• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Temperature on the Preparation of Magnesium Carbonate Hydrates by Reaction of MgCl2 with Na2CO3*

    2009-05-14 12:34:50CHENGWenting程文婷LIZhibao李志寶andGeorgeDemopoulos
    關鍵詞:程文

    CHENG Wenting (程文婷), LI Zhibao (李志寶),** and George P. Demopoulos

    ?

    Effects of Temperature on the Preparation of Magnesium Carbonate Hydrates by Reaction of MgCl2with Na2CO3*

    CHENG Wenting (程文婷)1, LI Zhibao (李志寶)1,**and George P. Demopoulos2

    1Key Laboratory of Green Process and Engineering, Institute of Process Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Chinese Academy of Sciences, Beijing 100190, China2Department of Mining, Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada

    Homogeneous (unseeded) precipitation of magnesium carbonate hydrates by the reaction of MgCl2with Na2CO3in supersaturated solutions between 273 and 363 K was investigated. The compositions, morphologies and filtration characteristics of the precipitates were studied in detail. The magnesium carbonate hydrates obtained at 313 K and in the range of 343-363 K showed good morphologies and filtration characteristics. Magnesium oxides (MgO) with high purity (97.6%-99.4%) were obtained by calcining magnesium carbonate hydrates at 1073 K.

    homogeneous precipitation, magnesium carbonate hydrates, magnesium oxide, filtration characteristic

    1 INTRODUCTION

    The Qinghai salt lakes are well known for their huge reserves of potassium chloride (KCl) and magnesium chloride (MgCl2) in China [1]. In recent years, potassium fertilizer with 1.1 Mt·a-1has been produced and a large amount of magnesium chloride has been left as the by-product or even waste in salt lakes of Qinghai. This has caused not only the waste of magnesium resources, but also the environmental pollution [2]. Therefore, it is imperative to develop an effective utilization of MgCl2by extraction of magnesium from brine. Magnesium is recovered from seawater and brines on a large scale worldwide by the precipitation of its compounds [3]. In these processes, it is necessary to select proper temperatures and target precipitates that have excellent filtration characteristics.

    Solid magnesium carbonate hydrates can exist in several modifications. Some of the compounds are widely used because of their technological importance in various industrial applications [4, 5]. A large number of chemical methods have been developed to generate various morphologies of them. For example, Kloprogge. [6] fabricated two different morphologies of MgCO3·3H2O, a conglomerate consisted of very thin sheetlets and a well-formed needle, at 298 K. Mitsuhashi. [7] developed a procedure to generate needle-like MgCO3·3H2O and microtube Mg5(CO3)4(OH)2·4H2O by the carbonation of an aqueous suspension of magnesium hydroxide with carbon dioxide in the temperature range between 308 and 343 K. Wang. [8] prepared needle-like MgCO3·3H2O by the reaction of MgCl2with (NH4)2CO3in supersaturated solutions. More recently, ATR-FTIR and Raman spectroscopy were employed to monitor the precipitation by mixing Na2CO3solutions in equilibrium with a CO2atmosphere with MgCl2solutions, and MgCO3was obtained in autoclave [9]. It seems that the investigations in the effect of temperature in a wide range on the morphology, size and characteristic of magnesium carbonate hydrates are very limited.

    In this study, homogeneous (unseeded) precipitation by the reaction of MgCl2with Na2CO3in supersaturated solutions is investigated in the range of 273-363 K. The temperatures are chosen in such a way that it favors the operation and energy saving. The composition, morphology and filtration characteristics of the obtained magnesium carbonate hydrates are studied in detail. The aim of the present work is to select proper temperatures and target precipitates with excellent filtration characteristics for extracting magnesium from the brine, and prepare magnesium carbonate hydrates and magnesium oxide with high purity.

    2 EXPERIMENTAL

    2.1 Materials

    All chemical reagents, MgCl2·6H2O, Na2CO3and KCl, used in the experiments were analytical grade without further purification. The water used in all experimental work for solution preparation, dilution, crystal washing,. was double distilled water (conductivity<0.1 μS·cm-1).

    2.2 Experimental procedures

    2.2.1

    The experiments were performed in a 1-liter double-jacketed glass reactor connected with a water circulator as shown in Fig. 1. A standard volume (400 ml) of MgCl2(0.5 mol·L-1) located in the reactor was brought to a desired temperature with the aid of the circular water. Upon attainment of the temperature, addition of Na2CO3solution (400 ml, 0.5 mol·L-1) was started with simultaneous initiation of stirring at 300 r·min-1and the addition speed was 3 ml·min-1. When the addition procedure was completed, stirring continued for 2 h.

    At the end of each cycle the slurry was divided into two parts. One part was filtered and then washed with distilled water for 3 times, to remove any possible ionic remnants, and finally dried in an oven at 323 K for 10 h. A small sample from the dried magnesium carbonate hydrates was subjected to solid analysis. The other part was used for the measurement of filtration characteristics. A small sample from the slurry was used to determine the particle size distribution.

    Figure 1 Experimental setup used in the precipitation process 1—reactor; 2—circular water; 3—thermometer; 4—pH meter; 5—motor-drive; 6—2-blade radial impeller; 7—4 baffles; 8—burette

    2.2.2

    Magnesium oxide (MgO) is an important material for its wide applications in catalyst, toxic waste remediation, refractory material, superconductor products [10], and so on. Many techniques have been established to prepare MgO in various forms, including chemical-vapor-deposition [11], sol-gel processing [12],. However, MgO can be obtained more easily by calcinating their corresponding precursors (magnesium carbonate hydrates) in muffle stove at 1073 K for 4 h [13, 14]. We prepared MgO samples in this way.

