• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulations of monolayer SiC transistors with metallic 1T-phase MoS2 contact for high performance application?

    2021-11-23 07:30:22HaiQingXie謝海情DanWu伍丹XiaoQingDeng鄧小清ZhiQiangFan范志強(qiáng)WuXingZhou周五星ChangQingXiang向長青andYueYangLiu劉岳陽
    Chinese Physics B 2021年11期
    關(guān)鍵詞:范志長青五星

    Hai-Qing Xie(謝海情) Dan Wu(伍丹) Xiao-Qing Deng(鄧小清) Zhi-Qiang Fan(范志強(qiáng))Wu-Xing Zhou(周五星) Chang-Qing Xiang(向長青) and Yue-Yang Liu(劉岳陽)

    1Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering,School of Physics and Electronic Science,Changsha University of Science and Technology,Changsha 410114,China

    2School of Materials Science and Engineering&Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion,Hunan University of Science and Technology,Xiangtan 411201,China

    3College of Information Science and Engineering,Jishou University,Jishou 416000,China

    4State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    Keywords: Schottky-barrier field effect transistor,SiC,band structure,short channel effect

    1. Introduction

    In the past few decades, design and development of advanced low dimensional materials in general for electronic applications of post-silicon era have been an extensive research topic.[1,2]Graphene and graphene-like two-dimensional (2D)materials have become some of the most promising candidates to replace the traditional silicon-based materials due to their unique physical, chemical, and electronic properties.[3-10]So far,fabrication and simulation of field effect transistors(FETs)based on 2D materials are one of the latest research focuses in recent years.[11-16]More importantly, with progress of advanced fabrication and measurement technology, sizes of the above 2D FETs are gradually reduced, and the performance is becoming more and more excellent. The recent studies show that the lateral transition-metal dichalcogenides Schottky-barrier FETs(SBFETs)can provide the best performance and meet the standard of the high-performance (HP)transistor summarized by international technology road-map for semiconductors (ITRS) (international technology roadmap for semiconductors,2013 version).[17,18]However,evaluation of their potential applications to work in sub-5 nm size is still in its infancy due to lack of effective methods overcoming the short channel effect.

    If we would further improve the application of 2D materials in FETs,we must explore more diversified methods to overcome the short channel effect.[19,20]Recently,an effective way to solve this problem is to select wide band gap 2D materials as the channel of FETs. The SiC SBFET with Pd contact can effectively reduce the leakage current and just meet the standard of the HP 5 nm transistor.[21]Although the performances of this SiC SBFET can be improved by the gatesource/drain underlap, the channel size has changed a lot,and it is indeed not really a 5 nm FET.[22]Therefore, how to improve the ON-state current of 5 nm FETs as much as possible becomes an important issue for applications of the FETs. Motivated by recent advances in 2D vertical van der Waals heterojunctions,[23-29]in this paper,we preform a firstprinciples study of 5 nm double-gated(DG)SBFETs based on 2D SiC with monolayer(ML)or bilayer(BL)1T-phase MoS2contacts. The calculated transfer characteristics also meet the standard of the high performance transistor summarized by international technology road-map for semiconductors (ITRS,2013 version).

    2. Model and methods

    Fig.1. The detailed structures of DG 5 nm SBFETs based on 2D SiC with(a)monolayer or(b)bilayer 1T-phase MoS2 contacts.

    Figure 1 shows the DG SBFETs based on 2D SiC.The source and the drain are monolayer or bilayer metallic 1T-phase MoS2, which was successfully synthesized experimentally. The channel is 2D SiC and its length (LG) is 5 nm. The corresponding effective oxide thickness (EOT) of each dielectric region was set to 0.41 nm. The supply voltage (VDD) is 0.64 V, which is the bias voltage between the source and the drain. The transfer characteristics are calculated using the density-functional theory(DFT)coupled with the non-equilibrium Green’s function (NEGF) formalism implemented in the QuantumATK code.[30]The exchange and cor-relations were described by the Perdew-Burke-Ernzerhof(PBE) functional under the generalized gradient approximation(GGA)with van der Waals(vdw)correction proposed by Grimme(DFT-D2). The Landauer formula is used to calculated the current.[31]Here,T(E,Vds,Vg)is the transmission coefficient at given gate voltageVgand bias voltageVds,fS/Dare the Fermi-Dirac distribution functions of the source/drain electrodes,andμS/Dare the electrochemical potential of the source/drain electrode.

