area of coal powder will increase obviously as the particle size decreases [18]. Thus the adsorption capacity of coal powder will increase greatly, especially as the particle size of coal powder is about nanometer grade. Coal holds inorganic mineral matters which are transformed into ash by chemical reaction occurring in the combustion of coal. The inorganic minerals in coal, such as quartz, carbonate (CaCO3, MgCO3), pyrite (FeS2) and FeS, can be removed by washing with acid solution such as HCl, HF, or their mixed solution. When ultrafine coal powder is treated by hydrochloric acid solution, the mineral matters except silica mineral in coal will interact with the acid, then are dissolved, and new pores are produced and the specific surface area and pore volume will increase, so that the adsorption capacity of coal powder will be enhanced.

    In this study ultrafine coal powder, with particle size near nanometer grade by pulverization, and modified ultrafine coal powder are used to remove methyl orange from aqueous solutions. The objective is to investigate the mechanism and behavior of methyl orange adsorption onto ultrafine coal powder and modified ultrafine coal powder to develop a new and cheap adsorbent for the removal of dye from wastewater.

    Table 1 The proximate and ultimate analyses of untreated and HCl treated Shenfu coal (%, by mass)

    Note: ad—air dried basis; d—dry basis; daf—dry ash free basis; M—moisture; A—ash; V—volatile matter; FC—fixed carbon; S—total sulfur.

    Table 2 Specific surface area and pore distribution of Shenfu coal

    2 MATERIALS AND METHODS

    2.1 Materials

    The coal used in the experiment was obtained from Shenfu coalfield in Shaanxi province, China. The pore volume and Brunauer-Emmett-Teller (BET) specific surface area of the coal were determined on Sorptomatic 1990 (Thermo Quest, gas: N2). Raw coal was pulverized by a planetary high energy ball miller (Model QH-4H, China) for 5 h (250 r·min-1) and the ultrafine coal powder (UCP) was obtained. The laser granularity of UCP was analyzed on a laser grainulometric analyzer LS-POP (III) (China). The transmission electron microscopy (TEM) analysis of UCP was performed on JEM-100SX transmission electron microscope (Japan). The modified ultrafine coal powder (MUCP) was obtained by immersing UCP into 1mol·L-1HCl solution for 3 h followed by washing with distilled water till the pH value of the washing liquid was 7.0, and then dried in an oven at 353 K overnight. All the reagents used were of analytical grade. Methyl orange was used as the adsorbate . The chemical formula of methyl orange is C14H14N3NaO3S, and its structure is shown in Fig. 1.

    Figure 1 Structure of methyl orange

    2.2 Kinetic procedure

    Batch studies were conducted in a temperature- controlled water bath shaker using 50 ml (100 mg·L-1) of adsorbate solution and a fixed adsorbent dosage of 0.50 g. The samples at different time intervals (10 min, 30 min, 1 h, 2 h, 3 h and 4 h) were taken and filtered, and the filtrate was analyzed for the concentration of methyl orange left using a spectrophotometer.

    2.3 Equilibrium experiments

    The study on isotherms was conducted in batch mode to determine the adsorption of methyl orange on MUCP. In these experiments, 50 ml of methyl orange solutions with known initial concentration were shaken with a certain amount of adsorbent at 303, 313, and 323 K for 3 h using a temperature-controlled water bath shaker. At the end of a predetermined time, samples were filtered and the filtrate was analyzed for residual methyl orange. The effects of various parameters, such as the solution pH and the concentration of methyl orange in the solution, were studied. The pH value of the solution was adjusted with 0.1 mol·L-1HCl or 0.1 mol·L-1NaOH.

    3 RESULTS AND DISCUSSION

    3.1 Characteristics

    The ultimate and proximate analyses of untreated and treated Shenfu coal are listed in Table 1. The pore structure of raw Shenfu coal is summarized in Table 2. As seen from Table 2, the pores are mainly mesopores with a diameter between 2.0 and 53 nm. The specific surface area of raw coal is 8.2018 m2·g-1by BET method. The particle size distribution of UCP used in this study is given in Table 3. The TEM analysis of UCP is presented in Fig. 2. The particle size of UCP is so small that the diameter of coal particle approaches nanometer, and coal particles conglutinate each other severely.

    Table 3 Particle size distribution of UCP

    Figure 2 TEM analysis of UCP

    3.2 Kinetic studies

    Figure 3 illustrates the adsorption of methyl orange onto UCP and MUCP. The adsorption capacity of methyl orange onto MUCP is much better than that of UCP, which indicates that the chemical modification for UCP with HCl solution is effective. Some of mineral matters in coal are dissolved when ultrafine coal powder is treated by HCl solution, new pores are created, and the pore volume and the specific surface area increase. The amount of methyl orange uptake,q(mg·g-1), increases with contact time on both UCP and MUCP. Methyl orange uptake is rapid in the first 30 min, then proceeds at a slower rate, and finally reaches equilibrium when contact time is 240 min. Similar results have been obtained for the sorption of methyl orange on carbon bottom ash and de-oiled soya [19].

