• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Investigation of Constructal Distributors with Different Configurations*

    2009-05-14 06:23:14FANZhiwei范志偉ZHOUXinggui周興貴LUOLingai羅靈愛andYUANWeikang袁渭康
    關(guān)鍵詞:范志

    FAN Zhiwei (范志偉), ZHOU Xinggui (周興貴)**, LUO Ling’ai (羅靈愛) and YUAN Weikang (袁渭康)

    ?

    Numerical Investigation of Constructal Distributors with Different Configurations*

    FAN Zhiwei (范志偉)1,2, ZHOU Xinggui (周興貴)1,**, LUO Ling’ai (羅靈愛)2and YUAN Weikang (袁渭康)1

    1State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China2Laboratoire Optimisation de la Conception et Ingénierie de l’Environnement, Université de Savoie, Savoie Technolac 73376, France

    Seven distributors with different configurations are designed and optimized by constructal approach. Their flow distribution performance and energy dissipation are investigated and compared by computational fluid dynamics (CFD) simulation. The reliability of CFD simulation is verified by experiments on the distributor that has all distributing rectangle channels on a plate. The results show that the symmetry of the distributing channels has decisive influence on the performance of flow distribution. Increasing the generations of channel branching will improve the flow distribution uniformity, but on the other hand increase the energy dissipation. Among all the seven constructal distributors, the distributor that has dichotomy configuration, Y-type junctions and straight interconnecting channels, is recommended for its better flow distribution performance and less energy dissipation.

    constructal distributor, configuration, flow distribution, energy dissipation

    1 INTRODUCTION

    For a number of fluidic devices in chemical process industry such as shell-tube heat exchangers, tubular reactors and static mixers,., flow distribution is always important because it has significant influences on their overall performance such as rate of mass or heat transfer, conversion or selectivity of reaction,[1, 2]. Flow maldistribution is generally caused by poor design and imprecise fabrication of the distributor, which will generally increase back-mixing and decrease the driving force of mass/heat transfer. When distributing a flow into parallel channels, the maximal flow rate ratio (ratio of the highest volume flow rate to the lowest one) could be as high as 4 if no measures have been taken for uniform flow distribution, as shown by Lalot[3]. Flow maldistribution with so high a maximal flow rate ratio would decrease the efficiency of a cross-flow heat exchanger by 25%. To homogenize the flow distribution, perforated baffles are frequently used. For example, Jiao et al. [4] introduced a perforated baffle into a plate-fin heat exchanger, which decreased the velocity ratio to 1.5. Zhang and Li [5] investigated a so-called two-stage- distribution header structure which has a perforated baffle between the two stages using FLUENT,the numerical prediction was in line with the experimental results, which show that the two-stage design could improve the flow distribution performance. Wen. [6, 7] showed that installing a punched baffle into the header of plate-fin heat exchanger would enhanced the heat exchanger efficiency about 12%.

    Introducing a flow distributor for uniform flow distribution will undoubtedly increase flow resistance. Therefore, minimizing energy dissipation emerges as an important goal of distributor design. The constructal distributors, which have a branched multiscale structure, have handsomely solved the problem of minimizing energy dissipation for uniform flow distribution. Different constructal distributors with different configurations have been proposed in the literature [8-10], which can be fabricated by stereolithography with epoxy resin or metal powder. However, because the 3-dimensional constructal flow distributors are costly to fabricate, only a few were really fabricated and evaluated [11, 12].

    Numerical prediction provides a cheap means to evaluate the performance of the distributor, and moreover, it avoids the problem of imprecise fabrication that may interfere with the observation and lead to wrong conclusion. In this paper, a comparison of different configurations on the performance of flow distribution is conducted by computational fluid dynamics (CFD), in an attempt to provide guideline for the design of the constructal distributor.

    2 CONFIGURATIONS OF CONSTRUCTAL DI- STRIBUTOR

    Figure 1 shows the seven constructal distributors to be investigated, which are different from each other by the furcation pattern (bi-furcation or tetra-furcation), the junction type (T-type or Y-type) and the interconnecting channel shape (straight line or arc). Table 1 summarizes the configurations. These distributors are expected to distribute a fluid into sixteen outlets uniformly located in a 30 mm×30 mm square. Pro and P-2 have the same configurations except that the cross section of the interconnecting channels is rectangle for Pro and circle for P-2.