    3. Results and discussion

    The band structures of the rectangular unit cells of 2D SiC 1T-phase MoS2and SiC/1T-phase MoS2stacking system are present in Fig.2.The corresponding rectangular geometric structures are supplied in the figure. In Fig.2(a),the band gap of rectangular unit cell of 2D SIC is 2.64 eV, which accords with the former experimental and theoretical results.[21,22,32]In Fig.2(b),the Bravais vector of the hexagonal lattice of 1Tphase MoS2is 3.15 ?A,and the calculated band structure shows a metal behavior.A rectangular cell of 1T-phase MoS2are easily adjusted to a rectangular cell of SiC with a small amount of mismatch due to their very similar lattices. The valence bands and the conduction bands of SiC are slightly distorted due to the weak band hybridization in SiC/1T-phase MoS2contacts,as can be seen in Fig.2(c). The Fermi level of 1T-phase MoS2nearly crosses the center of the SiC band gap, indicating the similar electron Schottky barrier height(SBH)and hole SBH.

    Fig.2. Band structures of the rectangular unit cells of(a)SiC,(b)1T-phase MoS2 and(c)SiC/1T-phase MoS2.

    The corresponding transmission spectra of DG SBFETs based on 2D SiC with ML and BL 1T-phase MoS2contacts are shown in Fig.3. The gate and bias voltages are set as zero.The detail geometric structures of AA-stacked, AB-stacked and AC-stacked BL 1T-phase MoS2are shown in Figs.3(b)-3(d).One can find that there is a energy gap of 2.64 eV in every transmission spectrum,which originates from the band gap of 2D SiC(2.64 eV).Moreover,transmission coefficients around the valence band maximum (VBM) of four DG SBFETs are obviously larger than that around the conduction band minimum(CBM).The energy differences between the Fermi level of 1T-phase MoS2and the VBM of the 2D SiC in the transmission spectrum can be considered as the hole SBH of the DG SBFET.[33]In Fig.3(a), the hole SBH of DG 5.1 nm SBFET based on 2D SiC with monolayer 1T-phase MoS2contact is 1.52 eV. In Fig. 3(b), the transmission spectrum shifts to left relative to the Fermi level of the AA-stacked BL 1T-phase MoS2resulting in the increase of hole SBH to 1.64 eV. For the DG 5.1 nm SBFETs based on 2D SiC with AB-stacked and AC-stacked BL 1T-phase MoS2contacts,the transmission spectra move further to the left by the approximate value resulting in the hole SBH increasing to 1.88 eV and 1.87 eV,as shown in Figs.3(c)and 3(d). In addition,the transmission coefficients around the CBM will also show the significant reductions. In other words,bilayer 1T-phase MoS2contacts will greatly affect the SBH and the electronic transport properties of devices compared to ML 1T-phase MoS2contact.The main reason for the changes of the SBH is the different Fermi levels of the bilayer 1T-phase MoS2 contacts under different stacked structures.

    Fig.3. (a)Zero bias transmission spectrum of DG SBFET based on 2D SiC with ML 1T-phase MoS2 contact. Zero bias transmission spectra of DG SBFETs based on 2D SiC with(b)AA-stacked,(c)AB-stacked and(d)AC-stacked BL 1T-phase MoS2 contacts.

    Fig.4. (a)Transfer characteristics of DG SBFETs based on 2D SiC with ML 1T-phase MoS2 contact and AA-stacked BL 1T-phase MoS2. (b)Transfer characteristics of DG 5 nm SBFETs based on 2D SiC with AB-stacked and AC-stacked BL 1T-phase MoS2. ON-state currents are shown in all the figures.

    Figure 4 shows the transfer characteristics in linear and logarithmic forms of all DG SBFETs based on 2D SiC with ML or BL 1T-phase MoS2contacts. OFF current (IOFF) is set at 0.1 μA/μm, and ON-state current (ION) must be larger than 900μA/μm following the stander required by ITRS(2013 version). In the transfer characteristics, the ON-state current corresponds to the current at the gate voltage ofVON(VON=VOFF+VDD).VOFFis the gate voltage ofIOFFandVDDis the supply voltage(0.64 V).In Fig.4(a),the drain current of DG SBFETs based on 2D SiC with monolayer MoS2contact is lower than 10?7μA/μm on zero gate voltage. After applying negative gate voltage, the drain currents will increase slowly first and then rise rapidly after?0.3 V gate voltage. The ON-state current is 921 μA/μm, is slightly higher than the standard required by HP application (900 μA/μm).In addition, the drain currents of DG SBFETs based on 2D SiC with AA-stacked BL 1T-phase MoS2contact also increase slowly first and then rise rapidly after?0.5 V gate voltage.In Fig. 4(a), one can find that the threshold swing value (describing the gate-control ability) of DG SBFETs with AAstacked BL 1T-phase MoS2contact is obviously lower than that of DG SBFETs with ML 1T-phase MoS2contact. Thus,the corresponding ON-state current is 1054μA/μm,which is higher than that of DG SBFETs with ML 1T-phase MoS2contact. However,in Fig.4(b),the threshold swing values of DG SBFETs with AB-stacked and AC-stacked BL 1T-phase MoS2contacts are nearly same with each other. The corresponding ON-state currents are slightly different,even though they have the similar hole SBHs. The ON-state current of DG SBFET with AB-stacked BL 1T-phase MoS2contact is 979 μA/μm.The ON-state current of DG SBFET with AC-stacked BL 1Tphase MoS2contact is 1202 μA/μm, which is largest in four DG SBFETs. Although the BL metallic 1T-phase MoS2contacts in three stacked structures have different effects on the transfer characteristics of DG 2D SiC SBFETs, they all can further raise the ON-state currents of DG SiC-SBFETs compared to the device with the ML 1T-phase MoS2contact.