    2.2.3

    Filtration characteristic of the precipitate was measured immediately after the crystallization to avoid any change of properties due to the change of temperature. The filtration was carried out using a press filter under 80 kPa and three pieces of filter paper (10-20mm) of 9 cm diameter. A certain volume (100 ml) slurry was placed in the filter and sealed tightly immediately. Upon bringing the pressure to 80 kPa in the filter and the liquid discharging, the timer started. When the flow of the liquid stopped, the filtration time was recorded.

    2.2.4Measurement of the uptake of K and Na in magnesium carbonate hydrates

    The uptake of K+and Na+in magnesium carbonate hydrates was investigated by the reaction in a mixture of 98% MgCl2and 2% KCl (the total volume was 400 ml, and the total concentration was 0.5 mol·L-1) and Na2CO3(400 ml, 0.5 mol·L-1) at 313 K and 353 K. After the slurry was finally dried in an oven at 323 K for 10 h, a sample from the dried magnesium carbonate hydrates was subjected to solid analysis.

    2.3 Characterization

    The structure and morphology of the synthesized samples were examined using X-ray powder diffraction and scanning electron microscopy. X-ray powder diffraction (XRD, X’Pert PRO MPD, PANalytical, Netherlands) patterns were recorded on a diffractometer (using Cu Kαradiation) operating at 40 kV/30 mA. A scanning rate of 0.02(°)·s-1was applied to record the patterns in the 2angle range from 5° to 90°. The morphology and particle size of the samples were examined by a scanning electron microscopy (SEM, JEOL-JSM-6700F). Particle size distribution was examined by a laser diffraction particle size analyzer (LS-13-320). The uptake of K+and Na+was examined by a flam photometer (FP640). The concentration of magnesium ion in the solution was determined by titration method using standard EDTA solution.

    3 RESULTS AND DISCUSSION

    3.1 XRD observation

    It is generally recognized that the properties of crystals are profoundly influenced by the temperature during their preparation, and at higher temperatures crystal growth occurs with a corresponding change in the properties [15]. The magnesium carbonate solids in an equilibrium solution may transform to other phases at different temperatures [16]. For example, MgCO3·3H2O will easily change to Mg5(CO3)4(OH)2·4H2O at 333K [8]. In this investigation the compositions of magnesium carbonate hydrates prepared between 273 and 363 K were measured by means of X-rays.

    At lower temperature (273-313K), all peaks in the XRD pattern of the sample are in good agreement with the MgCO3·3H2O reference data [17] (JCPDS 70-1433, a-d in Fig. 2). It is evident from Figs. 3 and 4 that 323 K results in the formation of Mg5(CO3)4(OH)2·5H2O, while 333-363 K leads to the formation of hydromagnesite [Mg5(CO3)4(OH)2·4H2O].

    Figure 2 Influence of temperature on XRD pattern of precipitates (a) 273 K; (b) 283 K; (c) 293 K; (d) 303 K; (e) 313 K

    Figure 3 XRD pattern of precipitate at 323K

    Figure 4 Influence of temperature on XRD pattern of precipitates (a) 333 K; (b) 343 K; (c) 353 K; (d) 363 K

    Figure 5 displays the typical XRD pattern of the MgO samples. The diffraction peaks of (111), (200), (220), (331) and (222) are in good agreement with the values in the literature (JCPDS 87-0651). No peaks for other impurities are observed, indicating that the MgO samples are of high purity.

    Figure 5 XRD patterns of MgO by calcination of corresponding precursors prepared at different temperatures (a) 273 K; (b) 283 K; (c) 293 K; (d) 303 K; (e) 313 K; (f) 323 K; (g) 333 K; (h) 343 K; (i) 353 K; (j) 363 K

    3.2 Effect of reaction temperature on morphology

    By carefully adjusting the reaction parameters precipitates can be produced with either the well-formed, relatively large crystallites or, at the other extreme, amorphous or even gel-like products [18]. Therefore, it is important to investigate the effect of reaction temperature on the size and morphology of magnesium carbonate hydrates prepared.

    Figure 6 provides a set of typical SEM images corresponding to the magnesium carbonate hydrates prepared at different temperatures. These morphologies are drastically changed with the variation of reaction temperature. At 273 K, the sample exhibits poor morphology and the surface is covered by many small grain-like crystals [Figs. 6 (a) and (b)]. In the temperature range from 283 to 313 K, needle-like particles are produced and the sizes vary with the reaction temperature [Figs. 6 (c)-(f)]. In the range of 283-293 K, the sizes are non-uniform, the length is in the range of 5-20mm and the axis diameter is in the range of 4-6mm. With the increase of reaction temperature to 303 K, the axis diameter of some particles decreases to 1-2mm. However, further increasing the temperature to 313 K, the length and the axis diameter increase slightly, to 30-50mm, and 3-6mm, respectively. The reason may be that at lower reaction temperature (such as 273-293 K), the nuclei has a lower diffusion rate due to the higher viscosity of initial solution, which greatly hinders their coalescence and self-assembly into needle-like particles. As a result, the growth rate of the nuclei is higher than the nucleation rate, and the particle grows to a larger one. With the increase of temperature (such as 303 K), the viscosity of the solution gradually decreases, which accelerates the collision rate of the nuclei. A higher collision rate brings about more nucleated particles, so it is prone to produce smaller particles. When the temperature reaches 313 K, the higher collision rate may also contribute to an increase in the probability of coalescence, and the particle size increases slightly [19].