    Figure 1 Schematic view of the constructal distributors

    Table 1 Configuration of the constructal distributors

    For U-2 and U-4, all the branches have an arc angle of π/2; while for V-2 and V-4, all the branches have an angle of π/4 with the vertical. The length of the inlet is set as 60 mm to diminish the entrance effect.

    The dimensions of the channels are optimized with the goals of minimum energy dissipation and minimum total pore volume. Based on the assumption of established laminar Poiseuille flow, the following mathematic equations, which are referred to as Murray’s Law, are applied:

    Here,dis the diameter of the channels of generation. The dimension of Pro is determined according to Ref. [13],

    whereandware the height and width of the channels. Tables 2 and 3 summarize the optimized dimensions for all the distributors.

    Table 2 Dimensions of the constructal distributors

    Note:stands for the length,for the diameter, G is the abbreviation of ‘generation’.

    Table 3 Dimensions of the bifurcation channels of Pro (mm)

    3 SIMULATIONS

    The geometries of the constructal distributors are constructed with Gambit?according to the geometry parameters presented in Tables 1, 2 and 3. Composite constructive grids are applied to mesh the computational projects, and the number of the involved cells ranges from 250000 to 300000 respectively. Smooth transition is introduced at the junctions and channel turns.

    By assuming that the channel surface is smooth, the fluid is incompressible Newtonian and the flow pattern is stable, the flow in the channels of the distributors are simulated by a commercial code Fluent 6.0 with water as the working fluid. The standard-model is adopted and the non-equilibrium wall function is chosen for near-wall treatment. The finite volume method is used for the solution of the Navier-Stokes equations. To improve the convergence that is limited by pressure-velocity coupling, the semi-implicit SIMPLEC method is used and the second order upwind differential scheme is employed to approximate the convective terms.

    In the simulation, only the inlet is defined as the velocity-inlet and the velocity is given as input. All the sixteen outlets are defined as pressure-outlet, and the gauge pressure is set zero. On all solid surfaces, the no-slip wall boundary condition is imposed. The solution is considered to converge when the sum of the normalized residuals for each control equation is on the order of 1′10-5. Grid independence is guaranteed by using finer grids until the simulation results are hardly affected.

    4 RESULTS AND DISCUSSION

    First, to verify the reliability of the simulation, distributor Pro is fabricated by electric spark cutting and precise machining, and fluid dynamics experiments are carried out with water as the test fluid to evaluate the uniformity of flow distributionand the energy dissipation. Here,is the Reynolds number defined at each individual outlet, andis the ratio of the highest flow rate to the lowest one of the sixteen outlets, which is used as the criterion of flow distribution performance, the smaller the maximal flow rate ratio, the better the flow distribution performance. Fig. 2 shows that the uniformity of flow distribution and pressure drop determined by simulation coincide very well with the experiments, the maximal deviation being 3.32% for the maximal flow rate ratio, and 0.6% for the pressure drop. This justifies the computational fluid dynamics model and the numerical procedure for the simulation.

    Figure 2 Comparison of experimental results and numerical prediction of Pro

    ●?experimental results; ——?numerical prediction

    Figure 3 shows the uniformity of flow distribution and the pressure drop as functions of averagedat outlets for all the seven distributors. Fig. 4 shows directly the flow rates at the sixteen outlets of U-2 and V-2 at an averaged outletof 2030. The U-type distributors have the best performance in uniformly distributing the fluid while the V-type ones have the smallest pressure drop. Among all the seven distributors, V-4 and P-4 have the worse performance in distributing the fluid. Anatomizing the structures of the distributors, one can see that this is because of the asymmetry of the channel structures of V-4 and P-4, in which the inertia of the outflow from the mother channels directly influences the flow in the child channels.

    Figure 3 Flow distribution performance of the constructal distributors

    ●?U-2;○?U-4;▼?V-2; △?V-4; ■?P-2; □?P-4; ◆?Pro

    Figure 4 Non-uniformity of U-2 and V-2 at an averaged outletof 2030

    For the same furcation patterns, comparing U-2 and V-2, or U-4 and V-4, one can see that U-type distributors general consume more energy than V-type ones. U-2 and P-2 consume more energy than V-2, and U-4 consumes more energy than V-4. The main reason is that the T-junctions of U-2, P-2 and U-4 consume more energy than the Y-junctions of V-2 and V-4. For the distributors, for example, U-2 and U-4, and V-2 and V-4, which have the same type of interconnecting channels, one can see that the tetra-furcation pattern costs less energy than does the bi-furcation pattern. This is because that the configuration with tetra-furcation pattern has less number of junctions. These discussions imply that the pressure drop of a distributor is mainly caused by the junctions.