    Fig. 5. Spectral currents and LDOS of DG SBFETs based on 2D SiC with(a)monolayer 1T-phase MoS2 contact and(b)AA-stacked BL 1Tphase MoS2 at ON-state gate voltages.

    In order to explore the different transfer characteristics of DG SBFETs based on 2D SiC with ML and BL 1T-phase MoS2contacts,we perform analyses on their spectral currents and local density of state (LDOS) at ON-state gate voltages in Figs. 5 and 6. Here, one can see that there is the obvious direct tunneling through the barriers resulting in the drain currents. So, one can find there are three spectral current peaks in the region between theEF(S)andEF(D)leading to the high currents in Fig. 5(a). Although the DG SBFET based on 2D SiC with AA-stacked BL 1T-phase MoS2contact has a larger hole SBH compared to that of the DG SBFET based on 2D SiC with ML1T-phase MoS2contact,the corresponding three spectral current peaks are higher than that of the DG SBFET based on 2D SiC with ML 1T-phase MoS2contact as shown in Fig.5(b). Consequently, the DG SBFET based on 2D SiC with AA-stacked BL 1T-phase MoS2contact has a larger ONstate current (1054 μA/μm) than the ON-state current of the DG SBFET based on 2D SiC with ML 1T-phase MoS2contact (921 μA/μm). The reason for the increase of ON-state current is that the AA-stacked BL 1T-phase MoS2contact has the larger DOS which can provide more incoming wave functions from the source region to the drain region.

    For the DG SBFET based on 2D SiC with AB-stacked and AC-stacked BL 1T-phase MoS2contacts, there are two direct tunneling passageways aroundEF(D) to dominate the drain currents at the ON state resulting in two spectral current peaks in the region between theEF(S) andEF(D) as can be seen from Fig. 6. In Fig. 6(a), two spectral current peaks are nearly the same as high values leading to the big ON-state current (1202 μA/μm) for the DG SBFET based on 2D SiC with AB-stacked BL 1T-phase MoS2contact. Although there still two spectral current peaks for the DG SBFET based on 2D SiC with AC-stacked BL 1T-phase MoS2contact in the region between theEF(S) andEF(D), one of them has a similar large value and the other has a small value compared to that of the DG SBFET based on 2D SiC with AB-stacked BL 1T-phase MoS2contact as shown in Fig. 6(b). As a result,the ON-state current(979μA/μm)is lower than the ON-state current of DG SBFET based on 2D SiC with AB-stacked BL 1T-phase MoS2contact. In other words, the AB-stacked BL 1T-phase MoS2contact has the larger DOS than that of ACstacked BL 1T-phase MoS2contact, which can provide more incoming wave functions from the source to the drain resulting in the higher ON-state current. The bilayer metallic 1T-phase MoS2contacts in three stacking structures all can further raise the ON-state currents of DG SiC-SBFETs in varying degrees.

    Fig. 6. Spectral currents and LDOS of DG SBFETs based on 2D SiC with(a)AB-stacked and(b)AC-stacked BL 1T-phase MoS2 at ON-state gate voltages.

    Benchmarks of performance of DG SBFETs based on 2D SiC with ML and AA-stacked, AB-stacked, AC-stacked BL 1T-phase MoS2contacts are shown in Table 1. ON-state currents (ION/IOFF) of DG SBFETs based on 2D SiC with ML and AA-stacked, AB-stacked, AC-stacked BL 1T-phase MoS2contacts are 921 μA/μm (9.21×103), 1054 μA/μm(1.054×104), 1202 μA/μm (1.202×104), and 979 μA/μm(9.79×103), which all overstep the stander of HP FET for the production year 2028. The intrinsic gate capacitanceCgis calculated from the equation ofCg=?Qch/?VG.[34]Table 1 shows that theCgvalues of four DG SBFETs are 0.181 fF/μm,0.206 fF/μm,0.235 fF/μm,and 0.186 fF/μm. This shows that parametersCgof four FETs are also very satisfactory. In addition, the dynamic power indicator (DPI) and the intrinsic transistor delay timeτare considered as the two other important FET parameters of merit, reflecting the energy and time the FET needs to switch. The DPI per width is calculated by the formula of DPI=(Cg×V2dd)/W, whereWis the channel width.[34]The intrinsic transistor delay timeτcan be calculated by the formulaτ=(Cg×Vdd)/Ids.[34]One can see from Table 1 that the DPIs of four DG SBFETs are 0.074 fJ/μm,0.084 fJ/μm,0.096 fJ/μm,and 0.077 fJ/μm,respectively. Although there are slight differences from each other, the DPIs of four DG SBFETs are far below the standard of the ITRS requirement.The intrinsic transistor delay times of four SBFETs are 0.126 ps, 0.125 ps, 0.125 ps, and 0.122 ps, which are all less than the ITRS (2013 version) requirement of HP FET(0.423 ps). Moreover,one can see that the intrinsic transistor delay times of four SBFETs are nearly same with each other.In other words,the intrinsic transistor delay time is a stable parameter for DG SBFETs based on 2D SiC whatever with ML 1T-phase MoS2contact or with BL 1T-phase MoS2contacts under the different stacked structures.