    Figure 6 Typical SEM morphologies for the particles of magnesium carbonate hydrates prepared at different temperatures [(b), (d), (f), (h) and (j) are the magnification image of (a), (c), (e), (g) and (i), respectively]

    Figure 7 Typical SEM morphologies for the particles of magnesium carbonate hydrates prepared at different temperatures [(b), (d), (f), (h) and (j) are the magnification image of (a), (c), (e), (g) and (i), respectively]

    The needle-like particles shown in Fig. 6 indicate that the surface structures of crystals change with the reaction temperature. The surface of the needle-like particles obtained at lower temperature (283 K) is covered by some small rod-like particles. At the reaction temperature of 293 and 303 K, the surfaces are still covered by small lamellar shape crystals. However, the needle-like particles exhibit smooth surfaces at 313 K.

    At the temperature range of 323 to 363 K, the morphologies of the particles change greatly. As can be seen in Figs. 7 (a)-(d), the needle-like particles transform to micro-tubes and consist of many sheet-like particles at 323 K, while they transfer to amorphous at 333 K. Above 343 K, the irregular spherical particles are obtained [Figs. 7 (e)-(j)]. They consist of rosette-like microstructure of irregular- shaped pores with crystalline walls interconnecting to each other. The disperse degree and average size of the spherical particles increase with reaction temperature. It is well known that the morphologies of crystals are determined by the anisotropy of growth rates in different crystallographic directions [20]. Various surface structures in Figs. 6 and 7 illustrate that the reaction temperature has a significant influence on the anisotropy of growth rates, so the particles display different macroscopic shapes with the variation of reaction temperature.

    3.3 Effect of reaction temperature on the filtration characteristics

    Solid-liquid separation by precipitates (crystal, coagulation and flocculation) is an important part in many technical processes [21]. The filtration technique is the most common process used in solid-liquid slurries or mixtures. In this study, the solid and liquid are separated by filtration. The method is stated in Section 2.2.3. For this process to be successful the magnesium carbonate hydrates should have good filtration properties to facilitate removal of the mother liquor.

    It is well know that the forms and properties of particles are closely related. When the form of particle changes, the properties are also altered even for the same substance [22]. Therefore, it is important to measure the filtration characteristics of magnesium carbonate hydrates obtained at different temperatures.

    Figure 8 displays the filtration time of the precipitates obtained in the range of 273-363 K. It is found that the filtration characteristics of crystals are dependent on their size and surface smoothness. It is easier to filter larger crystals than small ones and to filter smooth crystals than coarse ones. At lower temperature (273 K), the slurry is very thick and adheres to the reactor wall. It is more difficult to filter the samples of this slurry although the crystal size is large. From 273 to 283 K, the filtration time has a drastic decrease. The reason is that the transformation of crystal from poor morphology to needle-like one reduces the filtration resistance. In the range of 283-303 K, the sizes of crystals are non-uniform and the surfaces are rough, so that the filtration characteristics of crystals are still not good though the crystals are needle-like. However, at 313 K, the crystal has its well-defined needle-like structure (large size and smooth surface) and the filtration is satisfactory.

    At 323 and 333 K, the slurries become a little sluggish and difficult to filter. Crystals with micro-tube or amorphous morphologies exhibit bad filtration characteristics. Above 343 K, the filtration time is short and decreases with the increase of crystal size. This indicates that crystals present as spherical particles also have good filtration characteristics.

    Temperature has an important influence on the size and morphology of crystals, and it indirectly affects the filtration characteristics of the crystal. Compared of Fig. 8 with Figs. 6 and 7, it can be found that crystals with good morphologies and regular size distribution exhibit good filtration characteristics. It suggests that magnesium carbonate hydrates prepared at 313 K and in the range of 343-363 K are well suited to filtration.

    Figure 8 Influence of reaction temperature on the filtration time of magnesium carbonate hydrates

    3.4 Purity of MgO

    A certain mount of MgO sample is dissolved in slightly excessive hydrochloric acid of low concentration. The concentration of magnesium ion in the solution is determined by titration method using standard EDTA solution. Table 1 provides the purity of MgO by calcination of the corresponding magnesium carbonate hydrates precursors obtained at different reaction temperatures. The purities of MgO are high.

    Table 1 The purities of MgO samples prepared at different reaction temperatures

    Table 2 Uptake of K+ and Na+ in magnesium carbonate hydrates

    3.5 Uptake of impurities (K+ and Na+) in magnesium carbonate hydrates

    Extraction of magnesium from the brine relies upon the physical difference between the magnesium carbonate hydrates and the impurities to facilitate separation. However, when the impurity is bound into the structure of the magnesium carbonate hydrates crystal, such as K+existed in the brine and Na+imputed to the precipitate Na2CO3, the separation can only be achieved by chemical means. Therefore, it is necessary to investigate the uptake of impurities in magnesium carbonate hydrates.

    Table 2 provides the content of K+(based on 100 g magnesium carbonate hydrates) and Na+(based on 100 g magnesium carbonate hydrates) in the magnesium carbonate hydrates prepared at 313 K and 353 K. The uptake of K+and Na+by magnesium carbonate hydrates is slight and can be neglected. Obviously, the ionic impurities can be removed from the magnesium carbonate hydrates by washing with distilled water without further disposal.

