• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Fouling Mechanism of Ceramic Membranes Used for Recovering TS-1 Catalysts*

    2009-05-14 08:24:18ZHONGZhaoxiang仲兆祥LIDongyan李冬燕LIUXin劉馨XINGWeihong邢衛(wèi)紅andXUNanping徐南平
    關(guān)鍵詞:南平

    ZHONG Zhaoxiang (仲兆祥), LI Dongyan (李冬燕), LIU Xin (劉馨), XING Weihong (邢衛(wèi)紅),** and XU Nanping (徐南平)

    ?

    The Fouling Mechanism of Ceramic Membranes Used for Recovering TS-1 Catalysts*

    ZHONG Zhaoxiang (仲兆祥)1, LI Dongyan (李冬燕)2, LIU Xin (劉馨)1, XING Weihong (邢衛(wèi)紅)1,** and XU Nanping (徐南平)1

    1State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China2Chemical Engineering Department, Nanjing College of Chemical Technology, Nanjing 210048, China

    Ceramic ultrafiltration membranes were used to separate titanium silicalite-1 (TS-1) catalysts from the slurry of catalytic ammoximation of cyclohexanone to oxime. Silica was shown to have a great effect on membrane fouling in the alkaline environment of this system. In the ammoximation system, there are three main silica sources, which are residual silica on the catalyst particles surface during preparation, silica dissolved from TS-1 catalyst particles by ammonia solvent, and silica sol added into the reaction slurry to inhibit the dissolution erosion of the TS-1 catalyst. The silica dissolved by ammonia has been proved to influence membrane fouling most among the three silica sources. This was because the amount of silica dissolved by ammonia was the largest, and the polymerization of silica monomers at high concentration caused colloid particles formation, which led to a dense cake layer depositing on the membrane surface. Meanwhile, the size reduction of catalyst particles caused by alkaline dissolution also increased specific resistances of cake layers.

    TS-1 catalyst, ceramic membrane, membrane fouling

    1 Introduction

    Cyclohexanone oxime is a primary intermediate in producing-caprolactam,which is an important chemical [1]. In 1983, Taramasso. [2] first synthesized titanium silicates successfully, and then, the Italian company Enichem developed a new method of catalytic direct ammoximation of cyclohexanone with NH3/H2O2to the oxime on titanium silicalite-1 (TS-1) catalysts [3]. However, the activity of TS-1 catalyst decreased much after a long period of operation [4]. Petrini. [5-7] proved that the dissolution erosion of silicon and titanium from the TS-1 catalyst caused by ammonia solvent was the primary factor leading to deactivation of the catalyst. So in production, besides the reactants and chemical solvents, a certain content of silica sol additive was also added into the reaction system to inhibit the dissolution of TS-1 molecular sieve in the alkaline environment [8].

    A major difficulty in the separation of TS-1 particles from reaction slurry arises because TS-1 particles are too fine to be removed by gravity settling and porous tube filtration, which are often used to separate catalysts in industrial application [9]. Microfiltration (MF) and ultrafiltration (UF) have emerged as useful processes for separation of fine particles, microorganisms, and emulsion droplets. Ceramic ultrafiltration membrane was used to recover the ultra-fine catalyst particles [10]. However, the membranes tend to be fouled during the separation of reaction slurry. For the system of cyclohexanone ammoximation, the fouling materials have been determined to include organic matter, fine particles, impurities, and the added silica sol mentioned above. And the mechanism of membrane fouling could be the formation of dense cake on the membrane surface, adsorption of silica additive, pore plugging,[10]. The silica has been found to have a great effect on membrane fouling in water treatment processes [11-13]. The type and extent of silica fouling depends on the conditions of system, such as concentration, pH of feed solution, temperature, and presence of some divalent captions,[14-17].

    Our previous works have suggested that silica played an important role in membrane fouling in the production of cyclohexanone oxime [10]. However, what and how silica acts in this system are still not very clear. In this study, the effects of different silica sources and solution environment on the membrane fouling were investigated in detail.

    2 Experimental

    2.1 Materials

    The tested stock solutions contained water, ammonia (Shanghai Chemical Reagents Co. Ltd., China), and silica sol additive (Yueyang Wenli Industrial Co. Ltd., China). The concentration of TS-1 catalysts (Research Institute of Petroleum Processing, China) was 30 g·L-1.

    The ultrafiltration membrane used in the experiment was a multi-channel tubular ceramic membrane (0.5 m long, 19 channels of 4.0 mm inner diameter) supplied by Nanjing Jiusi High-Tech Co. Ltd., China. Its nominal pore size was 0.05 μm and the filtration area was 0.12 m2. The membrane was composed of a top layer of ZrO2and a support layer of α-Al2O3.

    2.2 Experimental methods and procedures

    The experimental setup was constructed by stainless steel and comprised a recirculation loop (Fig. 1). The recirculation loop was composed of a 20 L reaction tank (and jacketed for temperature control), two flowmeters, a centrifugal pump, a membrane module, and the accessories of pressure gauges, valves, and pipe.