    Table 1. Benchmarks of performance for DG SBFETs based on 2D SiC with ML and AA-stacked, AB-stacked, AC-stacked BL 1T-phase MoS2 contacts relative to the HP devices standers of the next decades.

    4. Conclusion

    In summary, we have preformed a first-principles study of performances of 5 nm double-gated(DG)Schottky-barrier field effect transistors (SBFETs) based on two-dimensional SiC with monolayer or bilayer metallic 1T-phase MoS2contacts. Because of the wide bandgap of SiC, the corresponding DG SBFETs of 2D SiC with monolayer 1T-phase MoS2contact can weaken the short channel effect. The calculated transfer characteristics also meet the standard of the high performance transistor summarized by ITRS.The corresponding ON-state current is 921μA/μm,which is slightly higher than the standard required by HP application(900μA/μm). Moreover, the bilayer metallic 1T-phase MoS2contacts in three stacking structures all can further raise the ON-state currents of 5 nm DG SiC-SBFETs in varying degrees. The ON-state current of DG SBFET with AC-stacked BL 1T-phase MoS2contact is 1202μA/μm,which is largest in four DG SBFETs.The intrinsic gate capacitance, the dynamic power indicator and the intrinsic transistor delay time of our 2D SiC DG SBFETs are all better than the standard summarized by ITRS.Hence, the above results are very helpful and instructive for the design of short channel transistors in the future.