    4 CONCLUSIONS

    Magnesium carbonate hydrates were prepared usinghomogeneous precipitation process at different reaction temperatures. In the range of 273-313K, nesquehonite (MgCO3·3H2O) with needle-like morphology was obtained. Mg5(CO3)4(OH)2·5H2O was formed at 323 K, while hydromagnesite [Mg5(CO3)4(OH)2·4H2O] was formed over the range of 333-363 K. The morphology of the magnesium carbonate hydrates changed from micro-tube to amorphous, and eventually to spherical-like particles with the increase of reaction temperature. The magnesium carbonate hydrates obtained at 313 K and in the range of 343-363 K showed good morphologies and filtration characteristics. The ionic impurities (K+and Na+) could be removed from the magnesium carbonate hydrates by washing with distilled water without further disposal and their uptake in magnesium carbonate hydrates could be neglected. MgO with high purity was obtained by calcining magnesium carbonate hydrates at 1073 K.

    It seems that 313 K and 343-363 K were the appropriate reaction temperatures for extracting magnesium from brine. By the method in this study, magnesium can be effectively extracted from the brine for utilization of MgCl2, and magnesium carbonate hydrates with various morphologies and magnesium oxide with high purity are produced.

    1 Zhang, P.X., Zhang, B.Z., Tang, Y., Yang, C.D., Huang, S.Q., Wu, J.Q., Saline Lake Resources of China and Its Exploitation, Science Press, Beijing, 99-107 (1999). (in Chinese)

    2 Ma, P., “Comprehensive utilization of salt lake resources”,..., 15, 365-375 (2000).

    3 Mullin, J.W., Crystallization, 4th edition, Butterworth-Heinemann, Woburn, MA (2001).

    4 Freitag, F., Kleinebudde, P., “How do roll compaction/dry granulation affect the tableting behaviour of inorganic materials? Comparison of four magnesium carbonates”,...., 19, 281-289 (2003).

    5 Botha, A., Strydom, C.A., “Preparation of a magnesium hydroxy carbonate from magnesium hydroxide”,, 62, 175-183 (2001).

    6 Kloprogge, J.T., Martens, W.N., Nothdurft, L., Duong, L.V., Webb, G.E., “Low temperature synthesis and characterisation of nesquehonite”,...., 22, 825-829 (2003).

    7 Mitsuhashi, K., Tagami, N., Tanabe, K., Ohkubo, T., Sakai, H., Koishi, M., Abe, M., “Synthesis of microtubes with a surface of ‘house of cards’ structureneedlelike particles and control of their pore size”,, 21, 3659-3663 (2005).

    8 Wang, Y., Li, Z.B., Demopoulos, G.P., “Controlled precipitation of nesquehonite by the reaction of MgCl2with (NH4)2CO3at 303 K”,..., 310, 1220-1227 (2007).

    9 Hachen, M., Prigiobbe, V., Baciocchi, R., Mazzotti, M., “Precipitation in the Mg-carbonate system-effects of temperature and CO2pressure”,..., 63, 1012-1028 (2008).

    10 Zhao, Y.N., Zhu, G.C., “Synthesis of MgO microspheres with nanosheets in a mechanical force reactor and its optical property”,..., 142, 93-97 (2007).

    11 Tokita, S., Ohshio, H., Saitoh, H., “Large-area film structure consisted by aggregation of zinc oxide micro-whiskers”,....., 749, 349-354 (2003).

    12 Kordas, G., “Sol-gel preparation of MgO fibers”,..., 10, 1157-1160 (2000).

    13 Lanas, J., Alvarez, J.I., “Dolomitic lime: thermal decomposition of nesquehonite”,.., 421, 123-132 (2004).

    14 Yan, C.L., Xue, D.F., “Novel self-assembled MgO nanosheet and its precursors”,..., 109, 12358-12361 (2005).

    15 Boswell, M.C., Iler, R.K., “Nickel catalysts (I) The effect of the temperature of preparation on the crystal size and composition of nickel oxide”,...., 58, 924-928 (1936).

    16 Li, Z.B., Demopoulos, G.P., “Model-based construction of calcium sulfate phase-transition diagrams in the HCl-CaCl2-H2O system between 0 and 100oC”,...., 45, 4517-4524 (2006).

    17 Giester, G., Lengauer, C.L., Rieck, B., “The crystal structure of nesquehonite, MgCO3·3H2O, from Lavrion, Greece”,.., 70, 153-163 (2000).

    18 Waltion, A.G., The Formation and Properties of Precipitates, Interscience Publishers, New York (1967).

    19 Zhang, Z.P., Zheng, Y.J., Ni, Y.W., Liu, Z.M., Chen, J.P., Liang, X.M., “Temperature- and pH-dependent morphology and FT-IR analysis of magnesium carbonate hydrates”,..., 110, 12969-12973 (2006).

    20 Liang, J.M., Ma, Y., Zheng, Y., Davis, H.T., “Solvent-induced crystal morphology transformation in a ternary soap system: sodium stearate crystalline fibers and platelets”,, 17, 6447-6454 (2001).

    21 Schwarz, S., Jaeger, W., Paulke, B.R., “Cationic flocculants carrying hydrophobic functionalities: Applications for solid/liquid separation”,..., 111, 8649-8654 (2007).

    22 Ohkubo, T., Suzuki, S., Mitsuhashi, K., “Preparation of petaloid microspheres of basic magnesium carbonate”,, 23, 5872-5874 (2007).

    2008-11-28,

    2009-02-28.

    the National Natural Science Foundation of China (20876161) and the National Basic Research Program of China (2007CB613501, 2009CB219904).

