• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetics of Reaction-Crystallization of Struvite in the Continuous Draft Tube Magma Type Crystallizers—Influence of Different Internal Hydrodynamics

    2009-05-12 03:32:44JoannaKoralewskaKrzysztofPiotrowskiBoguslawaWierzbowskaandAndrzejMatynia

    Joanna Koralewska, Krzysztof Piotrowski, Boguslawa Wierzbowska and Andrzej Matynia

    ?

    Kinetics of Reaction-Crystallization of Struvite in the Continuous Draft Tube Magma Type Crystallizers—Influence of Different Internal Hydrodynamics

    Joanna Koralewska1, Krzysztof Piotrowski2,*, Boguslawa Wierzbowska1and Andrzej Matynia1

    1Department of Chemistry, Wroclaw University of Technology, 50-370 Wroclaw, Poland2Department of Chemical and Process Engineering, Silesian University of Technology, 44-101 Gliwice, Poland

    reaction-crystallization, struvite, phosphorus recycling, nucleation, crystals growth, DTM MSMPR crystallizers, size-dependent growth kinetics, liquid jet pump, propeller agitator

    1 INTRODUCTION

    The new, original constructions of jet-pump crystallizers can be generally classified as DTM (draft tube magma) type units [1]. A jet-pump situated inside the crystallizer provides good mixing of the circulated suspension, thus enables one to receive a non-classified product of representative crystal size distribution (CSD). It may be approximately assumed that such apparatus fulfills the requirements of MSMPR (mixed suspension mixed product removal) crystallizer [2]. Essential advantages of a jet-pump crystallizer include absence of troublesome moving (especially rotating) elements and practical utilization of simple hydrodynamic phenomena. This results in lower probability of failure and relative simplicity in use [3].

    Figure 1 A general scheme of the three crystallizer constructions under study

    1—feeding inlet; 2—pH-correction agent inlet; 3—outlet of crystal suspension

    Internal circulation of suspension generated by liquid jet-pump device is based on advantageous hydrodynamic effects connected with the merge of two circulated streams (see Fig. 1). It causes relatively fast and effective blending of the reagents, resulting in homogenization of concentration and temperature in the process environment, as well as prevention of excessive agglomeration of crystals. Incrustation inside the apparatus body is also strongly inhibited to achieve longer failure-free exploitation time possible.

    Jet-pump crystallizers have been designed and adopted for various mass crystallization processes [3], including the most complex reaction-crystallization ones (barium sulphate [4, 5], hydroxyapatite [6, 7] and struvite [6, 8, 9]).

    The experimental data concerning reaction- crystallization of struvite in two continuous laboratory liquid jet-pump crystallizers of various internal hydrodynamic regimes [denoted as DTM↑ and DTM↓, see Figs. 1 (a) and 1 (b)] and—for comparison purposes—in a crystallizer equipped with a propeller agitator [1] [denoted later as DT—see Fig. 1 (c)] are presented in this study. Laboratory test stand was precisely controlled by automatic control system driven by PC computer. Nucleation and growth rates of struvite crystals were estimated from the population density distributions of crystal product taking into account size-dependent growth (SDG) kinetic mechanism.

    2 EXPERIMENTAL

    2.1 Setup and procedure

    The simplified schemes of laboratory crystallizers used in the present research are shown in Fig. 1:

    A liquid jet-pump device [Figs. 2 (a), 2 (b)] installed in the laboratory crystallizers is characterized by the following dimensions:

    Figure 2 Liquid jet-pump device applied in a laboratory DTM↓ and DTM↑ crystallizers under study

    1—feeding nozzle; 2—confusor; 3—mixing chamber

    Figure 3 Connection scheme of a test stand for reaction-crystallization of struvite

    1—DTM↓ crystallizer with internal circulation of suspension; 2—circulating pump; 3—rotameters; 4—heat exchanger; 5—PC computer; 6—feeding tank (MgCl2solution blended with NH4H2PO4solution); 7—peristaltic pump; 8—alkaline agent’s tank (NaOH solution); 9—NaOH dosing pump; 10—pump for removal of crystal suspension from the crystallizer; 11—storage tank for crystal product suspension; 12,13,14—electronic balances; pH—control of the reaction environment’s pH; T—temperature control

    The experiments were carried out under the predetermined, constant conditions:

    Minimal unit power of a jet-pump feeding stream (however sufficient enough for stable circulation of suspension) was used [19, 20]. Its value can be calculated using the following equation:

    Continuous reaction-crystallization process of struvite was run through the time of 5starting from the moment as the assumed parameter values stabilized. After this period the solid phase concentration in the product suspension (T) and its crystal size distribution (CSD) (laser particle size analyzer COULTER LS-230) were determined. Chemical analysis of mother liquor (plasma emission spectrometer ICP-AES Philips PU 7000) and solid phase (spectrometer IR Philips PU 9712) were done as well.

    2.2 Reaction-crystallization kinetics

    For the basic, simplified approach to the mass crystallization process kinetics, assuming steady state in a continuous crystallizer with ideally mixed content and withdrawal of a non-classified, representative product (MSMPR type crystallizer), the population balance equation can be formulated in a general form of simple differential equation [21]:

    This characteristic behavior can be theoretically interpreted as the symptom of a complex kinetic mechanism—Size-Dependent Growth (SDG). Its consequence—a nonlinear increase in the number of fines—is very essential from the practical point of view since within this size range the largest fraction of the overall crystals number is located. Considering fine-grained morphology, this crystal fraction characterizes itself by the largest specific surface area in respect to the whole population. A more detailed description of the process kinetics, considering the SDG mechanism, thus rendering the experimentally observed strong nonlinearity of ln() function course for struvite crystals of<10mm requires assuming some form of() dependency before solving the general population balance equation of MSMPR crystallizer, Eq. (2).