    P-2 and Pro have almost the same uniformity of flow distribution as they have the same bifurcation pattern, junction type, and channel geometry. But their pressure drops are quite different. The difference between both of them is that the channels are rectangle for Pro and round for P-2. Moreover, from Table 4 one can see that, as the result of different design procedures, the equivalent diameters of the rectangle channels in Pro are different from the diameters of the round channels in P-2, and the cross section areas of the channels in Pro are larger than that in P-2, which account for the smaller pressure drop of Pro.

    Table 4 Comparison of the geometry dimension of P-2 and Pro

    NOMENCLATURE

    cross section area of interconnecting channels, mm2

    dequivalent diameter, mm

    ddiameter of the channels, mm

    hheight of the channels, mm

    llength of the channels, mm

    Reynolds number

    wwidth of the channels, mm

    maximal flow rate/velocity ratio

    Subscripts

    number of generation

    1 Chiou, J.P., “Thermal performance deterioration in crossflow heat exchanger due to the flow nonuniformity”,., 100, 580-587 (1978).

    2 Shah, R.K., London, A.L., “Effects of nonuniform passages on compact heat exchanger performance”,.., 102, 653-659 (1980).

    3 Lalot, S., Florent, P., Lang, S.K., Bergles, A.E., “Flow maldistribution in heat exchangers”,..., 19 (8), 847-863 (1999).

    4 Jiao, A., Zhang, R., Jeong, S.K., “Experimental investigation of header configuration on flow maldistribution in plate-fin heat exchanger”,..., 23 (10), 1235-1246 (2003).

    5 Zhang, Z., Li, Y.Z., “CFD simulation on inlet configuration of plate-fin heat exchanger”,, 43 (12), 673-678 (2003).

    6 Wen, J., Li, Y.Z., “Study of flow distribution and its improvement on the header of plate-fin heat exchanger”,, 44 (11), 823-831 (2004).

    7 Wen, J., Li, Y.Z., Zhou, A.M., Zhang, K., “An experimental and numerical investigation of flow patterns in the entrance of plate-fin heat exchanger”,.., 49 (9/0), 1667-1678 (2006).

    8 Tondeur, D., Luo, L.A., “Design and scaling laws of ramified fluid distributors by the constructal approach”,..., 59 (8/9), 1799-1813 (2004).

    9 Luo, L.A., Tondeur, D., “Optimal distribution of viscous dissipation in a multi-scale branched fluid distributor”,...., 44 (12), 1131-1141 (2005).

    10 Luo, L.A., Tondeur, D., “Multiscale optimisation of flow distribution by constructal approach”,., 3, 329-336 (2005).

    11 Luo, L.A., Fan, Y.L., Zhang, W.W., Yuan, X.G., Midoux, N., “Integration of constructal distributors to a mini crossflow heat exchanger and their assembly configuration optimization”,..., 62 (13), 3605-3619 (2007).

    12 Luo, L.A., Fan, Z.W., Le Gall, H., Zhou, X.G., Yuan, W.K., “Experimental study of constructal distributor for flow equidistribution in a mini crossflow heat exchanger (MCHE)”,..., 47 (2), 229-236 (2008).

    13 Fan, Z.W., Zhou, X.G., Luo, L.A., Yuan, W.K., “Experimental investigation of the flow distribution of a 2-dimensional constructal distributor”,..., 33 (1), 77-83 (2008).

    2008-06-19,

    2008-09-24.

    the National Natural Science Foundation of China (20476026), the Program for New Century Excellent Talents in University (05-0416), the Creative Team Development Project of Ministry of Education (IRT0721), and the 111 Project of Ministry of Education and State Administration of Foreign Experts Affairs (B08021).