    Figure 1 Schematic diagram of the crossflow filtration equipment

    1—feed tank; 2—sampling port; 3—centrifugal pump; 4,6—rotameter; 5—membrane module; P1, P2—pressure gauges; V1-V6—valves

    The crossflow filtration was run at a constant temperature of 353 K, crossflow velocity of 3 m·s-1, and trans-membrane pressure of 0.1 MPa. The feed suspension was maintained at a constant volume by recycling the permeation back into the reaction tank. After each run, the tank was emptied, the system was thoroughly rinsed with deionized water to remove residual process solution, the membrane was cleaned by circulating 1% (mass concentration) NaOH (Shanghai Chemical Reagents Co. Ltd, China) solution and 1% (by volume) nitric acid (Shanghai Chemical Reagents Co. Ltd, China) solution at 353 K for several hours with the permeate line open. The apparatus was then rinsed with deionized water until the pH returned to 7. In order to ensure that the experiments had good reproducibility, the pure water flux (PWF) was measured using deionized water after every cleaning operation. The PWF measurement showed that the membrane could be fully restored.

    Adsorption test was conducted by placing the TS-1 particles in silica sol solution. The initial silica concentration was 50 mg·L-1. The TS-1 particles concentration added to the solution was 30 g·L-1[10]. The solution was stirred to prevent precipitation and the temperature was kept 353 K. The solution samples were centrifuged to remove TS-1 particles, and then, analyzed by inductively coupled plasma (ICP) (Optima2000 DV, Perkin Elmer, USA) to determine the concentration of silica.

    3 Results and Discussion

    3.1 Effect of silica on membrane fouling

    Adsorption measurements showed that silica concentration decreased quickly because of the adsorption of silica to TS-1 particles (Fig. 2). It is well known that molecular sieves are often used as adsorbents in a variety of industrial applications because of their large surface area [19], meanwhile silica sol is a polymer in the colloidal state and has high surface energy and bonding strength [20]. So, when the silica sol was added into the TS-1 suspension, the colloidal silica would be readily adsorbed on the surfaces of TS-1 particles present in suspension or cake layer. For the membrane filtration of the silica-contained solution, therefore, the pore size of the cake layer decrease gradually because of the adsorbed silica on the TS-1 particles embedded in the cake layer, which essentially lead to a low permeability. Fig. 3 shows SEM pictures taken from the fresh membrane and fouled membrane. It seems that a dense cake layer is formed on the fouled membrane surface.

    Figure 2 Adsorption of silica sol by TS-1. time

    3.2 Effect of silica sources on the filtration

    Figure 3 SEM pictures of membrane surface

    Besides the addition of silica sol added into the reaction slurry to inhibit the dissolution erosion of the TS-1 catalyst, there are two other silica sources in this system: residual silica on the fresh catalyst particles surface during preparation [21], and silica dissolved from TS-1 catalyst particles by ammonia solvents. The residual silica on the catalyst particles surface can be removed by nitric acid. The filtration experiments of catalyst particles with or without pre-treatment by nitric acid have been performed, and the results were shown in Fig. 4. As shown in Fig. 4, the flux of filtrating solution containing fresh catalysts was lower than that of the solution containing pretreated catalysts. During the filtration, the residual silica on the catalyst particles surface became the binder of particles and formed dense cake layer [22, 23]. Therefore, it is necessary to remove residual silica on the particles before being applied for production.

    Figure 4 Flux. operation time with or without treatment by nitric acid [3% (by mass), 0.1 MPa, 3 m·s-1, 80°C]

    ○?TS-1 treated by nitric acid;□?TS-1 untreated by nitric acid

    Three different suspensions of pre-treated TS-1 particles in water, ammonia solution, and silica sol solution were filtrated respectively to investigate the effect of different silica sources on membrane fouling. The plots of flux ratio. operation time under different solution conditions are shown in Fig. 5. The results showed that the membrane flux of TS-1 only declined relatively slowly compared with the other two cases. The stable flux was found to be approximately 91% of the initial flux. And the membrane fouling in ammonia and silica sol solutions was more serious than that in water. For example, the membrane flux under ammonia condition after filtration for 8 h was only approximately 60% of the initial flux.

    Figure 5 Variation of flux of different solution conditions [3% (by mass), 0.1 MPa, 3 m·s-1, 80°C]

    ○?TS-1 only;□?TS-1+silica sol;△?TS-1+ammonia

    A resistances analysis of these three filtration processes was calculated according to the article [24], and the results were shown in Table 1. The results showed that cake layer resistances were the main resistance for three solution conditions, especially for ammonia condition, which implies that the densest cake layer is formed in ammonia system.

    Table 1 Ratio of filtration resistance in different solution conditions

    Note:t, total resistance of fouled membrane;c, resistance of cake layer;p, resistance of pore blockage;m, resistance of new membrane.

    3.3 Effect of silica forms on the filtration

    Figure 6 The schematic representation of the three states of silica as monomer, polymer and colloid

    The concentrations of silica in different solutions were shown in Fig. 7. It showed that the silica sol solution contained mainly silica colloids. The content of total silica dissolved in water was too low to polymerize, so the concentration of monomer and total silica of water were close. By contrast, the total silica under ammonia condition was very high, which reached to approximately 730 mg·L-1in 8 h. Because of high concentration, silica molecules had much more chance to meet each other, which promoted the monomer silica to polymerize [26].