    Figure 3 Effect of contact time on adsorption amount of methyl orange onto UCP and MUCP

    □?UCP;○?MUCP

    The behavior of the methyl orange adsorption is analyzed using the Lagergren first-order kinetic model, pseudo second-order kinetic model and intraparticle diffusion [20].

    A linear form of the Lagergren first-order model expression is:

    Figure 4 Lagergren plots for methyl orange adsorption onto UCP and MUCP

    □?UCP;○?MUCP

    The kinetic data are further analyzed using the pseudo second-order kinetics expressed as:

    where2(g·mg-1·min-1) is the rate constant of pseudo second-order adsorption. If the second-order kinetics is applicable, the plot of/qshould give a linear relationship and it is not needed to know any parameter beforehand (Fig. 5).

    Figure 5 Pseudo second-order plots for methyl orange adsorption onto UCP and MUCP

    □?UCP;○?MUCP

    e,cis the adsorption amount calculated from Eqs. (1) and (2).e,c,1,2and the corresponding linear regression correlation coefficient2values are shown in Table 4. The regression correlation coefficient of methyl orange onto UCP for the Lagergren first-order kinetic model (0.999) is greater than that for the pseudo second-order kinetic model (0.997). Thus, the adsorption of methyl orange onto UCP obeys the Lagergren first-order rate kinetics better. The regression correlation coefficient of methyl orange onto MUCP for the pseudo second-order kinetic model (0.999) is higher than that for the first-order kinetic model (0.918), indicting the applicability of this kinetic equation and the second-order nature of the adsorption process of methyl orange onto MUCP.

    Table 4 Lagergren first-order and pseudo second-order adsorption rate constants of methyl orangeadsorption onto UCP and MUCP

    The adsorbate species are most probably transported from the bulk of the solution into the solid phase with an intraparticle diffusion process, which is often the rate-limiting step in many adsorption processes. The possibility of intraparticle diffusion is explored by using the intraparticle diffusion model [21],

    whereis the intercept andidis the intraparticle diffusion rate constant. Plot ofq1/2is shown in Fig. 6. The valuesid,and the corresponding linear regression correlation coefficient2are given in Table 5. The intraparticle rate constants calculated from Fig. 6 are 0.176 and 0.117 mg·g-1·min-1/2for UCP and MUCP respectively. The intraparticle diffusion rate constant of methyl orange adsorption onto MUCP (0.117 mg·g-1·min-1/2) is smaller than that onto UCP (0.176 mg·g-1·min-1/2).

    Figure 6 Intraparticle diffusion plots for methyl orange onto UCP and MUCP

    □?UCP;○?MUCP

    Table 5 The intraparticle diffusion rate constants of methyl orange adsorption onto UCP and MUCP

    Figure 7 Freundlich isotherms for methyl orange adsorption onto MUCP at different temperature

    □?303 K;○?313 K;△?323 K

    Figure 8 Langmuir isotherms for methyl orange adsorption onto MUCP at different temperature

    □?303 K;○?313 K;△?323 K

    3.3 Isotherm studies

    The Langmuir isotherm and Freundlich isotherm models are used to study the adsorption equilibrium. The linear forms of Langmuir and Freundlich models are [22]

    Table 6 Langmuir and Freundlich constants for methyl orange adsorption onto MUCP

    whereeis the equilibrium concentration of the solute (mg·L-1),0is the amount of solute adsorbed per unit mass of adsorbent in forming a complete monolayer on the surface (mg·g-1),is a constant related to the affinity of binding sites (L·mg-1),Fandare Frendlich constants related to adsorption capacity and adsorption intensity, respectively.0andwere calculated from the slope and intercept of the straight lines of the plot of 1/e1/e,Fandcan be determined from the linear plot of lgelge.

    Figures 7 and 8 are the Freundlich and Langmuir adsorption isotherms of methyl orange adsorption on MUCP at 303, 313, and 323 K. The Langmuir and Freundlich constants for methyl orange adsorption onto MUCP are presented in Table 6. The regression correlation coefficients of Freundlich model (2) at 303 K, 313 K and 323 K are 0.999, 0.998 and 0.996 respectively, indicating a very good mathematical fit.Fis a Freundlich constant that shows the adsorption capacity of an adsorbent, and the strength of the relationship between adsorbate and adsorbent. The valuesFof MUCP for methyl orange at 303, 313, and 323 K are 0.895, 0.870 and 0.945, respectively. In all cases the exponent 1<<10 shows beneficial adsorption [23]. Freundlich exponentbetween 1.61 and 1.90 in this study indicates favorable adsorption.

    As seen from Table 6, good regression correlation coefficients (0.985, 0.990 and 0.995) are obtained for all the temperatures studied, suggesting that Langmuir isotherm model is applicable to the methyl orange adsorption equilibrium by MUCP. The Langmuir monolayer adsorption capacityis 2.36×10-2, 2.19×10-2and 2.15×10-2L·mg-1at 303 K, 313 K and 323 K, respectively. The Langmuir adsorption intensity0is 18.52, 17.86 and 14.49 mg·g-1at 303 K, 313 K and 323 K, respectively. The values of0decrease as temperature increases, confirming the exothermic nature of adsorption process. This result is in accord with the result of methyl orange on the bottom ash and de-oiled soya [19].