    ** To whom correspondence should be addressed. E-mail: xgzhou@ecust.edu.cn

    猜你喜歡
    范志
    不離不棄 癡情女孩與癱瘓丈夫共走幸福路
    科學(xué)選題 高效訓(xùn)練 細(xì)致講評
    ——淺談新課標(biāo)新高考下二輪復(fù)習(xí)策略
    Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application?
    In-situ reduction of silver by surface DBD plasma:a novel method for preparing highly effective electromagnetic interference shielding Ag/PET
    R-branch high-lying transition emission spectra of SbNa molecule*
    癡情女孩與癱瘓丈夫共創(chuàng)甜蜜新生活
    婦女生活(2020年1期)2020-02-16 14:43:37
    范治斌作品選登
    藝術(shù)家(2017年1期)2017-11-29 17:11:16
    讓我重新愛上你
    女性天地(2017年1期)2017-04-21 11:45:26
    重新愛上你
    37°女人(2016年2期)2016-09-25 10:21:26
    重新愛上你
    37°女人(2016年2期)2016-02-19 19:42:27
    别揉我奶头~嗯~啊~动态视频| 长腿黑丝高跟| 麻豆国产97在线/欧美| 丰满乱子伦码专区| 老司机影院成人| 老司机福利观看| av专区在线播放| av.在线天堂| 精品一区二区免费观看| 校园人妻丝袜中文字幕| 亚洲精品亚洲一区二区| 亚洲av.av天堂| 99在线人妻在线中文字幕| 亚洲第一电影网av| 春色校园在线视频观看| 噜噜噜噜噜久久久久久91| 亚洲无线在线观看| 精品免费久久久久久久清纯| 日韩中字成人| 日韩制服骚丝袜av| 亚洲国产欧美人成| 美女xxoo啪啪120秒动态图| 精品久久国产蜜桃| 色吧在线观看| 美女大奶头视频| 小说图片视频综合网站| 亚洲专区国产一区二区| 欧美潮喷喷水| 亚洲在线自拍视频| 久久久精品大字幕| 亚洲人成网站高清观看| 国产 一区 欧美 日韩| 最近最新中文字幕大全电影3| 国产91av在线免费观看| 尤物成人国产欧美一区二区三区| 亚洲一区高清亚洲精品| 麻豆乱淫一区二区| 又爽又黄无遮挡网站| 尤物成人国产欧美一区二区三区| 蜜桃久久精品国产亚洲av| 搞女人的毛片| 在线天堂最新版资源| av福利片在线观看| 亚洲av二区三区四区| 亚洲成人久久性| 亚洲激情五月婷婷啪啪| 久久这里只有精品中国| 日本精品一区二区三区蜜桃| 亚洲成人精品中文字幕电影| 男女下面进入的视频免费午夜| 国产精品无大码| av在线观看视频网站免费| 97碰自拍视频| 精华霜和精华液先用哪个| eeuss影院久久| 精品一区二区免费观看| 亚洲精品色激情综合| 高清日韩中文字幕在线| 国产成人福利小说| 97在线视频观看| 最近视频中文字幕2019在线8| 99久久无色码亚洲精品果冻| 久久九九热精品免费| 少妇熟女欧美另类| 亚洲性久久影院| 人人妻人人澡欧美一区二区| 欧美一区二区亚洲| 国产精品久久久久久久久免| 在线a可以看的网站| 99热网站在线观看| 成人性生交大片免费视频hd| 中文字幕av在线有码专区| 日韩av不卡免费在线播放| 色综合站精品国产| 91精品国产九色| 国产精品乱码一区二三区的特点| 丰满的人妻完整版| 国产人妻一区二区三区在| 