    猜你喜歡
    范志長青五星
    La preservación del tejido de seda tradicional
    建德五星
    中國自行車(2022年6期)2022-10-29 02:05:38
    In-situ reduction of silver by surface DBD plasma:a novel method for preparing highly effective electromagnetic interference shielding Ag/PET
    守護(hù)那抹“五星紅”
    長青開啟中馬圓夢之旅
    范治斌作品選登
    藝術(shù)家(2017年1期)2017-11-29 17:11:16
    長青 邁步環(huán)保公益
    五星花
    讀寫算(上)(2016年3期)2016-11-07 07:19:23
    長青榮耀三十載
    Analysis for Transm ission of Com posite Structure w ith Graphene Using Equivalent Circuit M odel*
    日本vs欧美在线观看视频| 丁香六月欧美| 亚洲情色 制服丝袜| 可以在线观看毛片的网站| 久久精品亚洲精品国产色婷小说| 成人av一区二区三区在线看| 午夜福利一区二区在线看| 国产一区二区在线av高清观看| 亚洲aⅴ乱码一区二区在线播放 | 18禁裸乳无遮挡免费网站照片 | 亚洲一区二区三区欧美精品| 一a级毛片在线观看| 国产99白浆流出| 在线国产一区二区在线| 天堂影院成人在线观看| 国产亚洲欧美精品永久| 99国产精品一区二区蜜桃av| 亚洲性夜色夜夜综合| 国产精品国产av在线观看| 成人三级黄色视频| 日本欧美视频一区| 叶爱在线成人免费视频播放| 欧美人与性动交α欧美精品济南到| 日韩欧美在线二视频| 欧美日韩国产mv在线观看视频| 一区二区三区激情视频| 国产主播在线观看一区二区| 18禁美女被吸乳视频| 99精品久久久久人妻精品| 免费av中文字幕在线| 黑人操中国人逼视频| 热re99久久精品国产66热6| 一级a爱片免费观看的视频| 国产精品九九99| 一边摸一边抽搐一进一小说| www.精华液| 午夜福利影视在线免费观看| 12—13女人毛片做爰片一| 一区福利在线观看| 亚洲狠狠婷婷综合久久图片| 中文欧美无线码| 欧美丝袜亚洲另类 | 午夜精品在线福利| 亚洲国产中文字幕在线视频| 美女国产高潮福利片在线看| 国产xxxxx性猛交| 国产精品爽爽va在线观看网站 | 激情视频va一区二区三区| 天天影视国产精品| 免费观看人在逋| 国产极品粉嫩免费观看在线| 亚洲色图综合在线观看| 超碰97精品在线观看| 久久精品aⅴ一区二区三区四区| 久久中文字幕人妻熟女| 欧美丝袜亚洲另类 | 亚洲成人免费电影在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久草成人影院| 日本撒尿小便嘘嘘汇集6| 亚洲人成电影免费在线| 午夜福利在线观看吧| 亚洲av熟女| 免费观看人在逋| 黄色视频,在线免费观看| 岛国视频午夜一区免费看| 午夜影院日韩av| 999精品在线视频| 亚洲三区欧美一区| 午夜激情av网站| 国产精品一区二区精品视频观看| 在线观看66精品国产| 少妇 在线观看| 亚洲专区国产一区二区| 精品人妻1区二区| 一级a爱片免费观看的视频| 黄色视频不卡| 满18在线观看网站| 欧美中文日本在线观看视频| av国产精品久久久久影院| 高清欧美精品videossex| 少妇粗大呻吟视频| 88av欧美| 久久午夜亚洲精品久久| av国产精品久久久久影院| 欧美日韩黄片免| 欧美午夜高清在线| 久久精品成人免费网站| 国产aⅴ精品一区二区三区波| 国产日韩一区二区三区精品不卡| 日韩中文字幕欧美一区二区| 在线永久观看黄色视频| www.www免费av| 久久久国产一区二区| 欧美日韩国产mv在线观看视频| 91字幕亚洲| 亚洲熟妇中文字幕五十中出 | 黑人欧美特级aaaaaa片| 精品国产亚洲在线| 亚洲久久久国产精品| 男女下面插进去视频免费观看| 性少妇av在线| 高清欧美精品videossex| 韩国精品一区二区三区| 日韩视频一区二区在线观看| 精品熟女少妇八av免费久了| 亚洲国产欧美网| 午夜视频精品福利| 国产精品二区激情视频| 又大又爽又粗| 两个人看的免费小视频| 国产成+人综合+亚洲专区| 国产伦一二天堂av在线观看| 99久久人妻综合| 一级a爱片免费观看的视频| 一夜夜www| 女警被强在线播放| 夜夜躁狠狠躁天天躁| 香蕉久久夜色| 国产三级在线视频| 日本精品一区二区三区蜜桃| av网站免费在线观看视频| 精品国产一区二区久久| 国产成人啪精品午夜网站| 国产精品一区二区免费欧美| 