    Figure 7 Total and monomer silica concentration of different solution

    The polymerization of silica correlates significantly to the size of colloids. The size of silica colloids were shown in Fig. 8. It showed that colloids in ammonia solution had a wide size distribution. This could ascribe to the fact that the high pH value of 12 and high concentration of silica were unfavorable to form colloids particles with uniform size [27, 28]. It seemed that mean size of particles was approximately 260 nm after 8 h. By contrast, the silica sol added into the slurry had a narrow size distribution with the mean size of only approximately 30 nm. Bringing together the consideration of Fig. 5, it might imply that the large-size silica colloids have strong influence on membrane flux. According to some reports, organic matter with high molecular weight (w) also influences membrane fouling greater than low one [29, 30]. Based on the experimental results above, it can be explained that silica sol with big size will constrict pores of cake layer and membrane in a great extent, which leads to a denser cake layer and more serious membrane pore plugging as compared with the silica sol with small size.

    Figure 8 The size distribution of silica in different solutions

    □?silica sol solution;○?ammonia solution

    3.4 Effect of the dissolution on the size of TS-1 particles

    As we know, the serious dissolution of silica from the TS-1 catalyst might influence the size of particles. In this study, TS-1 particles were soaked in simulated industrial feed for seven days. The samples were measured to investigate the change of particle size. As shown in Fig. 9, after soaking for seven days, the mean size decreased from 0.47 μm to 0.37 μm. While in industrial production, TS-1 catalyst will be used for a long period and be gradually dissolved by ammonia to a greater extent in a real industrial feed. Based on the analysis with K-C equation [31], it can be concluded that the resistance of cake layer formed with small particles is high. Furthermore, the small particles could more easily enter the membrane pores and lead to pore plugging compared with big particles.

    Figure 9 Mean particle size of TS-1 particleoperating time

    4 Conclusions

    Silica played an important role in membrane fouling in the system of catalytic ammoximation of cyclohexanone to oxime. In this system, silica from different sources had different concentration and forms of composition. The content of silica dissolved in the ammonia environment was the highest, and the great extent of polymerization of silica lead to colloid particles formation, which had a great influence on membrane fouling. The size decrease of catalyst particles for alkaline dissolution also increased specific resistances of cake layers. Because deactivated TS-1 catalysts are often replaced by adding new TS-1 catalysts in industrial application, residual silica on the catalyst will accumulate in the system, leading to a significant flux decline after a long-time filtration. Therefore, TS-1 catalysts should be pre-treated by nitric acid to reduce membrane fouling caused by silica adsorption on catalyst surfaces. It is necessary to develop new anti-dissolution additives to the ammoximation system instead of silica sol.

    1 Cesana, A., Mantegazza, M.A., Pastori, M., “A study of the organic by-products in the cyclohexanone ammoximation”,..., 117, 367-373 (1997)

    2 Taramasso, M., Perego, G., Notari, B., “Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides”, U.S. Pat., 4410501 (1993).

    3 Rpffia, P., Padovan, M., Moretti, E., De Albetti, G., “Catalytic process for preparing cyclohexanone-oxime”, EP Pat., 0208311 (1987).

    4 Zhang, X.J., Wang, Y., Xin, F., “Coke deposition and characterization on titanium silicalite-1 catalyst in cyclohexanone ammoximation”,..:., 307 (2/3), 222-230 (2006).

    5 Petrini, G., Cesana, A., Alberti, G.D., Genoni, F., Leofanti, G., Padovan, M., Paparatto, G., Roffia, P., “Deactivation phenomena on Ti-silicalite”,...., 61, 761-766 (1991).

    6 Liu, N., Guo, H.C., Wang, X.S., Chen, L.X., Chen, Y.Y., “Hydrothermostability of titanium silicate TS-1 zeolite in environment of cyclohexanone ammoxidation”,..., 24 (6), 441-446 (2003).

    7 Sun, B., “Study on dissolution erosion of titanium silicalite zeolite in cyclohehanone ammoximation”,..., 36 (11), 54-58 (2005). (in Chinese)

    8 Wu, W., Sun, B., Li, Y.X., Chen, S.B., Wang, E.Q. Zhang, S.Z., “Process for ammoximation of carbonyl compounds”, U.S. Pat., 20050215810 (2005).

    9 Fu, S.B., Wang, H.B., Xu, F.H, Zhu, Z.H., “Cyclic separation of titanium silicalite-1 catalysts in their catalytic reactions”, CN Pat., 00113447.7 (2003).

    10 Zhong, Z.X., Xing, W.H., Liu, X., Jin, W.Q., Xu, N.P., “Fouling and regeneration of ceramic membranes used in recovering titanium silicalite-1 catalysts”,..., 301 (1-2), 67-75 (2007).

    11 Sahachaiyunta, P., Koo, T., Sheikholeslami, R., “Effect of several inorganic species on silica fouling in RO membranes”,, 144, 373-378 (2002).

    12 Bremere, I., Kennedy, M., Mhiyo, S., Jaljuli, A., Witkamp, G.J., Schippers, J., “Prevention of silica scale in membrane systems: removal of monomer and polymer silica”,, 132, 89-100 (2000).

    13 Sheikholeslami, R., Tan, S., “Effects of water duality on silica fouling of desalination plants”,, 126, 267-280 (1999).

    14 Sch?fer, A.I., Schwicker, U., Fischer, M.M., Fane, A.G., Waite, T.D., “Microfiltration of colloids and natural organic matter”,..., 171 (2), 151-172 (2000).