成人一区二区视频在线观看| 91av网一区二区| 免费看美女性在线毛片视频| 99久国产av精品| 黄色一级大片看看| 天堂动漫精品| 成人性生交大片免费视频hd| 在线国产一区二区在线| 一a级毛片在线观看| а√天堂www在线а√下载| 国产精品久久久久久久久免| 免费无遮挡裸体视频| 大型黄色视频在线免费观看| 亚洲美女黄片视频| 久99久视频精品免费| 一级av片app| 如何舔出高潮| 一级毛片aaaaaa免费看小| 联通29元200g的流量卡| 国产极品精品免费视频能看的| 国产高潮美女av| 欧美日韩精品成人综合77777| 国产一区二区在线av高清观看| 天天躁日日操中文字幕| 日本黄色片子视频| 精品久久久久久久久久免费视频| 少妇熟女aⅴ在线视频| 国产精品久久久久久久电影| 亚洲熟妇熟女久久| 成人二区视频| 黄色日韩在线| 精品久久久久久久久av| 国产精品久久久久久久久免| 日本黄大片高清| 麻豆国产97在线/欧美| 韩国av在线不卡| 欧美激情国产日韩精品一区| 久久久久久久久久黄片| 久久99热6这里只有精品| 亚洲欧美日韩东京热| 亚洲欧美成人综合另类久久久 | 悠悠久久av| 亚洲精品国产成人久久av| 午夜爱爱视频在线播放| 麻豆精品久久久久久蜜桃| 深夜a级毛片| 人妻夜夜爽99麻豆av| 3wmmmm亚洲av在线观看| 国产精品,欧美在线| 精品久久久久久久久av| 欧美成人a在线观看| 美女cb高潮喷水在线观看| 国产日本99.免费观看| 国内久久婷婷六月综合欲色啪| 亚洲av中文字字幕乱码综合| 波野结衣二区三区在线| 精品一区二区三区人妻视频| 久久精品国产自在天天线| 99在线人妻在线中文字幕| 最近视频中文字幕2019在线8| 国产精品嫩草影院av在线观看| 联通29元200g的流量卡| 无遮挡黄片免费观看| 欧美在线一区亚洲| 亚洲av成人精品一区久久| 国内少妇人妻偷人精品xxx网站| 欧美性猛交╳xxx乱大交人| 欧美成人免费av一区二区三区| 日本成人三级电影网站| 最近视频中文字幕2019在线8| 成人亚洲精品av一区二区| 插逼视频在线观看| 国产精品三级大全| 日本三级黄在线观看| 不卡一级毛片| 免费观看人在逋| 亚洲精品乱码久久久v下载方式| 欧美三级亚洲精品| 国产黄色小视频在线观看| 尤物成人国产欧美一区二区三区| 亚洲真实伦在线观看| 91久久精品国产一区二区成人| 日本一本二区三区精品| 国产 一区精品| 欧美成人一区二区免费高清观看| 亚洲丝袜综合中文字幕| 久久亚洲精品不卡| 成人av在线播放网站| 精品少妇黑人巨大在线播放 | 亚洲第一区二区三区不卡| 黑人高潮一二区| 日本精品一区二区三区蜜桃| 国产高潮美女av| 色综合亚洲欧美另类图片| 丝袜美腿在线中文| 最新在线观看一区二区三区| 国产91av在线免费观看| 天堂av国产一区二区熟女人妻| av专区在线播放| 一级黄色大片毛片| 久久热精品热| 免费电影在线观看免费观看| 黄色视频,在线免费观看| 18禁裸乳无遮挡免费网站照片| 欧美丝袜亚洲另类| 欧美国产日韩亚洲一区| 日韩在线高清观看一区二区三区| 不卡视频在线观看欧美| 精品一区二区三区人妻视频| 3wmmmm亚洲av在线观看| 国国产精品蜜臀av免费| 一本一本综合久久| 老女人水多毛片| 免费av不卡在线播放| 亚洲欧美成人综合另类久久久 | 久久中文看片网| 午夜激情欧美在线| 精品福利观看| 床上黄色一级片| 极品教师在线视频| 欧美+亚洲+日韩+国产| 男女视频在线观看网站免费| 97超碰精品成人国产| 久久99热这里只有精品18| 日韩 亚洲 欧美在线| 看免费成人av毛片| 露出奶头的视频| 久久久久久久久久久丰满| 午夜福利高清视频| 俺也久久电影网| 色5月婷婷丁香| 国产精品国产三级国产av玫瑰| 狂野欧美白嫩少妇大欣赏| 国语自产精品视频在线第100页| 九色成人免费人妻av| 欧美成人免费av一区二区三区| 麻豆久久精品国产亚洲av| 精品免费久久久久久久清纯| 在线国产一区二区在线| 国产亚洲91精品色在线| 亚洲国产精品国产精品| 无遮挡黄片免费观看| 亚洲最大成人手机在线| 国产精品乱码一区二三区的特点| 综合色av麻豆| 联通29元200g的流量卡| 99久久中文字幕三级久久日本| 国产精品一二三区在线看| 女同久久另类99精品国产91| 日本爱情动作片www.