    The characteristics of a Langmuir isotherm can be expressed in terms of a dimensionless constant separation factor or equilibrium parameter,L, which is defined as

    3.4 Estimation of thermodynamic parameters

    The free energy of adsorption,D0, can be related to the equilibrium constant(L·mol-1), corresponding to the reciprocal of the Langmuir constant[21],

    whereis the gas universal constant (8.314 J·mol-1·K-1) andis the absolute temperature. The changes in enthalpy,D0, and entropy,D0, can be estimated by

    Figure 9 Plot of ln. 1/for methyl orange adsorption onto MUCP

    Table 7 Thermodynamic parameters for adsorption of methyl orange onto MUCP

    3.5 Effect of pH

    The pH value of the aqueous medium has profound influence on the adsorption of methyl orange onto coal powder. The effect of pH on adsorption of methyl orange was studied in 50 ml of 100 mg·L-1methyl orange solution, in which the dosage of coal powder was 0.50 g. The pH value of solution was adjusted by 0.1 mol·L-1HCl or 0.1 mol·L-1NaOH. The adsorbed amount of methyl orange at pH values in the range of 6-12 is depicted in Fig. 10. In the study, the pH value should be higher than the color change pH range of 3.1-4.4. It is evident that the adsorption behavior of methyl orange on MUCP and UCP is similar. The adsorbed amount of methyl orange on MUCP and UCP increase gradually from 4.13 and 3.34 mg·g-1to 6.09 and 5.85 mg·g-1as pH increases from 6 to 11. The adsorbed amount drops rapidly when pH is higher than 11.

    □?UCP;○?MUCP

    3.6 Effect of methyl orange concentration

    In order to investigate the effect of initial concentration on the adsorption, 0.50 g coal powder was add to 50 ml of 50, 100, 200 and 400 mg·L-1methyl orange solutions separately and shaken for 3 h at 25°C, then taken out and filtered. The effect of concentration on the adsorption of methyl orange on UCP and MUCP is presented in Fig. 11. The adsorbed amount for methyl orange increases with the initial concentration. The same conclusion has been obtained for methyl orange to adsorb on the bottom ash and de-oiled soya [19]. The increase in adsorbed amount with relation to dye ion is probably due to the high driving force for mass transfer.

    □?UCP;○?MUCP

    3.7 Effect of adsorbent dosage

    Adsorbent dosage is an important parameter at a given initial concentration of the adsorbate. 0.1, 0.3, 0.5, 0.7, 0.9, and 1.2 g coal powder was added to 50 ml of 100 mg·L-1methyl orange solution separately, keeping all other experimental conditions constant. Fig. 12 shows that as the adsorbent dosage increases, the amount adsorbed per unit mass of the adsorbent decreases. This is due to the increase in total surface area of coal powder [26].

    Figure 12 Effect of adsorbent dosage on adsorption amount of methyl orange onto UCP and MUCP

    □?UCP;○?MUCP

    4 Conclusions

    UCP and MUCP were used to remove methyl orange from aqueous solutions. The mechanism and behavior of methyl orange adsorption onto UCP and MUCP were studied. The results show that the adsorption capacity of methyl orange onto MUCP is much better than that of UCP. Adsorption isotherms of methyl orange on MUCP at 303, 313, and 313 K follow the Freundlich model and Langmuir model. The exponent is 1<<10, indicating favorable adsorption. The adsorption kinetics of methyl orange onto UCP and MUCP fits the Lagergren first-order kinetic model and the pseudo second-order kinetic model, respectively. Negative free energy change of adsorption (D0), negative enthalpy change (D0) and positive entropy change (D0) indicate that the adsorption is a spontaneous and exothermic process.

    1 El Qada, E.N., Allena, S.J., Walker, G.M., “Adsorption of basic dyes from aqueous solution onto activated carbons”,..., 135 (1), 174-184 (2008).

    2 Lin, J.X., Zhan, S.L., Fang, M.H., Qian, X.Q., Yang, H., “Adsorption of basic dye from aqueous solution onto fly ash”,..., 87 (1), 193-200 (2008).

    3 ?zdemir, Y., Do?an, M., Alkan, M., “Adsorption of cationic dyes from aqueous solutions by sepiolite”,..., 96 (1-3), 419-427 (2006).

    4 Teng, M.Y., Lin, S.H., “Removal of methyl orange dye from water onto raw and acid activated montmorillonite in fixed beds”,, 201 (1-3), 71-81 (2006).

    5 Gürses, A., Do?ar, ?., Yal??n, M., A??ky?ld?z, M., Bayrak, R., Karaca, S., “The adsorption kinetics of the cationic dye, methylene blue, onto clay”,..., 131 (1-3), 217-228 (2006).