    15 Amy, G., Cho, J., “Interactions between natural organic matter (nom) and membranes: Rejection and fouling”,..., 40 (9), 131-139 (1999).

    16 Braghetta, A., DiGiano, F.A., Ball, W.P., “NOM accumulation at NF membrane surface: Impact of chemistry and shear”,..., 124, 1087-1098 (1998).

    17 Jucker, M.M., Clark, J., “Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes”,..., 97, 37-52 (1994).

    18 Semiat, R., Sutzkover, I., Hasson, D., “Scaling of RO membranes from silica supersaturated solutions”,, 157 (1-3), 169-191 (2003).

    19 Lee, G.D., Jung, S.K., Jeong, Y.J., Park, J.H., Lim, K.T., Ahn, B.H., Hong, S.S., “Photocatalytic decomposition of 4-nitrophenol over titanium silicalite (TS-1) catalysts”,..,, 239 (1/2), 197-208 (2003).

    20 Bergna, H.E., Roberts, W.O., Colloidal Silica: Fundamentals and Applications, CRC Taylor & Francis, New York (2006).

    21 Wittmann, G., Demeestere, K., Dombi, A., “Preparation, structural characterization and photocatalytic activity of mesoporous Ti-silicates”,.., 61 (1/2), 47-57 (2005).

    22 Zhang, M.M., Li, C., Benjamin, M.M., Chang, Y.J., “Fouling and natural organic matter removal in adsorbent/membrane systems for drinking water treatment”,..., 37 (8), 1663-1669 (2003).

    23 Lee, S.A., Choo, K.H., Lee, C.H., Lee, H.I., Hyeon, T., Choi, W., Kwon, H.H., “Use of ultrafiltration membranes for the separation of TiO2photocatalysts in drinking water treatment”,...., 40 (7), 1712-1719 (2001).

    24 Ousman, M., Bennasar, M., “Determination of various hydraulic resistances during cross-flow filtration of a starch grain suspension through inorganic membranes”,..., 105 (1), 1-21 (1995).

    25 Sj?berg, S., “Silica in aqueous environments”,.-., 196, 51-57 (1996).

    26 Chang, S.M., Lee, M., Kim, W.S., “Preparation of large monodispersed spherical silica particles using seed particle growth”,...., 286 (2), 536-542 (2005).

    27 Adamczyk, Z., Jachimska, B., Kolasińska, M., “Structure of colloid silica determined by viscosity measurements”,...., 273 (2), 668-674 (2004)

    28 Bengoa, J.F., Gallegos, N.G., Marchetti, S.G., Alvarez, A.M., Cagnoli, M.V., Yeramián, A.A., “Influence of TS-1 structural properties and operation conditions on benzene catalytic oxidation with H2O2”,., 24 (4-6) ,163-172 (1998).

    29 Lee, N.H., Amy, G., Lozier, J., “Understanding natural organic matter fouling in low-pressure membrane filtration”,, 178 (1-3), 85-93 (2005).

    30 Son, H.J., Son, Y.D., Roh, J.S., Jik, W., Sin, P.S., Jung, C.W., Kang, L.S., “Application of MIEX?pre-treatment for ultrafiltration membrane process for NOM removal and fouling reduction”,.., 5 (5), 15-24 (2005).

    31 Altmann, J., Ripperger, S., “Particle deposition and layer formation at the crossflow microfiltration”,..., 124 (1), 119-128 (1997).

    2008-09-03,

    2008-10-27.

    the National Basic Research Program of China (2009CB623406), the National Natural Science Foundation of China (20806038), the Natural Science Foundation of Jiangsu Province (BK2008504), the National Science Foundation for Postdoctoral Scientists of China (20070421005) and Jiangsu Planned Projects for Postdoctoral Research Funds (0702020B).