在线观看 | 中国国产av一级| 中文在线观看免费www的网站| 国产av在哪里看| 99久久精品国产国产毛片| 91狼人影院| 日韩欧美三级三区| 蜜桃久久精品国产亚洲av| 亚洲精品亚洲一区二区| 在现免费观看毛片| 国产精品亚洲一级av第二区| 成人午夜高清在线视频| 欧美日韩国产亚洲二区| 国产一区二区激情短视频| 亚洲国产精品久久男人天堂| 亚洲美女黄片视频| 非洲黑人性xxxx精品又粗又长| 插逼视频在线观看| av卡一久久| 人人妻人人看人人澡| 久久久久久久久大av| 日本黄色片子视频| 亚洲av中文av极速乱| 插阴视频在线观看视频| 少妇熟女aⅴ在线视频| 日本精品一区二区三区蜜桃| 人妻少妇偷人精品九色| 国产精品一二三区在线看| 亚洲精品国产av成人精品 | 色播亚洲综合网| 欧美极品一区二区三区四区| 欧美日韩国产亚洲二区| 人人妻,人人澡人人爽秒播| 亚洲性久久影院| 少妇丰满av| 六月丁香七月| 中文在线观看免费www的网站| 国产视频一区二区在线看| 国内揄拍国产精品人妻在线| 夜夜爽天天搞| 亚洲av不卡在线观看| 在线播放无遮挡| 两个人的视频大全免费| 国产一区亚洲一区在线观看| 在线免费十八禁| 老女人水多毛片| 麻豆久久精品国产亚洲av| 国产亚洲91精品色在线| 国产片特级美女逼逼视频| 赤兔流量卡办理| 欧美日韩在线观看h| 99九九线精品视频在线观看视频| 蜜桃亚洲精品一区二区三区| 欧美最新免费一区二区三区| 免费人成视频x8x8入口观看| 久久久久国产精品人妻aⅴ院| 综合色av麻豆| 亚洲av中文字字幕乱码综合| АⅤ资源中文在线天堂| 国内精品久久久久精免费| 久久久成人免费电影| 老司机午夜福利在线观看视频| 97碰自拍视频| 欧美xxxx性猛交bbbb| 精品一区二区三区视频在线观看免费| 亚洲精品久久国产高清桃花| 国语自产精品视频在线第100页| 免费看美女性在线毛片视频| 久久亚洲国产成人精品v| 精品久久久久久久久av| 成人一区二区视频在线观看| 99热只有精品国产| 乱码一卡2卡4卡精品| 男人舔女人下体高潮全视频| 校园春色视频在线观看| 97碰自拍视频| 一区二区三区四区激情视频 | 国产真实伦视频高清在线观看| 免费观看人在逋| 久久精品国产鲁丝片午夜精品| 99久久久亚洲精品蜜臀av| 午夜亚洲福利在线播放| 丝袜喷水一区| 精华霜和精华液先用哪个| 久久午夜福利片| 久久久久久久亚洲中文字幕| 久久热精品热| 一夜夜www| 一本精品99久久精品77| 国产女主播在线喷水免费视频网站 | 男人舔奶头视频| 男女之事视频高清在线观看| 精品99又大又爽又粗少妇毛片| 免费av不卡在线播放| 久久人人爽人人爽人人片va| 精品人妻熟女av久视频| 精品少妇黑人巨大在线播放 | 日日啪夜夜撸| 在线免费观看不下载黄p国产| 日韩欧美 国产精品| 国内精品宾馆在线| 国内精品美女久久久久久| 日韩欧美精品免费久久| 亚洲成人av在线免费| 亚洲国产精品成人综合色| 国产探花极品一区二区| 免费看美女性在线毛片视频| 搞女人的毛片| av视频在线观看入口| 一个人看视频在线观看www免费| av在线天堂中文字幕| 久久久久久久久中文| 久久久久久国产a免费观看| 99热精品在线国产| 成年女人永久免费观看视频| 波多野结衣巨乳人妻| 麻豆国产97在线/欧美| 