少妇 在线观看| av欧美777| 69av精品久久久久久| e午夜精品久久久久久久| 亚洲av成人一区二区三| 亚洲人成电影免费在线| 女性被躁到高潮视频| 亚洲国产毛片av蜜桃av| 精品国产乱码久久久久久男人| 国产区一区二久久| 9热在线视频观看99| 国产xxxxx性猛交| 大型av网站在线播放| 成人亚洲精品av一区二区 | 99国产综合亚洲精品| 99精品久久久久人妻精品| 精品一区二区三区av网在线观看| 天天躁夜夜躁狠狠躁躁| 色综合站精品国产| 国产极品粉嫩免费观看在线| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲自偷自拍图片 自拍| 999久久久精品免费观看国产| 亚洲精品久久成人aⅴ小说| 国产av精品麻豆| 亚洲人成电影免费在线| 黑人欧美特级aaaaaa片| 成人国产一区最新在线观看| 99在线人妻在线中文字幕| 桃红色精品国产亚洲av| 一级毛片精品| 亚洲国产精品合色在线| 精品久久久久久,| 成人亚洲精品一区在线观看| 成人国语在线视频| 黑人巨大精品欧美一区二区mp4| 久久精品国产清高在天天线| 别揉我奶头~嗯~啊~动态视频| 中文字幕av电影在线播放| 韩国精品一区二区三区| 丝袜美腿诱惑在线| 一本大道久久a久久精品| 一本综合久久免费| 少妇 在线观看| 精品人妻1区二区| av视频免费观看在线观看| 欧美黑人欧美精品刺激| 视频区欧美日本亚洲| 夜夜爽天天搞| 久99久视频精品免费| 成人国语在线视频| 50天的宝宝边吃奶边哭怎么回事| 看黄色毛片网站| 级片在线观看| 91九色精品人成在线观看| 精品福利观看| av天堂在线播放| 99精品欧美一区二区三区四区| 日韩欧美免费精品| 亚洲精品国产一区二区精华液| 日韩免费高清中文字幕av| 国产99白浆流出| 午夜福利欧美成人| 男人的好看免费观看在线视频 | 国产一区在线观看成人免费| 久久九九热精品免费| 午夜日韩欧美国产| 久久精品国产清高在天天线| 狂野欧美激情性xxxx| 中文亚洲av片在线观看爽| 日韩视频一区二区在线观看| 高潮久久久久久久久久久不卡| 精品久久久久久,| 黄片大片在线免费观看| 欧美 亚洲 国产 日韩一| 国产精品久久久人人做人人爽| 午夜精品久久久久久毛片777| 亚洲 欧美一区二区三区| 国产无遮挡羞羞视频在线观看| 久久精品aⅴ一区二区三区四区| 女性生殖器流出的白浆| 色综合欧美亚洲国产小说| 久久久久久久久中文| 女人被躁到高潮嗷嗷叫费观| 欧美日韩亚洲综合一区二区三区_| 亚洲第一欧美日韩一区二区三区| 中文亚洲av片在线观看爽| 在线免费观看的www视频| 欧美日韩福利视频一区二区| 亚洲国产欧美网| 国产一区在线观看成人免费| 久久久久九九精品影院| 精品久久久久久成人av| 人成视频在线观看免费观看| 村上凉子中文字幕在线| 精品国产一区二区三区四区第35| 亚洲av成人av| 国产av精品麻豆| 国产av又大| 97超级碰碰碰精品色视频在线观看| 少妇的丰满在线观看| 精品久久久久久久久久免费视频 | avwww免费| 国产一区二区在线av高清观看| 久久亚洲真实| 日韩一卡2卡3卡4卡2021年| 久久青草综合色| 一边摸一边抽搐一进一出视频| 色哟哟哟哟哟哟| 99re在线观看精品视频| 在线天堂中文资源库| 十八禁人妻一区二区| 精品欧美一区二区三区在线| 亚洲va日本ⅴa欧美va伊人久久| 国产主播在线观看一区二区| 精品无人区乱码1区二区| 久久精品亚洲熟妇少妇任你| 精品乱码久久久久久99久播| 国产熟女午夜一区二区三区| 日韩精品中文字幕看吧| 久久久久久久午夜电影 | 黄网站色视频无遮挡免费观看| 日韩三级视频一区二区三区| 十分钟在线观看高清视频www| 国产精品免费视频内射| 亚洲片人在线观看| 国产亚洲精品久久久久5区| 国产单亲对白刺激| 可以在线观看毛片的网站| 国产精品98久久久久久宅男小说| 人人妻,人人澡人人爽秒播| 亚洲av美国av| 一个人观看的视频www高清免费观看 | 午夜视频精品福利| 亚洲男人天堂网一区| 亚洲欧美一区二区三区黑人| 精品无人区乱码1区二区| 黄片播放在线免费| 亚洲中文日韩欧美视频| 91字幕亚洲| 国产亚洲精品久久久久5区| 久久精品国产99精品国产亚洲性色 | a级毛片黄视频| 日韩欧美国产一区二区入口| 80岁老熟妇乱子伦牲交| 日本a在线网址| 又大又爽又粗| 欧美一级毛片孕妇| 久久久久久久久中文| 麻豆成人av在线观看| 亚洲欧美日韩无卡精品| 91成年电影在线观看| 亚洲五月婷婷丁香| 老司机午夜福利在线观看视频| 丝袜人妻中文字幕| 精品国产乱子伦一区二区三区| 露出奶头的视频| 99热只有精品国产| 中亚洲国语对白在线视频| 精品国产一区二区久久| 国产成人免费无遮挡视频| 国产成人欧美| 久久天堂一区二区三区四区| 久久精品人人爽人人爽视色| 