    6 Hameed, B.H., Krishni, R.R., Sata, S.A., “A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions”,..., 162 (1), 305-311 (2009).

    7 Wang, S., Li, H., “Dye adsorption on unburned carbon: Kinetics and equilibrium”,..., B126 (1-3), 71-77 (2005).

    8 Jano?, P., Michálek, P., Turek, L., “Sorption of ionic dyes onto untreated low-rank coal—oxihumolite: A kinetic study”,., 74 (2), 363-370 (2007).

    9 Tarasevich, Y.I., “Porous structure and adsorption properties of natural porous coal”,., 176 (2-3) ,267-272 (2001).

    10 Lillo-Ródenas, M.A., Lozano-Castelló, D., Cazorla-Amorós, D., Linares-Solano, A., “Preparation of activated carbons from Spanish anthracite (II) Activation by NaOH”,, 39 (5), 751-759 (2001).

    11 Lakatos, J., Brown, S.D., Snape, C.E., “Coals as sorbents for the removal and reduction of hexavalent chromium from aqueous waste streams”,, 81 (5), 691-698 (2002).

    12 Burns, C.A., Boily, J.F., Crawford, R.J., Harding, I.H., “Cd(II) sorption onto chemically modified Australian coals”,, 84 (12-13), 1653-1660 (2005).

    13 Hsu, L.Y, Teng, H., “Influence of different chemical reagents on the preparation of activated carbons from bituminous coal”,.., 64 (1-3), 155-166 (2000).

    14 Alexeev, A.D., Vasilenko, T.A., Ulyanova, E.V., “Closed porosity in fossil coals”,, 78 (6), 635-638 (1999).

    15 Jiang, X.M., Zheng, C.G, Yan, C., Liu, D.C., Qiu, J.R., Li, J.B., “Physical structure and combustion properties of super fine pulverized coal particle”, 81 (6), 793-797 (2002).

    16 Liu, Z.N., Zhou, A.N., Jin, Q.T., “Mechanism of aniline adsorption on ultrafine coal powder”,, 34 (1), 20-24 (2006). (in Chinese)

    17 Liu, Z.N., Zhou, A.N., Jin, Q.T., “Adsorption properties of Ni2+for different granularity coal powders”,, 30 (5), 627-631 (2005). (in Chinese)

    18 Yu, Z.J., Zhou, A.N., Qu, J.L., Zhang, T.J., “Study on behavior and kinetics of sorption of Ag+by Shenfu coal”,..., 85 (1), 104-110 (2005).

    19 Mittal, A., Malviya, A., Kaur, D., Mittal, J., Kurup, L., “Studies on the adsorption kinetics and isotherms for the removal and recovery of methyl orange from wastewaters using waste materials”,..., 148 (1-2), 229-240(2007).

    20 Namasivayam, C., Yamuna, R.T., “Adsorption of direct red 12 B by biogas residual slurry: Equilibrium and rate processes”,.., 89 (1), 1-7 (1995).

    21 Bulut, Y., Aydin, H., “A kinetics and thermodynamics study of methylene blue adsorption on wheat shells” ,, 194 (1-3), 259-267 (2006).

    22 Gupta, V.K., Ali, I., “Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater”,..., 18 (2), 131-140 (2000).

    23 Annadurai, G., Ling, L.Y., Lee, J.F., “Biodegradation of phenol byon immobilized with chitin”,., 6 (3), 296-303 (2007).

    24 Tan, I.A.W., Ahmad, A.L., Hameed, B.H., “Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies”,, 225 (1-3), 13-28 (2008).

    25 Venkata, M.S., Chandrasekhar, R.N., Karthikeyan, J., “Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: A kinetic and mechanistic study”,..., 90 (2), 189-204 (2002).

    26 Matheswaran, M., Karunanithi, T., “Adsorption of Chrysoidine R by using fly ash in batch process”,..., 145 (1-2), 154-161 (2007).

    2008-12-14,

    2009-07-07.

    the National Science Foundation for Post Doctoral Scientists of China (20070411124), Scientific and Technological Key Project of Shaanxi Province (2006k07-G19), and Industrialization Project of Shaanxi Provincial Department of Education (06JC11).