    ** To whom correspondence should be addressed. E-mail: zhibaoli@home.ipe.ac.cn

    猜你喜歡
    程文
    為糖屈膝
    為糖屈膝
    《室內空間設計》
    青年文學家(2022年2期)2022-03-17 21:57:14
    為糖屈膝
    湖北工程學院新技術學院教師程文娟作品
    獻給綠化合肥的圓夢者
    安徽園林(2018年3期)2018-10-09 05:36:24
    CRE Solvability,Nonlocal Symmetry and Exact Interaction Solutions of the Fifth-Order Modi fied Korteweg-de Vries Equation?
    男子接連犯罪,只為離婚
    中外文摘(2016年5期)2016-10-21 10:08:14
    “軟男”的奇葩選擇,5次犯罪為離婚
    “軟男”的奇葩選擇,5次犯罪為離婚
    亚洲高清免费不卡视频| 街头女战士在线观看网站| 白带黄色成豆腐渣| 插逼视频在线观看| 精品久久久精品久久久| 欧美最新免费一区二区三区| 91精品伊人久久大香线蕉| 九九在线视频观看精品| 欧美日韩精品成人综合77777| 黄色视频在线播放观看不卡| 国产午夜福利久久久久久| 久久久久九九精品影院| 黄色一级大片看看| 国产精品爽爽va在线观看网站| 欧美人与善性xxx| 日韩欧美精品免费久久| 久久久亚洲精品成人影院| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲一区二区精品| 2018国产大陆天天弄谢| 永久网站在线| 精品亚洲乱码少妇综合久久| 91在线精品国自产拍蜜月| 在线天堂最新版资源| 国产精品麻豆人妻色哟哟久久| 最近的中文字幕免费完整| 亚洲精品国产色婷婷电影| 国产精品一及| 青春草国产在线视频| 一本色道久久久久久精品综合| 老司机影院毛片| 狠狠精品人妻久久久久久综合| 亚洲av福利一区| 在线看a的网站| 国产成人午夜福利电影在线观看| 禁无遮挡网站| av免费观看日本| 精品酒店卫生间| 中文在线观看免费www的网站| 欧美精品国产亚洲| 亚洲av二区三区四区| 精品国产三级普通话版| 国产乱人视频| 毛片一级片免费看久久久久| av.在线天堂| 国产欧美日韩精品一区二区| 成年人午夜在线观看视频| 亚洲国产欧美人成| 少妇丰满av| 亚洲怡红院男人天堂| 国产真实伦视频高清在线观看| 赤兔流量卡办理| 免费黄网站久久成人精品| 欧美成人午夜免费资源| 美女cb高潮喷水在线观看| 好男人视频免费观看在线| 搡老乐熟女国产| 你懂的网址亚洲精品在线观看| 午夜福利视频精品| .国产精品久久| 亚洲精品乱码久久久v下载方式| 啦啦啦中文免费视频观看日本| 亚洲av成人精品一二三区| 日本免费在线观看一区| 国产在线一区二区三区精| 简卡轻食公司| 欧美国产精品一级二级三级 | 久久久久国产网址| 秋霞在线观看毛片| 国内揄拍国产精品人妻在线| 色婷婷久久久亚洲欧美| 日韩精品有码人妻一区| 久久久精品免费免费高清| 免费黄色在线免费观看| 国产精品精品国产色婷婷| 国内揄拍国产精品人妻在线| 亚洲精华国产精华液的使用体验| 在线免费观看不下载黄p国产| 男男h啪啪无遮挡| 国产精品久久久久久av不卡| 97热精品久久久久久| 免费观看无遮挡的男女| 青青草视频在线视频观看| 噜噜噜噜噜久久久久久91| 精品午夜福利在线看| 草草在线视频免费看| 亚洲欧美一区二区三区黑人 | 国产毛片a区久久久久| 亚洲精品成人av观看孕妇| 成人特级av手机在线观看| 交换朋友夫妻互换小说| 成人亚洲精品一区在线观看 | 18禁在线播放成人免费| 欧美精品国产亚洲| 久久精品人妻少妇| 免费看不卡的av| 免费黄网站久久成人精品| 熟妇人妻不卡中文字幕| 热99国产精品久久久久久7| 女人十人毛片免费观看3o分钟| 国产亚洲最大av| 男人狂女人下面高潮的视频| 成人漫画全彩无遮挡| 街头女战士在线观看网站| 国产精品一区二区三区四区免费观看| 97在线人人人人妻| 少妇人妻精品综合一区二区| 日韩成人av中文字幕在线观看| av免费观看日本| 亚洲国产高清在线一区二区三| 国产精品国产av在线观看| 欧美日韩亚洲高清精品| 成人无遮挡网站| 欧美精品人与动牲交sv欧美| 午夜福利在线观看免费完整高清在| 人妻一区二区av| 欧美精品国产亚洲| 国产精品99久久久久久久久| 一级毛片久久久久久久久女| 午夜福利高清视频| 看免费成人av毛片| 一二三四中文在线观看免费高清| 最近中文字幕高清免费大全6| 日韩三级伦理在线观看| 