    ** To whom correspondence should be addressed. E-mail: xingwh@njut.edu.cn

    猜你喜歡
    南平
    南平檢察院婦聯(lián)共建合作機(jī)制保護(hù)婦女兒童權(quán)益
    海峽姐妹(2020年12期)2021-01-18 05:53:28
    徐南平一行到晉中國(guó)家農(nóng)高區(qū)調(diào)研
    南平:婦聯(lián)干部當(dāng)好“五員”助力婦女脫貧增收
    海峽姐妹(2020年6期)2020-07-25 01:26:04
    改革開放初期,南平紡織廠女工在紡紗。
    原來(lái)它不是小偷
    南平動(dòng)物園游記
    基于CBERS數(shù)據(jù)的福建南平地質(zhì)災(zāi)害動(dòng)態(tài)遙感解譯
    Effect of the Para-substituent of the Tridentate Pyridine-based Ru(II) Complex upon the Catalytic Activity in Transfer Hydrogenation*
    Investigation of Mg2+/Li+ Separation by Nanofiltration*
    Model Study on a Submerged Catalysis/Membrane Filtration System for Phenol Hydroxylation Catalyzed by TS-1*
    美女扒开内裤让男人捅视频| 制服诱惑二区| 久久精品夜夜夜夜夜久久蜜豆 | 午夜成年电影在线免费观看| 精品熟女少妇八av免费久了| 精品一区二区三区四区五区乱码| 国产久久久一区二区三区| 欧美一级a爱片免费观看看 | 国产亚洲欧美在线一区二区| 91国产中文字幕| 狂野欧美白嫩少妇大欣赏| 色老头精品视频在线观看| 欧美日韩黄片免| 欧美+亚洲+日韩+国产| 久久精品aⅴ一区二区三区四区| 欧美性猛交黑人性爽| 欧美在线一区亚洲| 女警被强在线播放| bbb黄色大片| 欧洲精品卡2卡3卡4卡5卡区| 久久久久免费精品人妻一区二区| 女人高潮潮喷娇喘18禁视频| 在线观看美女被高潮喷水网站 | 九色国产91popny在线| 国产熟女xx| 一区二区三区激情视频| 午夜福利欧美成人| 操出白浆在线播放| 欧美大码av| 久久久久久亚洲精品国产蜜桃av| 国产av麻豆久久久久久久| 婷婷精品国产亚洲av| 国产三级中文精品| 人人妻人人澡欧美一区二区| АⅤ资源中文在线天堂| 久久久久九九精品影院| 蜜桃久久精品国产亚洲av| 亚洲中文日韩欧美视频| 一级黄色大片毛片| 亚洲av成人不卡在线观看播放网| 亚洲欧美日韩高清专用| www.自偷自拍.com| 国产私拍福利视频在线观看| 免费搜索国产男女视频| 成年免费大片在线观看| 啦啦啦观看免费观看视频高清| 好男人电影高清在线观看| 国产欧美日韩一区二区三| av超薄肉色丝袜交足视频| 久久这里只有精品19| 国产片内射在线| 日韩欧美一区二区三区在线观看| 国产成人精品久久二区二区91| 99久久国产精品久久久| 九色国产91popny在线| 19禁男女啪啪无遮挡网站| 久久精品国产亚洲av高清一级| bbb黄色大片| 精品久久久久久久久久免费视频| 欧美成人午夜精品| 啦啦啦免费观看视频1| 欧美日韩中文字幕国产精品一区二区三区| 1024手机看黄色片| 成人18禁在线播放| 亚洲专区字幕在线| 成人国产一区最新在线观看| 变态另类丝袜制服| 日日干狠狠操夜夜爽| 精品国产乱码久久久久久男人| 亚洲五月婷婷丁香| 亚洲男人的天堂狠狠| 在线观看舔阴道视频| 老司机靠b影院| 国产一区二区在线观看日韩 | 18美女黄网站色大片免费观看| 欧美中文日本在线观看视频| 一本综合久久免费| 少妇粗大呻吟视频| 国产私拍福利视频在线观看| a在线观看视频网站| 色综合欧美亚洲国产小说| 男男h啪啪无遮挡| 国产午夜福利久久久久久| 国产高清激情床上av| 国内毛片毛片毛片毛片毛片| 久久久国产成人精品二区| 精品高清国产在线一区| 999久久久精品免费观看国产| 色在线成人网| 麻豆国产97在线/欧美 | 怎么达到女性高潮| 免费在线观看日本一区| 无人区码免费观看不卡| 国产精品 欧美亚洲| 少妇熟女aⅴ在线视频| 日韩欧美国产一区二区入口| 人妻丰满熟妇av一区二区三区| 中文字幕av在线有码专区| 一区二区三区国产精品乱码| 国产探花在线观看一区二区| 成人高潮视频无遮挡免费网站| 成人三级黄色视频| 黄色视频,在线免费观看| 99精品久久久久人妻精品| 欧美大码av| 国产精品免费视频内射| 国产一级毛片七仙女欲春2| 精品久久久久久久久久免费视频| 国产精品一区二区三区四区免费观看 | 丁香六月欧美| 老司机在亚洲福利影院| 国产精品久久久久久亚洲av鲁大| 久久中文字幕一级| 在线观看日韩欧美| 伦理电影免费视频| 欧美不卡视频在线免费观看 | 欧美黄色淫秽网站| 黄色毛片三级朝国网站| 麻豆久久精品国产亚洲av| 亚洲 国产 在线| 香蕉av资源在线| 大型av网站在线播放| 国产成人欧美在线观看| 成人欧美大片| www.