    ** To whom correspondence should be addressed. E-mail: zhuannianliu@163.com

    午夜亚洲福利在线播放| 国产精品,欧美在线| 国内少妇人妻偷人精品xxx网站| 精品一区二区三区视频在线观看免费| 亚洲av二区三区四区| 99久久九九国产精品国产免费| 亚洲成人av在线免费| 插逼视频在线观看| 成年女人看的毛片在线观看| 插逼视频在线观看| 亚洲第一区二区三区不卡| 变态另类成人亚洲欧美熟女| 99久久九九国产精品国产免费| 亚洲国产精品合色在线| 国产老妇女一区| 亚洲专区国产一区二区| 国产高清不卡午夜福利| 一级黄色大片毛片| 欧美日韩综合久久久久久| 亚洲人成网站在线播放欧美日韩| 国产熟女欧美一区二区| 中文亚洲av片在线观看爽| av.在线天堂| 不卡一级毛片| 身体一侧抽搐| 欧美区成人在线视频| 欧美区成人在线视频| 悠悠久久av| 1000部很黄的大片| 九九在线视频观看精品| 国产亚洲精品久久久久久毛片| 全区人妻精品视频| 成年女人看的毛片在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国产色爽女视频免费观看| 免费黄网站久久成人精品| 国产乱人偷精品视频| av在线老鸭窝| 精品一区二区三区av网在线观看| 久久久精品大字幕| 成人一区二区视频在线观看| 国产精品人妻久久久久久| av在线亚洲专区| 亚洲国产精品合色在线| 女同久久另类99精品国产91| 欧美日韩一区二区视频在线观看视频在线 | www.色视频.com| 91麻豆精品激情在线观看国产| 国产私拍福利视频在线观看| 日本精品一区二区三区蜜桃| 国产av不卡久久| 免费高清视频大片| 长腿黑丝高跟| 国产精品日韩av在线免费观看| 亚洲无线在线观看| 午夜亚洲福利在线播放| 最后的刺客免费高清国语| 99riav亚洲国产免费| 久久九九热精品免费| 麻豆成人午夜福利视频| 国产麻豆成人av免费视频| 热99re8久久精品国产| 久久人人爽人人片av| 日本黄色片子视频| 高清毛片免费看| 午夜久久久久精精品| 亚洲av成人精品一区久久| 日本一本二区三区精品| 亚洲丝袜综合中文字幕| 中文资源天堂在线| 婷婷亚洲欧美| 亚洲第一区二区三区不卡| 又粗又爽又猛毛片免费看| 国产人妻一区二区三区在| 一级毛片我不卡| 国产成人aa在线观看| 欧美成人精品欧美一级黄| 久久精品国产亚洲av天美| 美女被艹到高潮喷水动态| 国产精品亚洲美女久久久| 亚洲色图av天堂| 免费在线观看影片大全网站| 日本五十路高清| 午夜a级毛片| 亚州av有码| 亚洲性夜色夜夜综合| 国产高清有码在线观看视频| 男人的好看免费观看在线视频| 精品一区二区三区视频在线| 色视频www国产| 99久久成人亚洲精品观看| 看黄色毛片网站| 黄色日韩在线| 91久久精品电影网| 久久久午夜欧美精品| 欧美日韩精品成人综合77777| 国产精品av视频在线免费观看| 亚洲精品色激情综合| 欧美一区二区国产精品久久精品| 国产高清有码在线观看视频| 日本一二三区视频观看| 欧美xxxx性猛交bbbb| 亚洲国产精品久久男人天堂| 99精品在免费线老司机午夜| 国产精品乱码一区二三区的特点| 永久网站在线| 欧美日韩在线观看h| 亚洲av.av天堂| 观看美女的网站| 成人av在线播放网站| 欧美高清性xxxxhd video| 日日摸夜夜添夜夜添小说| 亚洲欧美日韩东京热| 国产女主播在线喷水免费视频网站 | 91在线观看av| 亚洲精品一卡2卡三卡4卡5卡| 两个人的视频大全免费| 少妇被粗大猛烈的视频| 变态另类丝袜制服| 国产精品久久久久久av不卡| 国产黄色视频一区二区在线观看 | 国产精品久久久久久精品电影| 久久精品综合一区二区三区| av卡一久久| 国产中年淑女户外野战色| 尤物成人国产欧美一区二区三区| 欧美最黄视频在线播放免费| 国产毛片a区久久久久| 此物有八面人人有两片| 搡女人真爽免费视频火全软件 | 亚洲国产精品成人久久小说 | 亚洲国产精品久久男人天堂| 亚洲人成网站在线观看播放| 波野结衣二区三区在线| 不卡视频在线观看欧美| 亚洲第一电影网av| 卡戴珊不雅视频在线播放| 大型黄色视频在线免费观看| 亚洲精品456在线播放app| 噜噜噜噜噜久久久久久91| 国产三级中文精品| av天堂在线播放| 天堂动漫精品| 成人午夜高清在线视频| 