黑人高潮一二区| 欧美成人午夜免费资源| 国产精品久久久久久精品古装| 真实男女啪啪啪动态图| 国产色婷婷99| 麻豆成人午夜福利视频| 国产精品99久久99久久久不卡 | 日本与韩国留学比较| 男女啪啪激烈高潮av片| 亚洲国产高清在线一区二区三| 永久网站在线| 国产高潮美女av| 黄片无遮挡物在线观看| 视频区图区小说| 国产国拍精品亚洲av在线观看| 久久精品久久精品一区二区三区| 一级毛片我不卡| 天堂俺去俺来也www色官网| 女的被弄到高潮叫床怎么办| 三级国产精品片| 亚洲综合精品二区| 欧美成人一区二区免费高清观看| 国产精品一区www在线观看| 欧美高清性xxxxhd video| 成人午夜精彩视频在线观看| 人妻制服诱惑在线中文字幕| 欧美区成人在线视频| 自拍偷自拍亚洲精品老妇| 亚洲一级一片aⅴ在线观看| 亚洲av电影在线观看一区二区三区 | 成人黄色视频免费在线看| 国产精品一及| 亚洲国产欧美人成| 欧美日韩视频精品一区| 美女被艹到高潮喷水动态| 亚洲美女搞黄在线观看| 亚洲国产成人一精品久久久| 国产69精品久久久久777片| 国产91av在线免费观看| 中文字幕免费在线视频6| 麻豆成人午夜福利视频| 男插女下体视频免费在线播放| 欧美日韩国产mv在线观看视频 | 在线看a的网站| 成人毛片60女人毛片免费| 纵有疾风起免费观看全集完整版| 亚洲国产高清在线一区二区三| 人妻夜夜爽99麻豆av| 国产免费一级a男人的天堂| 亚洲欧美一区二区三区黑人 | 99热这里只有是精品50| 国产成人午夜福利电影在线观看| 久久精品国产亚洲av涩爱| 内射极品少妇av片p| 在线播放无遮挡| 欧美区成人在线视频| 91久久精品电影网| 中文天堂在线官网| 国产男女超爽视频在线观看| 国产黄频视频在线观看| 精品国产露脸久久av麻豆| 国产精品国产三级国产专区5o| 麻豆乱淫一区二区| 中文天堂在线官网| 精品人妻熟女av久视频| 欧美少妇被猛烈插入视频| 久久久久久伊人网av| 亚洲av成人精品一二三区| 永久网站在线| 日韩av在线免费看完整版不卡| 人妻夜夜爽99麻豆av| 亚洲欧美一区二区三区黑人 | xxx大片免费视频| 特级一级黄色大片| 99精国产麻豆久久婷婷| 18+在线观看网站| 又爽又黄a免费视频| 亚洲av不卡在线观看| 男人狂女人下面高潮的视频| 天美传媒精品一区二区| 男女边吃奶边做爰视频| 国产成年人精品一区二区| 国产精品秋霞免费鲁丝片| 99热国产这里只有精品6| 久久99精品国语久久久| 人人妻人人爽人人添夜夜欢视频 | 中国国产av一级| 国国产精品蜜臀av免费| 国产精品三级大全| 成人国产av品久久久| 免费黄频网站在线观看国产| 97精品久久久久久久久久精品| 午夜激情福利司机影院| 一级黄片播放器| 日韩一区二区三区影片| 日本黄色片子视频| 欧美成人精品欧美一级黄| 日韩一区二区三区影片| 直男gayav资源| av黄色大香蕉| 老女人水多毛片| 99热这里只有是精品在线观看| 久久精品综合一区二区三区| 国产爱豆传媒在线观看| 少妇的逼水好多| 国产欧美另类精品又又久久亚洲欧美| 国产女主播在线喷水免费视频网站| 尾随美女入室| 国产欧美日韩精品一区二区| 午夜精品一区二区三区免费看| 国产精品一二三区在线看| 91久久精品国产一区二区成人| 一级毛片电影观看| 免费观看在线日韩| 国产男女超爽视频在线观看| 成年版毛片免费区| av天堂中文字幕网| 少妇高潮的动态图| 你懂的网址亚洲精品在线观看| 在线看a的网站| 日韩av不卡免费在线播放| av免费观看日本| 中文精品一卡2卡3卡4更新| 国产成人福利小说| 少妇丰满av| 三级男女做爰猛烈吃奶摸视频| 国产精品久久久久久久久免| 国产亚洲最大av| 欧美日韩亚洲高清精品| 十八禁网站网址无遮挡 | 精品午夜福利在线看| 精品人妻视频免费看| 干丝袜人妻中文字幕| 久久久久久久大尺度免费视频| 国产亚洲一区二区精品| 午夜福利视频1000在线观看| 欧美xxxx性猛交bbbb| 亚洲丝袜综合中文字幕| 欧美三级亚洲精品| 久久精品国产自在天天线| 男男h啪啪无遮挡| 日本黄色片子视频| 色5月婷婷丁香| 国产精品国产三级专区第一集| 久久99热这里只有精品18| 女人十人毛片免费观看3o分钟| 欧美高清性xxxxhd video| 亚洲精品一二三| 波野结衣二区三区在线| 身体一侧抽搐| 99视频精品全部免费 在线| 亚洲成人中文字幕在线播放| 国产免费又黄又爽又色| 一级爰片在线观看| 久久久久久久国产电影| 一级毛片aaaaaa免费看小| 国产成人freesex在线| 国产有黄有色有爽视频| 日产精品乱码卡一卡2卡三| 亚洲伊人久久精品综合| 深爱激情五月婷婷| 18禁裸乳无遮挡免费网站照片| 国产一级毛片在线| 国产免费又黄又爽又色| 