自偷自拍.com| 性色av乱码一区二区三区2| 国产亚洲欧美98| 午夜日韩欧美国产| 精品电影一区二区在线| 国产欧美日韩精品亚洲av| 禁无遮挡网站| 国产精品电影一区二区三区| 国产一级毛片七仙女欲春2| 久久国产乱子伦精品免费另类| 国产精品香港三级国产av潘金莲| а√天堂www在线а√下载| 国产69精品久久久久777片 | 免费看十八禁软件| 天天添夜夜摸| 亚洲精品粉嫩美女一区| 国产爱豆传媒在线观看 | 男人舔女人下体高潮全视频| 国产一区在线观看成人免费| 男女做爰动态图高潮gif福利片| 日韩精品免费视频一区二区三区| 欧美日本亚洲视频在线播放| 97人妻精品一区二区三区麻豆| 看免费av毛片| 精品少妇一区二区三区视频日本电影| 一进一出好大好爽视频| 午夜福利成人在线免费观看| 国产精品一区二区三区四区免费观看 | 波多野结衣巨乳人妻| 欧美大码av| 成人18禁高潮啪啪吃奶动态图| 中文字幕高清在线视频| 看片在线看免费视频| 9191精品国产免费久久| 亚洲成av人片在线播放无| 国内精品一区二区在线观看| 亚洲国产日韩欧美精品在线观看 | 午夜亚洲福利在线播放| 欧美黄色淫秽网站| 国产精品乱码一区二三区的特点| 搡老岳熟女国产| а√天堂www在线а√下载| 午夜福利成人在线免费观看| 国产精品久久久久久久电影 | 欧美日韩精品网址| 免费在线观看影片大全网站| 国产精品自产拍在线观看55亚洲| 欧美中文日本在线观看视频| 黄色成人免费大全| 他把我摸到了高潮在线观看| 麻豆成人午夜福利视频| а√天堂www在线а√下载| 久久精品国产亚洲av香蕉五月| 日韩精品免费视频一区二区三区| 日日干狠狠操夜夜爽| 精品午夜福利视频在线观看一区| 日日夜夜操网爽| 50天的宝宝边吃奶边哭怎么回事| www.自偷自拍.com| 最近视频中文字幕2019在线8| 久久人妻福利社区极品人妻图片| 51午夜福利影视在线观看| 亚洲第一欧美日韩一区二区三区| 国产精品乱码一区二三区的特点| 亚洲美女视频黄频| 99精品久久久久人妻精品| 日本熟妇午夜| 亚洲熟妇中文字幕五十中出| 午夜福利成人在线免费观看| 午夜福利在线在线| 99国产精品一区二区蜜桃av| 丰满人妻熟妇乱又伦精品不卡| 一级黄色大片毛片| 露出奶头的视频| 日韩欧美在线二视频| 国产亚洲精品久久久久久毛片| 日韩欧美三级三区| 国产熟女午夜一区二区三区| 在线国产一区二区在线| 国产亚洲精品第一综合不卡| 岛国在线免费视频观看| 成人18禁在线播放| 亚洲一区二区三区不卡视频| 搡老岳熟女国产| 免费人成视频x8x8入口观看| 中文字幕最新亚洲高清| 亚洲精品在线美女| av有码第一页| 亚洲免费av在线视频| 国内精品一区二区在线观看| 91麻豆精品激情在线观看国产| 亚洲精品久久国产高清桃花| 窝窝影院91人妻| 精品人妻1区二区| а√天堂www在线а√下载| 欧洲精品卡2卡3卡4卡5卡区| 首页视频小说图片口味搜索| 欧美精品啪啪一区二区三区| 少妇被粗大的猛进出69影院| 人人妻人人看人人澡| 欧美又色又爽又黄视频| 少妇裸体淫交视频免费看高清 | 可以免费在线观看a视频的电影网站| 国产1区2区3区精品| 国产精品影院久久| 免费看美女性在线毛片视频| 国产久久久一区二区三区| 欧美三级亚洲精品| 90打野战视频偷拍视频| 国产精品亚洲av一区麻豆| 亚洲最大成人中文| 欧美av亚洲av综合av国产av| 18美女黄网站色大片免费观看| 啦啦啦观看免费观看视频高清| 国产精品影院久久| 亚洲精品中文字幕在线视频| 淫秽高清视频在线观看| 又爽又黄无遮挡网站| 麻豆成人av在线观看| 五月玫瑰六月丁香| 亚洲人成伊人成综合网2020| 亚洲中文日韩欧美视频| 美女大奶头视频| 亚洲av熟女| 男女那种视频在线观看| 免费在线观看影片大全网站| 亚洲精品国产一区二区精华液| 三级男女做爰猛烈吃奶摸视频| 天堂√8在线中文| 国内精品久久久久久久电影| 欧美激情久久久久久爽电影| 午夜老司机福利片| 国产av麻豆久久久久久久| 国产亚洲精品第一综合不卡| 国产亚洲av嫩草精品影院| 国产激情偷乱视频一区二区| 中文字幕人成人乱码亚洲影| 毛片女人毛片| 国产亚洲精品一区二区www| av在线播放免费不卡| 精品久久久久久久末码| 脱女人内裤的视频| 国产av在哪里看| 男女视频在线观看网站免费 | 美女高潮喷水抽搐中文字幕| 日本撒尿小便嘘嘘汇集6| 757午夜福利合集在线观看| 免费在线观看完整版高清| 免费一级毛片在线播放高清视频| 一区福利在线观看| 可以在线观看的亚洲视频| 两性午夜刺激爽爽歪歪视频在线观看 | 成在线人永久免费视频| 在线播放国产精品三级| 国内少妇人妻偷人精品xxx网站 | 岛国在线免费视频观看| 国产在线精品亚洲第一网站| 亚洲成人中文字幕在线播放| 99久久国产精品久久久| 黄色成人免费大全| 老汉色av国产亚洲站长工具| 欧美成人免费av一区二区三区| 国产精品1区2区在线观看.