一个人观看的视频www高清免费观看 | 国产麻豆69| 亚洲在线自拍视频| 亚洲五月色婷婷综合| 国产一卡二卡三卡精品| 后天国语完整版免费观看| 91九色精品人成在线观看| 国产一区二区三区综合在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产av一区二区精品久久| bbb黄色大片| 一二三四在线观看免费中文在| 国产成人精品在线电影| 制服人妻中文乱码| 国产亚洲精品第一综合不卡| 久久性视频一级片| 国产精品99久久99久久久不卡| 99热只有精品国产| 亚洲男人的天堂狠狠| 男人舔女人的私密视频| a在线观看视频网站| 无限看片的www在线观看| 91精品三级在线观看| 精品日产1卡2卡| 18禁观看日本| 91国产中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久亚洲av毛片大全| 黄片大片在线免费观看| 热99国产精品久久久久久7| 国产黄a三级三级三级人| 午夜成年电影在线免费观看| 国产深夜福利视频在线观看| 午夜免费激情av| 老司机深夜福利视频在线观看| 岛国视频午夜一区免费看| 热99re8久久精品国产| av免费在线观看网站| 五月开心婷婷网| 正在播放国产对白刺激| 男人舔女人下体高潮全视频| 亚洲成a人片在线一区二区| 亚洲欧美精品综合一区二区三区| 91成年电影在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美在线黄色| 夜夜夜夜夜久久久久| 不卡一级毛片| 午夜免费激情av| 亚洲va日本ⅴa欧美va伊人久久| 天堂√8在线中文| 我的亚洲天堂| 天堂√8在线中文| 国产1区2区3区精品| 久久久久亚洲av毛片大全| 久久香蕉激情| 自线自在国产av| 精品熟女少妇八av免费久了| 嫩草影视91久久| 国产欧美日韩综合在线一区二区| 91字幕亚洲| 99热国产这里只有精品6| 女人被躁到高潮嗷嗷叫费观| 黄色片一级片一级黄色片| 日韩免费av在线播放| 99在线视频只有这里精品首页| 国产一区二区三区视频了| 成年人黄色毛片网站| 午夜两性在线视频| 午夜福利在线观看吧| 在线观看66精品国产| 18美女黄网站色大片免费观看| 精品福利观看| 丝袜人妻中文字幕| 999久久久精品免费观看国产| 成人手机av| 黄网站色视频无遮挡免费观看| 久久久久九九精品影院| 黄色 视频免费看| 波多野结衣一区麻豆| 精品国产超薄肉色丝袜足j| 国产色视频综合| 999精品在线视频| 99在线视频只有这里精品首页| 丝袜在线中文字幕| 在线观看免费午夜福利视频| 99久久人妻综合| av片东京热男人的天堂| 亚洲第一av免费看| 国产精品 欧美亚洲| 婷婷六月久久综合丁香| 色综合欧美亚洲国产小说| 亚洲国产欧美日韩在线播放| 在线观看免费日韩欧美大片| 亚洲成人久久性| 国产精品久久久久久人妻精品电影| 中文字幕最新亚洲高清| 男女床上黄色一级片免费看| 久久国产亚洲av麻豆专区| 91成年电影在线观看| 在线观看舔阴道视频| 精品乱码久久久久久99久播| av国产精品久久久久影院| 五月开心婷婷网| 精品卡一卡二卡四卡免费| 99国产综合亚洲精品| 中文字幕精品免费在线观看视频| 精品福利永久在线观看| 黄网站色视频无遮挡免费观看| 欧美精品一区二区免费开放| 12—13女人毛片做爰片一| 国产国语露脸激情在线看| 婷婷精品国产亚洲av在线| 夜夜夜夜夜久久久久| 丁香欧美五月| 法律面前人人平等表现在哪些方面| 少妇被粗大的猛进出69影院| 亚洲情色 制服丝袜| 99在线人妻在线中文字幕| 一级毛片高清免费大全| 日韩视频一区二区在线观看| 欧美激情久久久久久爽电影 | av片东京热男人的天堂| 亚洲国产精品sss在线观看 | 亚洲成人免费av在线播放| 91麻豆av在线| 18禁国产床啪视频网站| 日日爽夜夜爽网站| 久久人妻福利社区极品人妻图片| 不卡av一区二区三区| 久久亚洲真实| 一区二区三区激情视频| 99久久国产精品久久久| 精品久久久久久,| 熟女少妇亚洲综合色aaa.| 精品国产美女av久久久久小说| 国产人伦9x9x在线观看| 19禁男女啪啪无遮挡网站| 在线观看免费高清a一片| 亚洲人成77777在线视频| 国产成+人综合+亚洲专区| 大型av网站在线播放| 侵犯人妻中文字幕一二三四区| 成年人黄色毛片网站| 大型黄色视频在线免费观看| 精品久久蜜臀av无| 午夜免费观看网址| 丁香六月欧美| 51午夜福利影视在线观看| 国产精品1区2区在线观看.