99在线视频只有这里精品首页| 校园春色视频在线观看| 波多野结衣巨乳人妻| 三级男女做爰猛烈吃奶摸视频| 此物有八面人人有两片| 国产精品,欧美在线| 欧美日韩乱码在线| 成人av在线播放网站| 日本三级黄在线观看| 国产午夜精品论理片| 亚洲人成网站在线播放欧美日韩| 国产精品无大码| 99在线人妻在线中文字幕| 97热精品久久久久久| 午夜激情福利司机影院| av黄色大香蕉| 国产伦精品一区二区三区四那| 亚洲色图av天堂| 国产av在哪里看| 亚洲熟妇中文字幕五十中出| 69av精品久久久久久| 国产精品美女特级片免费视频播放器| 99久久成人亚洲精品观看| 两性午夜刺激爽爽歪歪视频在线观看| 人妻夜夜爽99麻豆av| 婷婷六月久久综合丁香| 校园人妻丝袜中文字幕| 欧美xxxx性猛交bbbb| 午夜久久久久精精品| 日本熟妇午夜| 欧美+亚洲+日韩+国产| 日日撸夜夜添| 桃色一区二区三区在线观看| 国产91av在线免费观看| 日日摸夜夜添夜夜添小说| 女同久久另类99精品国产91| 亚洲精品日韩av片在线观看| 97在线视频观看| 日本一二三区视频观看| 午夜福利成人在线免费观看| 久久久久免费精品人妻一区二区| 麻豆久久精品国产亚洲av| 午夜a级毛片| 日韩av在线大香蕉| 夜夜夜夜夜久久久久| 亚洲欧美日韩高清在线视频| 国产成人一区二区在线| 日本免费一区二区三区高清不卡| 99热网站在线观看| av在线天堂中文字幕| 在现免费观看毛片| 中文字幕免费在线视频6| 日韩成人伦理影院| 99久久久亚洲精品蜜臀av| 亚洲美女视频黄频| 乱人视频在线观看| 午夜爱爱视频在线播放| 又黄又爽又刺激的免费视频.| 看十八女毛片水多多多| 美女大奶头视频| 激情 狠狠 欧美| 国产精品美女特级片免费视频播放器| 中文字幕人妻熟人妻熟丝袜美| 色综合色国产| 国产真实伦视频高清在线观看| 狂野欧美激情性xxxx在线观看| 午夜免费激情av| 日本在线视频免费播放| 看免费成人av毛片| 色综合站精品国产| 国产精品精品国产色婷婷| 国产成人aa在线观看| 99热这里只有是精品50| 三级经典国产精品| 国产精品福利在线免费观看| 麻豆国产97在线/欧美| 国产亚洲精品久久久com| 久久久久久久久久久丰满| 久久精品国产亚洲av涩爱 | 亚洲一区二区三区色噜噜| 久久久成人免费电影| 精品免费久久久久久久清纯| a级毛色黄片| 尾随美女入室| 亚洲精品日韩在线中文字幕 | 久久久久久久午夜电影| 午夜精品在线福利| 一本精品99久久精品77| 久久久久国产精品人妻aⅴ院| 自拍偷自拍亚洲精品老妇| 欧美性猛交黑人性爽| 好男人在线观看高清免费视频| 欧美国产日韩亚洲一区| 婷婷亚洲欧美| 男女下面进入的视频免费午夜| 嫩草影院新地址| 国产视频内射| 看片在线看免费视频| 日本-黄色视频高清免费观看| 99热网站在线观看| 一级毛片我不卡| 乱码一卡2卡4卡精品| 国产高清不卡午夜福利| 成人国产麻豆网| 卡戴珊不雅视频在线播放| 欧美极品一区二区三区四区| 亚洲欧美日韩东京热| av国产免费在线观看| 亚洲欧美日韩卡通动漫| 成人二区视频| 伦精品一区二区三区| 免费看a级黄色片| 国产精品爽爽va在线观看网站| 亚洲人与动物交配视频| 成人综合一区亚洲| 12—13女人毛片做爰片一| 国产亚洲91精品色在线| 午夜精品在线福利| 99热这里只有是精品50| av.在线天堂| 亚州av有码| 久久久色成人| 国产aⅴ精品一区二区三区波| 国产精品亚洲一级av第二区| 国产精品久久久久久精品电影| 嫩草影院入口| 国产久久久一区二区三区| 亚洲成人av在线免费| 香蕉av资源在线| 欧美xxxx黑人xx丫x性爽| 欧美成人精品欧美一级黄| 黄色日韩在线| www.色视频.com| 18禁裸乳无遮挡免费网站照片| 国产久久久一区二区三区| av福利片在线观看| 国产高清激情床上av| 欧美zozozo另类| 欧美高清性xxxxhd video| 欧美激情久久久久久爽电影| 人人妻人人澡欧美一区二区| 久久久久久大精品| 在线看三级毛片| 人人妻人人看人人澡| 日韩精品青青久久久久久| 偷拍熟女少妇极品色| 国产v大片淫在线免费观看| 国内精品一区二区在线观看| 国产一区二区在线观看日韩| 69人妻影院| 成年女人毛片免费观看观看9| 国产成人freesex在线 | 欧美xxxx性猛交bbbb| 观看免费一级毛片| 亚洲电影在线观看av| 