亚洲成人av在线免费| 亚洲av中文av极速乱| 日本猛色少妇xxxxx猛交久久| 少妇裸体淫交视频免费看高清| 一本久久精品| 成人二区视频| 三级国产精品片| 最近最新中文字幕免费大全7| 久久99蜜桃精品久久| 亚洲精品aⅴ在线观看| 日韩av在线免费看完整版不卡| 26uuu在线亚洲综合色| 国产精品国产三级国产av玫瑰| 在线观看国产h片| 精品人妻熟女av久视频| 观看免费一级毛片| 网址你懂的国产日韩在线| 精品熟女少妇av免费看| 亚洲自拍偷在线| 精品一区二区免费观看| 国产一区二区亚洲精品在线观看| 在线观看免费高清a一片| 99热全是精品| 国产精品国产av在线观看| 国产精品久久久久久久电影| 草草在线视频免费看| 夫妻午夜视频| 高清毛片免费看| 久久久午夜欧美精品| 中国国产av一级| 直男gayav资源| 日韩一本色道免费dvd| 高清欧美精品videossex| 精品久久久久久久人妻蜜臀av| 午夜福利在线在线| 午夜亚洲福利在线播放| 国产久久久一区二区三区| 国产免费福利视频在线观看| 观看美女的网站| 午夜免费观看性视频| av免费观看日本| 国产亚洲av嫩草精品影院| 色5月婷婷丁香| 国产成人91sexporn| 国产成人aa在线观看| 人妻夜夜爽99麻豆av| av国产精品久久久久影院| 中文字幕免费在线视频6| 久久女婷五月综合色啪小说 | 久久久久九九精品影院| av在线天堂中文字幕| 热99国产精品久久久久久7| 亚洲天堂国产精品一区在线| 麻豆久久精品国产亚洲av| 国产亚洲午夜精品一区二区久久 | 99久久人妻综合| 人人妻人人爽人人添夜夜欢视频 | 18禁裸乳无遮挡动漫免费视频 | 久久精品国产亚洲网站| 久久久精品免费免费高清| 国产女主播在线喷水免费视频网站| 亚洲自偷自拍三级| 最近中文字幕高清免费大全6| 免费人成在线观看视频色| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费黄频网站在线观看国产| 97人妻精品一区二区三区麻豆| 国产中年淑女户外野战色| 白带黄色成豆腐渣| av在线天堂中文字幕| 久久亚洲国产成人精品v| 日韩三级伦理在线观看| 久久精品国产鲁丝片午夜精品| 少妇丰满av| 亚洲精品成人av观看孕妇| 你懂的网址亚洲精品在线观看| 精品午夜福利在线看| 免费黄网站久久成人精品| 成人毛片a级毛片在线播放| 嫩草影院精品99| 成年女人在线观看亚洲视频 | 亚洲精品久久午夜乱码| 在线播放无遮挡| 亚洲精品日韩av片在线观看| 成人漫画全彩无遮挡| 亚洲熟女精品中文字幕| 自拍偷自拍亚洲精品老妇| 免费播放大片免费观看视频在线观看| 日韩av免费高清视频| 精品一区二区三区视频在线| 青春草视频在线免费观看| 日本黄大片高清| 国国产精品蜜臀av免费| 内地一区二区视频在线| 91精品一卡2卡3卡4卡| 亚洲成人精品中文字幕电影| 亚洲色图综合在线观看| 99久久人妻综合| 亚洲精品aⅴ在线观看| 爱豆传媒免费全集在线观看| 欧美日韩视频高清一区二区三区二| 男人和女人高潮做爰伦理| 麻豆精品久久久久久蜜桃| 国产又色又爽无遮挡免| 汤姆久久久久久久影院中文字幕| 欧美性感艳星| 新久久久久国产一级毛片| 亚洲经典国产精华液单| 免费不卡的大黄色大毛片视频在线观看| 你懂的网址亚洲精品在线观看| a级一级毛片免费在线观看| h日本视频在线播放| 成人国产麻豆网| 欧美日韩国产mv在线观看视频 | 26uuu在线亚洲综合色| 丰满乱子伦码专区| 国产精品一区www在线观看| 亚洲,欧美,日韩| 久久久久精品久久久久真实原创| 色播亚洲综合网| 国产久久久一区二区三区| 夜夜看夜夜爽夜夜摸| 亚洲自拍偷在线| 国产免费一区二区三区四区乱码| 久热久热在线精品观看| 尾随美女入室| 日韩欧美精品v在线| av国产久精品久网站免费入址| 久久久久久久久久成人| 一级a做视频免费观看| 国产亚洲精品久久久com| 久久女婷五月综合色啪小说 | 联通29元200g的流量卡| 国产精品国产三级国产av玫瑰| 99热这里只有是精品50| 国产黄a三级三级三级人| 可以在线观看毛片的网站| 免费不卡的大黄色大毛片视频在线观看| 黄色欧美视频在线观看| 亚洲精品国产成人久久av| 久久热精品热| 18禁裸乳无遮挡动漫免费视频 | 婷婷色综合www| 韩国高清视频一区二区三区| 肉色欧美久久久久久久蜜桃 | 日韩电影二区| 亚洲国产av新网站| 国产精品国产三级国产专区5o| 寂寞人妻少妇视频99o| 久久精品国产鲁丝片午夜精品| 最近中文字幕高清免费大全6| 80岁老熟妇乱子伦牲交| 欧美精品国产亚洲| 国产又色又爽无遮挡免| 亚洲精品乱久久久久久| 少妇熟女欧美另类| 国产免费福利视频在线观看| 91精品伊人久久大香线蕉| 最近最新中文字幕大全电影3| 黄片wwwwww| 国产精品久久久久久精品电影小说 | 男女那种视频在线观看| 免费观看在线日韩| 欧美性感艳星| 国产精品久久久久久久久免| 纵有疾风起免费观看全集完整版| 啦啦啦在线观看免费高清www| 青春草国产在线视频| 黄色一级大片看看| 搡女人真爽免费视频火全软件| 午夜福利视频1000在线观看| 真实男女啪啪啪动态图| 成年女人看的毛片在线观看| 深爱激情五月婷婷| 亚洲国产成人一精品久久久| 欧美xxⅹ黑人| 国产亚洲最大av| 一级av片app| .