| 91国产中文字幕| 天天躁夜夜躁狠狠躁躁| 大码成人一级视频| 国产精品免费一区二区三区在线| 99国产精品99久久久久| 日本免费a在线| 亚洲av五月六月丁香网| 丰满迷人的少妇在线观看| 国产欧美日韩一区二区三区在线| 黄片大片在线免费观看| 老熟妇乱子伦视频在线观看| 国产av精品麻豆| 国产精品电影一区二区三区| 他把我摸到了高潮在线观看| 精品午夜福利视频在线观看一区| 亚洲av成人不卡在线观看播放网| 交换朋友夫妻互换小说| 色综合婷婷激情| 国产一区二区三区综合在线观看| 两个人看的免费小视频| 一进一出好大好爽视频| 丰满人妻熟妇乱又伦精品不卡| 在线观看一区二区三区| aaaaa片日本免费| 麻豆成人av在线观看| 午夜福利在线观看吧| 国产精品一区二区精品视频观看| 亚洲一码二码三码区别大吗| 日韩精品中文字幕看吧| 欧美乱妇无乱码| 国产深夜福利视频在线观看| 熟女少妇亚洲综合色aaa.| 美女高潮喷水抽搐中文字幕| 黑人欧美特级aaaaaa片| 在线免费观看的www视频| 亚洲成国产人片在线观看| 日韩欧美在线二视频| 巨乳人妻的诱惑在线观看| 免费不卡黄色视频| 成人国产一区最新在线观看| 成年人黄色毛片网站| 国产精品98久久久久久宅男小说| 高清黄色对白视频在线免费看| 黑人操中国人逼视频| 露出奶头的视频| 男男h啪啪无遮挡| 天堂√8在线中文| 看免费av毛片| 欧美日本中文国产一区发布| 法律面前人人平等表现在哪些方面| 一级a爱片免费观看的视频| 国产成人欧美在线观看| 91成人精品电影| 两性夫妻黄色片| 超碰97精品在线观看| 午夜精品在线福利| 亚洲精品中文字幕在线视频| 真人一进一出gif抽搐免费| 色哟哟哟哟哟哟| 一区在线观看完整版| av免费在线观看网站| 亚洲精华国产精华精| av免费在线观看网站| 在线看a的网站| 又黄又爽又免费观看的视频| 精品福利永久在线观看| 午夜激情av网站| 亚洲一区二区三区欧美精品| 女同久久另类99精品国产91| 久久久久久久久久久久大奶| 久热爱精品视频在线9| 国产精品 国内视频| 在线观看66精品国产| 超色免费av| 久久香蕉精品热| 国产色视频综合| 精品国产超薄肉色丝袜足j| 国产av又大| 欧美日韩黄片免| 真人一进一出gif抽搐免费| 久久婷婷成人综合色麻豆| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品综合久久久久久久免费 | 亚洲精品美女久久久久99蜜臀| 日韩大尺度精品在线看网址 | 久久精品国产亚洲av高清一级| 99国产精品一区二区三区| 国产伦人伦偷精品视频| 又黄又爽又免费观看的视频| 国产精品久久久久久人妻精品电影| av免费在线观看网站| 桃红色精品国产亚洲av| 国产成人欧美| 黄色片一级片一级黄色片| av天堂在线播放| 桃色一区二区三区在线观看| 天天影视国产精品| 免费久久久久久久精品成人欧美视频| 少妇被粗大的猛进出69影院| 亚洲情色 制服丝袜| 国产一区二区激情短视频| 亚洲午夜理论影院| 国产有黄有色有爽视频| 欧美激情久久久久久爽电影 | 搡老乐熟女国产| 极品教师在线免费播放| 日本黄色视频三级网站网址| 可以免费在线观看a视频的电影网站| 国产成年人精品一区二区 | 嫁个100分男人电影在线观看| 国产男靠女视频免费网站| 丰满迷人的少妇在线观看| 免费女性裸体啪啪无遮挡网站| 热re99久久精品国产66热6| 中出人妻视频一区二区| 国产黄a三级三级三级人| 欧美日韩av久久| 无人区码免费观看不卡| 午夜免费观看网址| 无限看片的www在线观看| 制服诱惑二区| 日韩精品免费视频一区二区三区| 中文字幕高清在线视频| 中亚洲国语对白在线视频| 日本五十路高清| av天堂久久9| 99国产综合亚洲精品| 久久久久久免费高清国产稀缺| 性少妇av在线| 中文字幕人妻丝袜一区二区| 曰老女人黄片| 三级毛片av免费| 他把我摸到了高潮在线观看| 国产成+人综合+亚洲专区| 欧美乱妇无乱码| av在线播放免费不卡| 99国产精品99久久久久| 国产成人影院久久av| 久久人人精品亚洲av| xxxhd国产人妻xxx| 国产精品 国内视频| 亚洲精品一区av在线观看| 亚洲男人的天堂狠狠| 国产三级黄色录像| 国产亚洲av高清不卡| 精品久久蜜臀av无| 免费高清视频大片| 国产精品一区二区精品视频观看| 两人在一起打扑克的视频| www.999成人在线观看| 不卡av一区二区三区| 18禁黄网站禁片午夜丰满| 亚洲精品一二三| 欧美国产精品va在线观看不卡| 欧美人与性动交α欧美精品济南到| av在线播放免费不卡| 看黄色毛片网站| 又大又爽又粗| 国产真人三级小视频在线观看| 怎么达到女性高潮| 色精品久久人妻99蜜桃| 亚洲少妇的诱惑av| 久久久国产一区二区| 亚洲av电影在线进入| 超碰97精品在线观看| √禁漫天堂资源中文www| 国产有黄有色有爽视频| 国产精品综合久久久久久久免费 | 50天的宝宝边吃奶边哭怎么回事| 亚洲狠狠婷婷综合久久图片| 国产精品1区2区在线观看.| 久久香蕉激情| 日本欧美视频一区| 精品久久久久久久毛片微露脸| 黄色怎么调成土黄色| 久久久国产精品麻豆|