男女边吃奶边做爰视频| 狂野欧美白嫩少妇大欣赏| 免费av观看视频| 色在线成人网| 69av精品久久久久久| 午夜精品国产一区二区电影 | 麻豆国产97在线/欧美| 午夜爱爱视频在线播放| 中文字幕av在线有码专区| av天堂在线播放| 嫩草影院新地址| 国产精品永久免费网站| 婷婷精品国产亚洲av| 久久99热这里只有精品18| 禁无遮挡网站| 国产av麻豆久久久久久久| 日本免费一区二区三区高清不卡| 狂野欧美激情性xxxx在线观看| 美女高潮的动态| 少妇高潮的动态图| 久久中文看片网| 久久午夜亚洲精品久久| 一级毛片aaaaaa免费看小| 嫩草影视91久久| 免费大片18禁| 久久草成人影院| .国产精品久久| 深夜精品福利| 人妻少妇偷人精品九色| 成人永久免费在线观看视频| 亚洲成人中文字幕在线播放| 欧美成人一区二区免费高清观看| 久久精品国产亚洲av天美| 午夜福利在线观看免费完整高清在 | 精品熟女少妇av免费看| 国产精品国产三级国产av玫瑰| 亚洲国产精品成人久久小说 | 日日摸夜夜添夜夜添av毛片| 深夜a级毛片| 久久午夜福利片| 欧美一级a爱片免费观看看| 精品人妻偷拍中文字幕| 日韩成人av中文字幕在线观看 | 成人国产麻豆网| 给我免费播放毛片高清在线观看| 亚洲三级黄色毛片| 99国产极品粉嫩在线观看| 日本a在线网址| 久久久a久久爽久久v久久| 成人特级黄色片久久久久久久| 久久精品综合一区二区三区| 久久99热6这里只有精品| .国产精品久久| 亚洲18禁久久av| 欧美色欧美亚洲另类二区| 网址你懂的国产日韩在线| 国产精品人妻久久久影院| 亚洲成人久久爱视频| 伊人久久精品亚洲午夜| 香蕉av资源在线| 午夜激情福利司机影院| 成人高潮视频无遮挡免费网站| 国产私拍福利视频在线观看| 能在线免费观看的黄片| 久久亚洲国产成人精品v| 国产高清激情床上av| 国产淫片久久久久久久久| 97超碰精品成人国产| www日本黄色视频网| 亚洲精品国产av成人精品 | 99久久精品热视频| 在线免费十八禁| 国产精品不卡视频一区二区| 成人国产麻豆网| 麻豆国产av国片精品| av在线亚洲专区| 久久这里只有精品中国| 麻豆国产av国片精品| 欧美+日韩+精品| 色吧在线观看| 国产精品一二三区在线看| h日本视频在线播放| 亚洲自偷自拍三级| 成人鲁丝片一二三区免费| av福利片在线观看| 97在线视频观看| 欧洲精品卡2卡3卡4卡5卡区| 一区二区三区高清视频在线| 乱人视频在线观看| 国产精品一区二区免费欧美| 波多野结衣高清无吗| 搡老妇女老女人老熟妇| 人妻丰满熟妇av一区二区三区| 午夜影院日韩av| 国产成人影院久久av| 看黄色毛片网站| 亚洲欧美成人综合另类久久久 | 亚洲欧美精品自产自拍| 中文字幕熟女人妻在线| 国产av一区在线观看免费| 日日啪夜夜撸| 日韩高清综合在线| 久久久久久久久中文| 91麻豆精品激情在线观看国产| 一级黄片播放器| 亚洲专区国产一区二区| АⅤ资源中文在线天堂| 欧美成人精品欧美一级黄| 三级国产精品欧美在线观看| 日韩成人av中文字幕在线观看 | 免费不卡的大黄色大毛片视频在线观看 | 97在线视频观看| 亚洲av电影不卡..在线观看| 亚洲中文字幕日韩| 亚洲最大成人av| 国产在视频线在精品| 人人妻人人澡欧美一区二区| 日本一二三区视频观看| 欧美+日韩+精品| 国产男人的电影天堂91| 欧美中文日本在线观看视频| 国产精品久久久久久久电影| 我要看日韩黄色一级片| 中文在线观看免费www的网站| 无遮挡黄片免费观看| 春色校园在线视频观看| 成人永久免费在线观看视频| 91麻豆精品激情在线观看国产| 在线看三级毛片| 日本黄色视频三级网站网址| 在线观看美女被高潮喷水网站| 国产精品永久免费网站| 亚洲精品一区av在线观看| 免费搜索国产男女视频| 午夜视频国产福利| 久久婷婷人人爽人人干人人爱| 国产精品一区www在线观看| av天堂中文字幕网| 18禁在线播放成人免费| 国产又黄又爽又无遮挡在线| 无遮挡黄片免费观看| 1024手机看黄色片| 日韩精品中文字幕看吧| 久久精品综合一区二区三区| 别揉我奶头 嗯啊视频| 婷婷精品国产亚洲av在线| 日本一二三区视频观看| 熟妇人妻久久中文字幕3abv| 免费高清视频大片| 亚洲图色成人| 国产av在哪里看| 日产精品乱码卡一卡2卡三| 女生性感内裤真人,穿戴方法视频| 久久久久久久午夜电影| 高清日韩中文字幕在线| 