99热精品在线国产| 丰满乱子伦码专区| 国产亚洲精品av在线| 狂野欧美激情性xxxx在线观看| 日日摸夜夜添夜夜添小说| 久久人人爽人人爽人人片va| 日韩一区二区视频免费看| 亚洲内射少妇av| 中文字幕久久专区| 97在线视频观看| a级一级毛片免费在线观看| 精品久久国产蜜桃| 欧美高清成人免费视频www| 久久久久久久午夜电影| 久久亚洲国产成人精品v| 激情 狠狠 欧美| 午夜日韩欧美国产| 免费看美女性在线毛片视频| 伦精品一区二区三区| 欧美一区二区亚洲| 亚洲最大成人中文| 99久久无色码亚洲精品果冻| 女同久久另类99精品国产91| 99久国产av精品国产电影| 永久网站在线| 可以在线观看的亚洲视频| 久久热精品热| 国产亚洲欧美98| 国产精品福利在线免费观看| 免费看av在线观看网站| www日本黄色视频网| 女的被弄到高潮叫床怎么办| 久久这里只有精品中国| 最近最新中文字幕大全电影3| 亚洲一级一片aⅴ在线观看| 国产在线精品亚洲第一网站| 亚洲熟妇熟女久久| 99久久精品一区二区三区| 国产精品日韩av在线免费观看| 成人欧美大片| 亚洲最大成人av| 尾随美女入室| 亚洲av第一区精品v没综合| 精品少妇黑人巨大在线播放 | 激情 狠狠 欧美| 尾随美女入室| 欧美激情在线99| 亚洲av二区三区四区| 国模一区二区三区四区视频| 国产一级毛片七仙女欲春2| 久久九九热精品免费| 1000部很黄的大片| 秋霞在线观看毛片| av国产免费在线观看| 亚洲av电影不卡..在线观看| 亚洲综合色惰| 国产精品一区二区免费欧美| 麻豆国产97在线/欧美| 看黄色毛片网站| 偷拍熟女少妇极品色| 伊人久久精品亚洲午夜| 精品久久久久久久末码| 亚洲第一区二区三区不卡| 麻豆国产av国片精品| 日韩av不卡免费在线播放| a级毛色黄片| 日韩欧美精品v在线| 亚洲av不卡在线观看| 亚洲美女视频黄频| 国产在线精品亚洲第一网站| 一级毛片电影观看 | 欧美中文日本在线观看视频| 色噜噜av男人的天堂激情| 国内久久婷婷六月综合欲色啪| 久久中文看片网| 免费观看精品视频网站| 精品人妻视频免费看| 老司机福利观看| 草草在线视频免费看| 最近最新中文字幕大全电影3| 亚洲熟妇中文字幕五十中出| 欧美高清成人免费视频www| 欧美日韩乱码在线| 看十八女毛片水多多多| 99久国产av精品国产电影| 日本免费一区二区三区高清不卡| 女人被狂操c到高潮| 最新中文字幕久久久久| 亚洲人成网站高清观看| 一级毛片电影观看 | 中出人妻视频一区二区| 丰满的人妻完整版| 亚洲丝袜综合中文字幕| 免费观看人在逋| 网址你懂的国产日韩在线| 性色avwww在线观看| 免费在线观看影片大全网站| 夜夜夜夜夜久久久久| 少妇丰满av| 最近最新中文字幕大全电影3| 国产黄a三级三级三级人| 亚洲精华国产精华液的使用体验 | 成熟少妇高潮喷水视频| 久久久久久久久久黄片| 免费av观看视频| 69人妻影院| 国产精品1区2区在线观看.| 99久国产av精品国产电影| 嫩草影视91久久| 成人鲁丝片一二三区免费| 久久这里只有精品中国| 欧美最黄视频在线播放免费| 免费观看人在逋| .国产精品久久| 老司机影院成人| 日本五十路高清| 国产v大片淫在线免费观看| 亚洲综合色惰| 真人做人爱边吃奶动态| 狠狠狠狠99中文字幕| 九九在线视频观看精品| 国产黄色视频一区二区在线观看 | 亚洲精品亚洲一区二区| 色av中文字幕| 亚洲国产欧洲综合997久久,| 国产伦一二天堂av在线观看| 亚洲精品影视一区二区三区av| 我要看日韩黄色一级片| 97超视频在线观看视频| 内地一区二区视频在线| 国产不卡一卡二| 欧美中文日本在线观看视频| 亚洲乱码一区二区免费版| 三级毛片av免费| 老熟妇仑乱视频hdxx| 国产淫片久久久久久久久| 午夜福利在线观看免费完整高清在 | 国产高清有码在线观看视频| 熟女电影av网| 成人av在线播放网站| 深夜a级毛片| 日韩欧美国产在线观看| 综合色av麻豆| 亚洲精品一卡2卡三卡4卡5卡| 日本欧美国产在线视频| 亚洲自拍偷在线| 欧美国产日韩亚洲一区| 久久精品综合一区二区三区| 亚洲最大成人中文| 在现免费观看毛片| 亚洲国产精品sss在线观看| 乱码一卡2卡4卡精品| 综合色av麻豆| 亚洲专区国产一区二区| 热99re8久久精品国产| 久久精品国产自在天天线| 淫妇啪啪啪对白视频| 噜噜噜噜噜久久久久久91| 免费无遮挡裸体视频| 国产片特级美女逼逼视频| 精品人妻视频免费看| 国产色爽女视频免费观看| 激情 狠狠 欧美| 黄色日韩在线| 国产中年淑女户外野战色| 亚洲美女视频黄频| 成人精品一区二区免费| 免费人成视频x8x8入口观看| 22中文网久久字幕| 国产91av在线免费观看| 色哟哟·www| 大香蕉久久网| 99在线视频只有这里精品首页| 久久人人精品亚洲av| 亚洲天堂国产精品一区在线| 听说在线观看完整版免费高清| 一级黄色大片毛片| aaaaa片日本免费| 国产成人91sexporn| 亚洲中文日韩欧美视频| videossex国产| 男人舔奶头视频| 色尼玛亚洲综合影院| 欧美性猛交黑人性爽| h日本视频在线播放| 成人性生交大片免费视频hd| 男女下面进入的视频免费午夜| 免费人成在线观看视频色| 亚洲av熟女| ponron亚洲| 亚洲人成网站在线播| 国产一区二区在线av高清观看| 少妇高潮的动态图| 最近2019中文字幕mv第一页| 精品国产三级普通话版| 久久久久久久久中文| 一区二区三区免费毛片| 国产av在哪里看| 久久久a久久爽久久v久久| 在线观看美女被高潮喷水网站| 精品不卡国产一区二区三区| 秋霞在线观看毛片| 免费电影在线观看免费观看| 久久久久久久久久成人| 1024手机看黄色片| 最新中文字幕久久久久| 亚洲人成网站在线观看播放| 在线观看午夜福利视频| 日本与韩国留学比较| 国产精品一区二区免费欧美| 亚洲七黄色美女视频| 亚洲一区二区三区色噜噜| 精品日产1卡2卡| 有码 亚洲区| 色综合色国产| 三级毛片av免费| 日日撸夜夜添| 欧美绝顶高潮抽搐喷水| 99在线视频只有这里精品首页| 少妇丰满av| 亚洲中文日韩欧美视频| 俺也久久电影网| 美女大奶头视频| 亚洲丝袜综合中文字幕| 美女内射精品一级片tv| 日日啪夜夜撸| 国产精品一区二区免费欧美| 两个人视频免费观看高清| 精品人妻偷拍中文字幕| av黄色大香蕉| 日韩成人av中文字幕在线观看 | 性欧美人与动物交配| 国产成年人精品一区二区| 欧美激情久久久久久爽电影| 午夜激情福利司机影院| 精品乱码久久久久久99久播| 久久久久国产网址| 一进一出抽搐动态| 我的女老师完整版在线观看| 精品少妇黑人巨大在线播放 | 春色校园在线视频观看| 婷婷色综合大香蕉| 亚洲av中文字字幕乱码综合| 国产成人影院久久av| 18禁黄网站禁片免费观看直播| 看片在线看免费视频| 18禁裸乳无遮挡免费网站照片| 成人三级黄色视频| 天堂av国产一区二区熟女人妻| 99riav亚洲国产免费| 婷婷色综合大香蕉| 人人妻人人看人人澡| 国产亚洲精品久久久com| 少妇丰满av| 日韩成人伦理影院| 99久国产av精品国产电影| 久久精品夜夜夜夜夜久久蜜豆| 小蜜桃在线观看免费完整版高清| 男人的好看免费观看在线视频| www日本黄色视频网| 久久久欧美国产精品| 亚洲最大成人手机在线| 久久亚洲精品不卡| 国产伦在线观看视频一区| 插阴视频在线观看视频| 国产一区二区在线观看日韩| 国产亚洲精品综合一区在线观看| 春色校园在线视频观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲无线观看免费| 人妻少妇偷人精品九色|