国产精品久久| 五月玫瑰六月丁香| 少妇人妻精品综合一区二区| 美女脱内裤让男人舔精品视频| 亚洲精品乱久久久久久| 久久久久精品性色| 天天一区二区日本电影三级| 亚洲欧美成人综合另类久久久| 热99国产精品久久久久久7| 97超碰精品成人国产| 日韩欧美精品v在线| 国产老妇伦熟女老妇高清| 午夜免费男女啪啪视频观看| 亚洲成人中文字幕在线播放| 男人爽女人下面视频在线观看| kizo精华| 亚州av有码| 久久人人爽人人片av| 亚洲国产日韩一区二区| 国产男人的电影天堂91| 亚洲欧美日韩另类电影网站 | 性插视频无遮挡在线免费观看| 国产探花在线观看一区二区| 日韩制服骚丝袜av| 欧美 日韩 精品 国产| 日韩一本色道免费dvd| 好男人视频免费观看在线| 特级一级黄色大片| 欧美少妇被猛烈插入视频| 成年女人在线观看亚洲视频 | 欧美激情在线99| av在线app专区| 国产亚洲5aaaaa淫片| 日韩av在线免费看完整版不卡| 国产av不卡久久| 国产日韩欧美亚洲二区| 男女啪啪激烈高潮av片| 六月丁香七月| 午夜免费观看性视频| 最近最新中文字幕免费大全7| 国产在视频线精品| 亚洲精华国产精华液的使用体验| 各种免费的搞黄视频| 免费黄色在线免费观看| 色网站视频免费| 综合色av麻豆| 亚洲国产精品国产精品| 久久国产乱子免费精品| 97热精品久久久久久| www.av在线官网国产| 少妇人妻久久综合中文| 午夜爱爱视频在线播放| 夜夜看夜夜爽夜夜摸| 在线观看国产h片| 一级毛片aaaaaa免费看小| 亚洲熟女精品中文字幕| 热99国产精品久久久久久7| 亚洲av二区三区四区| 有码 亚洲区| 日本一本二区三区精品| av在线观看视频网站免费| 久久韩国三级中文字幕| 国产探花极品一区二区| 久久久久久伊人网av| 韩国高清视频一区二区三区| 寂寞人妻少妇视频99o| 国产成人免费无遮挡视频| 高清视频免费观看一区二区| 一边亲一边摸免费视频| 伊人久久国产一区二区| 日产精品乱码卡一卡2卡三| 亚洲成人久久爱视频| 亚洲成色77777| 国产综合精华液| 久久这里有精品视频免费| 一区二区三区精品91| 男人爽女人下面视频在线观看| 国产欧美亚洲国产| 亚洲精品国产色婷婷电影| 国产色婷婷99| 日韩欧美 国产精品| 亚洲av免费高清在线观看| 麻豆成人av视频| 18禁裸乳无遮挡动漫免费视频 | 日本熟妇午夜| 久久久久久久午夜电影| 男人添女人高潮全过程视频| 日韩不卡一区二区三区视频在线| 蜜桃亚洲精品一区二区三区| 国内精品美女久久久久久| videossex国产| 五月开心婷婷网| 一级二级三级毛片免费看| 国产精品国产av在线观看| 亚洲精品乱久久久久久| 99热这里只有精品一区| 国产 一区精品| 久久久久精品性色| 午夜福利高清视频| 国模一区二区三区四区视频| 九草在线视频观看| 激情 狠狠 欧美| 久久久久久久亚洲中文字幕| 美女国产视频在线观看| 干丝袜人妻中文字幕| 国产一区二区三区av在线| 久久久色成人| av福利片在线观看| 免费观看无遮挡的男女| 色5月婷婷丁香| 久久人人爽av亚洲精品天堂 | 午夜精品国产一区二区电影 | 亚洲av福利一区| 亚洲不卡免费看| 日韩中字成人| 精品99又大又爽又粗少妇毛片| 亚洲真实伦在线观看| 国产精品一二三区在线看| 国产爱豆传媒在线观看| 狂野欧美激情性bbbbbb| 美女脱内裤让男人舔精品视频| 精品久久久精品久久久| 欧美激情久久久久久爽电影| 搡老乐熟女国产| 日本熟妇午夜| 色播亚洲综合网| 日韩国内少妇激情av| 日韩成人av中文字幕在线观看| av黄色大香蕉| av国产免费在线观看| 色视频www国产| 久久精品人妻少妇| 热99国产精品久久久久久7| 亚洲欧美一区二区三区黑人 | 久久久欧美国产精品| 亚洲内射少妇av| 80岁老熟妇乱子伦牲交| 大片电影免费在线观看免费| 成年女人在线观看亚洲视频 | 特大巨黑吊av在线直播| 黄片无遮挡物在线观看| 国产精品国产三级国产专区5o| av播播在线观看一区| 麻豆乱淫一区二区| 街头女战士在线观看网站| 国产中年淑女户外野战色| 亚洲精品,欧美精品| 99热6这里只有精品| 亚洲自拍偷在线|