伦理电影大哥的女人| 久久人人精品亚洲av| 久久久久久伊人网av| 国产淫片久久久久久久久| 亚洲欧美日韩东京热| 搡老岳熟女国产| 日韩亚洲欧美综合| 免费看光身美女| 国产蜜桃级精品一区二区三区| 国产精华一区二区三区| 在线国产一区二区在线| 少妇丰满av| 1024手机看黄色片| 欧美激情久久久久久爽电影| 少妇的逼好多水| 老司机福利观看| 国产爱豆传媒在线观看| 亚洲国产精品成人综合色| a级一级毛片免费在线观看| 久久这里只有精品中国| 狂野欧美白嫩少妇大欣赏| 国产精品国产高清国产av| 精品久久国产蜜桃| 色尼玛亚洲综合影院| 日本五十路高清| 欧美成人a在线观看| 国产精品不卡视频一区二区| 在线免费观看的www视频| 老司机午夜福利在线观看视频| 1000部很黄的大片| 欧美激情在线99| 久久久久久久久中文| 日日撸夜夜添| 性欧美人与动物交配| 麻豆久久精品国产亚洲av| av视频在线观看入口| 麻豆一二三区av精品| 香蕉av资源在线| 久久精品国产99精品国产亚洲性色| 人妻夜夜爽99麻豆av| 美女内射精品一级片tv| av在线亚洲专区| 久久精品影院6| 亚洲国产精品国产精品| 日本与韩国留学比较| 最近在线观看免费完整版| 国产黄片美女视频| 欧美一区二区亚洲| 又黄又爽又刺激的免费视频.| 91av网一区二区| 国产男靠女视频免费网站| 美女cb高潮喷水在线观看| 少妇熟女aⅴ在线视频| 我要看日韩黄色一级片| 精品久久久久久久久久免费视频| 久久精品夜夜夜夜夜久久蜜豆| 久久久久性生活片| 国产爱豆传媒在线观看| 国内精品宾馆在线| .国产精品久久| 天美传媒精品一区二区| 淫妇啪啪啪对白视频| 悠悠久久av| av在线播放精品| 赤兔流量卡办理| 日本精品一区二区三区蜜桃| 亚洲国产精品久久男人天堂| 日韩欧美精品v在线| 午夜激情欧美在线| av在线蜜桃| 亚洲va在线va天堂va国产| 日韩精品中文字幕看吧| 亚洲性夜色夜夜综合| 一级毛片aaaaaa免费看小| 久久中文看片网| 亚洲人成网站在线播| 午夜影院日韩av| 狂野欧美白嫩少妇大欣赏| 12—13女人毛片做爰片一| 最后的刺客免费高清国语| 看十八女毛片水多多多| 午夜亚洲福利在线播放| 97超碰精品成人国产| 国产精品三级大全| 国产探花在线观看一区二区| 亚洲av.av天堂| 高清毛片免费看| 精品久久久久久久久亚洲| 色视频www国产| 欧美+亚洲+日韩+国产| 亚洲国产精品成人久久小说 | 精品一区二区免费观看| 老司机福利观看| 搡老岳熟女国产| 啦啦啦啦在线视频资源| 蜜臀久久99精品久久宅男| 亚洲国产精品成人久久小说 | 国产高潮美女av| 久久久久国内视频| 亚洲人成网站在线观看播放| 亚洲精品日韩在线中文字幕 | 国产片特级美女逼逼视频| av.在线天堂| 成人无遮挡网站| 一个人看的www免费观看视频| 一夜夜www| 欧美人与善性xxx| 一个人免费在线观看电影| 搡老熟女国产l中国老女人| 乱人视频在线观看| a级一级毛片免费在线观看| АⅤ资源中文在线天堂| 亚洲在线自拍视频| 国产精品一及| 最近最新中文字幕大全电影3| 少妇丰满av| 日本三级黄在线观看| www.色视频.com| 中文字幕人妻熟人妻熟丝袜美| 热99在线观看视频| 欧美极品一区二区三区四区| 91av网一区二区| 欧美成人免费av一区二区三区| 国产一区二区三区av在线 | 女人被狂操c到高潮| 国产一区二区三区av在线 | 免费黄网站久久成人精品| 婷婷色综合大香蕉| 如何舔出高潮| 欧美日韩精品成人综合77777| 成人二区视频| 亚洲国产精品sss在线观看| 国产69精品久久久久777片| 亚洲自拍偷在线| 干丝袜人妻中文字幕| 国产一区二区三区av在线 | 人妻久久中文字幕网| 久久国产乱子免费精品| 久久精品国产99精品国产亚洲性色| 久久人人精品亚洲av| 又爽又黄无遮挡网站| 亚洲美女黄片视频| 成年免费大片在线观看| 午夜福利在线在线| 久久人人爽人人片av| 婷婷精品国产亚洲av在线| 韩国av在线不卡| 国产三级在线视频| 亚洲一区高清亚洲精品| 日韩欧美精品v在线| 色av中文字幕| 精品国产三级普通话版| 日韩欧美国产在线观看| 我的女老师完整版在线观看| 国产aⅴ精品一区二区三区波| 99热只有精品国产| 精品久久久噜噜| 天堂√8在线中文| 99精品在免费线老司机午夜| 国产成人福利小说| 亚洲av中文字字幕乱码综合|