| 久久香蕉精品热| 一级黄色大片毛片| 极品教师在线免费播放| 欧美另类亚洲清纯唯美| 午夜视频精品福利| 男女之事视频高清在线观看| 亚洲 欧美一区二区三区| 国产男靠女视频免费网站| 99热这里只有是精品50| 成年版毛片免费区| 不卡av一区二区三区| 久久久久久久久免费视频了| 欧美黑人精品巨大| 久久中文看片网| 久久久精品欧美日韩精品| 麻豆av在线久日| 国产单亲对白刺激| 国产精品亚洲美女久久久| 日韩 欧美 亚洲 中文字幕| 国内毛片毛片毛片毛片毛片| e午夜精品久久久久久久| 日韩欧美在线二视频| 天天一区二区日本电影三级| 久久这里只有精品中国| 亚洲精品中文字幕一二三四区| 欧美极品一区二区三区四区| 亚洲午夜精品一区,二区,三区| 在线永久观看黄色视频| netflix在线观看网站| 麻豆久久精品国产亚洲av| 性色av乱码一区二区三区2| 成人精品一区二区免费| 亚洲一码二码三码区别大吗| 又黄又爽又免费观看的视频| 一夜夜www| 亚洲国产欧美网| 国产一区二区激情短视频| 91老司机精品| 欧美黑人欧美精品刺激| 亚洲第一电影网av| 国产一区在线观看成人免费| 欧美极品一区二区三区四区| 一区福利在线观看| 成人亚洲精品av一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 中出人妻视频一区二区| 日韩欧美精品v在线| 亚洲人与动物交配视频| 身体一侧抽搐| 在线观看日韩欧美| 我的老师免费观看完整版| 久久性视频一级片| 小说图片视频综合网站| 中亚洲国语对白在线视频| 婷婷亚洲欧美| av超薄肉色丝袜交足视频| 色老头精品视频在线观看| 亚洲七黄色美女视频| 久久久久免费精品人妻一区二区| 91av网站免费观看| 国产精品亚洲美女久久久| 天天添夜夜摸| 无限看片的www在线观看| 俄罗斯特黄特色一大片| 91九色精品人成在线观看| 国产一区二区三区在线臀色熟女| 亚洲国产欧美网| 九九热线精品视视频播放| 精品国内亚洲2022精品成人| 琪琪午夜伦伦电影理论片6080| 午夜精品一区二区三区免费看| 深夜精品福利| 免费观看精品视频网站| 天堂√8在线中文| 夜夜躁狠狠躁天天躁| 亚洲av美国av| 成人一区二区视频在线观看| 黄色视频不卡| 精品久久久久久久人妻蜜臀av| 久久香蕉国产精品| 久久 成人 亚洲| 搡老岳熟女国产| 中文字幕久久专区| 黄色 视频免费看| 欧美成人一区二区免费高清观看 | 看免费av毛片| 在线免费观看的www视频| 亚洲欧美精品综合久久99| av天堂在线播放| 久久香蕉激情| 动漫黄色视频在线观看| 亚洲精华国产精华精| 成人高潮视频无遮挡免费网站| 最近视频中文字幕2019在线8| 国产激情欧美一区二区| 亚洲av美国av| 中文在线观看免费www的网站 | 99热这里只有精品一区 | 老汉色∧v一级毛片| 一夜夜www| 免费观看精品视频网站| av国产免费在线观看| 男人的好看免费观看在线视频 | 美女黄网站色视频| 国产成人aa在线观看| 中文亚洲av片在线观看爽| 亚洲五月婷婷丁香| 色哟哟哟哟哟哟| 亚洲欧美日韩高清专用| 久久久久久人人人人人| 操出白浆在线播放| 人人妻,人人澡人人爽秒播| x7x7x7水蜜桃| 五月伊人婷婷丁香| 蜜桃久久精品国产亚洲av| 黄色女人牲交| 精品久久久久久,| 一本一本综合久久| 午夜福利高清视频| 非洲黑人性xxxx精品又粗又长| 欧美又色又爽又黄视频| 女人被狂操c到高潮| 99re在线观看精品视频| 国内久久婷婷六月综合欲色啪| 黄色女人牲交| 精品国产乱子伦一区二区三区| 亚洲精品美女久久av网站| 真人做人爱边吃奶动态| 亚洲九九香蕉| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩一区二区精品| 久久久久亚洲av毛片大全| 国产视频内射| 中文字幕人成人乱码亚洲影| 欧美大码av| 老汉色av国产亚洲站长工具| 久久精品国产综合久久久| 免费观看人在逋| 白带黄色成豆腐渣| 桃红色精品国产亚洲av| 少妇粗大呻吟视频| 日本撒尿小便嘘嘘汇集6| 久久久久久久午夜电影| 亚洲一区二区三区不卡视频| 国产亚洲精品久久久久5区| 日本 av在线| 免费在线观看黄色视频的| 一二三四在线观看免费中文在| 亚洲人成77777在线视频| 中文字幕最新亚洲高清| 日韩 欧美 亚洲 中文字幕| 一级毛片女人18水好多| 国产精品免费一区二区三区在线| 可以在线观看毛片的网站| 亚洲性夜色夜夜综合| 国产免费男女视频| 麻豆av在线久日| 999精品在线视频| 青草久久国产| 亚洲人成网站在线播放欧美日韩| a级毛片在线看网站| 日本熟妇午夜| 一本大道久久a久久精品| 欧美绝顶高潮抽搐喷水| 国产精品一及| 日本在线视频免费播放| 不卡av一区二区三区| 婷婷亚洲欧美| 天堂动漫精品| 狂野欧美白嫩少妇大欣赏| 国产真人三级小视频在线观看| 一级片免费观看大全| 亚洲午夜精品一区,二区,三区| 18禁美女被吸乳视频| 又黄又粗又硬又大视频| 国产精品精品国产色婷婷| 亚洲在线自拍视频| 天天躁狠狠躁夜夜躁狠狠躁| 午夜成年电影在线免费观看| 亚洲专区国产一区二区| 亚洲av成人av| 亚洲精品国产一区二区精华液| 18禁黄网站禁片免费观看直播| 欧美黑人巨大hd| 成人永久免费在线观看视频| 久久香蕉国产精品| 欧美久久黑人一区二区| 亚洲自拍偷在线| 午夜激情福利司机影院| 999精品在线视频| 欧美日韩一级在线毛片| 999久久久国产精品视频| 亚洲人与动物交配视频| 国产男靠女视频免费网站| 少妇的丰满在线观看| 色噜噜av男人的天堂激情| 国产精品 欧美亚洲| 亚洲成人国产一区在线观看| 久久热在线av| 变态另类丝袜制服| 色综合婷婷激情| 免费观看人在逋| 婷婷亚洲欧美| 麻豆av在线久日| 国产午夜福利久久久久久| 香蕉国产在线看| 日韩免费av在线播放| 日本撒尿小便嘘嘘汇集6| 丁香欧美五月| svipshipincom国产片| 美女黄网站色视频| 国产探花在线观看一区二区| 亚洲精品国产精品久久久不卡| 麻豆一二三区av精品| 一个人免费在线观看的高清视频| 亚洲 欧美一区二区三区| 欧美午夜高清在线| 亚洲一卡2卡3卡4卡5卡精品中文| 成人国产一区最新在线观看| 国产精品九九99| 老司机午夜福利在线观看视频| www日本黄色视频网| 国产av麻豆久久久久久久| 在线视频色国产色| 久久精品国产99精品国产亚洲性色| 亚洲自拍偷在线| 亚洲一区高清亚洲精品| 亚洲成人中文字幕在线播放| 欧美极品一区二区三区四区| 欧美在线黄色| 精品午夜福利视频在线观看一区| 一区福利在线观看| 蜜桃久久精品国产亚洲av| 草草在线视频免费看| 99热这里只有精品一区 | 老司机深夜福利视频在线观看| 成在线人永久免费视频| 午夜日韩欧美国产| 变态另类丝袜制服| 99精品在免费线老司机午夜| 十八禁网站免费在线| 啦啦啦观看免费观看视频高清| 深夜精品福利| 精品国内亚洲2022精品成人| 国产一区二区在线av高清观看| 日日摸夜夜添夜夜添小说| 国产黄a三级三级三级人| 天堂av国产一区二区熟女人妻 | 久久久久性生活片| 最好的美女福利视频网| 成年女人毛片免费观看观看9| 亚洲自拍偷在线| 岛国在线免费视频观看| 亚洲在线自拍视频| 天堂√8在线中文| 男男h啪啪无遮挡| 亚洲无线在线观看| 最近最新中文字幕大全电影3| 亚洲激情在线av| 久久人妻av系列| 国产精品,欧美在线| 午夜精品一区二区三区免费看| 久久久久久大精品| 国产亚洲精品综合一区在线观看 | 麻豆一二三区av精品| 久久久久久大精品| 国产免费男女视频| 国产高清有码在线观看视频 | 午夜福利在线在线| 亚洲欧美精品综合久久99| 啦啦啦免费观看视频1| 国产av一区在线观看免费| 一二三四社区在线视频社区8| 啦啦啦韩国在线观看视频| 国产亚洲欧美在线一区二区| 日韩欧美在线乱码| 国内毛片毛片毛片毛片毛片| 又黄又粗又硬又大视频| 母亲3免费完整高清在线观看| 午夜激情av网站| 最近最新中文字幕大全免费视频| 亚洲一区二区三区不卡视频| 国产精品自产拍在线观看55亚洲| 国产激情偷乱视频一区二区| 最近在线观看免费完整版| 国产一级毛片七仙女欲春2| 麻豆国产av国片精品| 亚洲真实伦在线观看| 少妇的丰满在线观看| 亚洲美女视频黄频| 在线播放国产精品三级| 欧美黑人欧美精品刺激| 天堂av国产一区二区熟女人妻 | 欧美色视频一区免费| 国内少妇人妻偷人精品xxx网站 | 亚洲欧美日韩高清在线视频| 一二三四社区在线视频社区8| 午夜日韩欧美国产| 天天添夜夜摸| 激情在线观看视频在线高清| 国产成人精品无人区| 午夜两性在线视频| 欧美成狂野欧美在线观看| 欧美成人午夜精品| 久久久国产成人免费| 久久人人精品亚洲av| 亚洲avbb在线观看| 男女做爰动态图高潮gif福利片| 中文在线观看免费www的网站 | 精品一区二区三区av网在线观看| 欧美性猛交╳xxx乱大交人| 久热爱精品视频在线9| 欧美日韩一级在线毛片| 国产真人三级小视频在线观看| 夜夜躁狠狠躁天天躁| 搡老妇女老女人老熟妇| 精品一区二区三区视频在线观看免费| 国产区一区二久久| 1024香蕉在线观看| 国产精品电影一区二区三区| 国产黄色小视频在线观看| 婷婷亚洲欧美| 国内少妇人妻偷人精品xxx网站 | 最新在线观看一区二区三区| 亚洲国产看品久久| 制服人妻中文乱码| 黄色视频,在线免费观看| 国产精品一区二区精品视频观看|