    Empirical or semiempirical() equations [22-29] were analyzed in detail [30]. Theoretical analysis regarding mathematical construction of these functions proved that equations proposed in Refs. [22, 28, 29] are valid only for the crystals of finite size. Assumption of zero-size nucleus makes its further growth impossible from mathematical point of view. Thus, for practical application of these formulas it becomes necessary to assume arbitrarily starting size for nucleusz, which value can introduce some unpredictable calculation error.

    Selected analytical solutions of Eq. (2), derived as() expressions comply with the assumed() forms, are presented below [30]:

    Abegg, Stevens and Larson (ASL) model [24], Eqs. (3), (4) and (6):

    Canning-Randolph (CR) model [23], Eqs. (5) and (6):

    Rojkowski exponential (RE) model [25], Eqs. (7) and (8):

    Rojkowski hyperbolic (RH) model [26], Eqs. (9) and (10):

    Rojkowski hyperbolic II (RH II) model [27], Eqs. (11) and (12):

    Knowing nuclei population density,0, and their linear growth rate,0, the (overall) nucleation ratecan be calculated from the following relation:

    3 RESULTS AND DISCUSSION

    3.1 Estimation of kinetic parameters of the model

    On the basis of own experimental data the following parameters:0,0,¥,,values in() functions corresponded to the selected() equations were determined. For each() function (thus SDG model) and each experimental data set a mean square deviation (variance) was calculated by:

    Table 1 Kinetic models of struvite crystallization in DTM↑, DTM↓ and DT crystallizers:??and??values for the selected SDG equations

    3.2 DTM↑ crystallizer performance

    Kinetic parameter values of reaction-crystallization process of struvite in a jet-pump DTM↑ crystallizer, calculated with the RH SDG model, can be summarized as follows. Increase in Mg2+ions mass concentration in a feeding solution from 0.25% to 2.0% results in:

    Table 2 The values of nucleation and crystal growth rate for the selected SDG models acquired in DTM↑, DTM↓ and DT crystallizers (Struvite crystals obtained for Mg2+ ions mass concentration in a feeding solution equals to 0.25% atpH9, t900 s and kv1)

    Table 3 The values of nucleation and crystal growth rate for the selected SDG models acquired in DTM↑, DTM↓ and DT crystallizers (Struvite crystals obtained for Mg2+ ions mass concentration in a feeding solution equals to 2.0% at pH9, t900 s and kv1)

    Increase in maximal linear growth rate,¥, from 9.03×10-9to 2.11×10-8m·s-1;

    Increase in nucleation rate,, from 9.40×1012to 1.63×1014m-3·s-1.

    3.3 DTM↓ crystallizer performance

    It can be supposed, that the main reason responsible for such behavior is the advantageously modified hydraulic regime of internal circulation. It influences the distribution of supersaturation within the process environment and suspension hydrodynamics. It should be noted, that in a DTM↓ type crystallizer (similarly to a DTM↑ construction) the smallest-size crystal mass fraction (3%-5%) reached the pump in external circulation loop. However, it did not visibly influence mean crystal size since in this configuration other kinetic effects predominated. Theoretical confirmation of these observations is provided in the form of kinetic parameter values corresponding to a DTM↓ apparatus type, as well as their interrelations. Increase in Mg2+ions mass concentration in a feeding solution (0.25%→2.0%) results—in this operation regime—in:

    From this analysis it results that in a DTM↓ crystallizer the considerably higher values of maximal linear growth rate are attainable. In consequence the product crystals of nearly 2-times larger mean sizes (compared to DTM↑ and DT constructions) are obtained. Nuclei population density,0, as well as nucleation rate,, are clearly lower in a DTM↓ crystallizer compared to a DTM↑ one.

    Lower mixing intensity, thus not effective enough blending of reagents with mother solution, leads to the occurrence of temporary, local supersaturation peaks responsible for higher nucleation rate in a DTM↓ crystallizer compared to a DT one (being free of these drawbacks). Attrition effects in external circulation pump contribute to this effect, as well. Elimination or at least significant reduction in these negative tendencies should be employed. Rational modification of DTM↓ construction can provide crystal product of higher quality.

    3.4 Size-dependent growth phenomena in DTM crystallizers

    Character of() courses is qualitatively similar in DT and DTM↑ crystallizer types, where some rapid approach to an asymptotical, limiting¥value is observed. In case of DTM↓ constructionincreases practically linearly with crystal size within a 0<<80mm range, what corresponds to the larger mean sizes in a crystal product population (Fig. 5).

    The() dependences for DTM↑ and DTM↓ constructions are presented in Figs. 6 and 7 for all five SDG models used [ASL, CR, RE, RH and RH II, Eqs. (3)-(12)]. Generally, from Fig. 6 it can be concluded that all five kinetic SDG models provide highervalues for higher [Mg2+]RMvalue within the whole size range tested (0-80mm). Relatively large initial increase in growth rate is observed (especially visible in RE, RH and RH II model courses where the maximal possibleis theoretically upper-limited by some asymptotical¥value; in case of CR and ASL models the theoretically unlimited() increase is observed). Contrary, different hydrodynamic regime in a DTM↓ construction is clearly demonstrated by modified arrangement of the() curves family in Fig. 7. Both RE and RH models present apparent linear courses, suggesting location of asymptotical¥value in a considerably higher level compared to a DTM↑ variant (see also differentscale in both figures). Generally, all SDG kinetic models from Fig. 7, except RH II model, provide higher() values in comparison with the data in Fig. 6. This confirms previous conclusions concerning a more convenient process environment for the crystal phase growth provided by a DTM↓ construction. The discrepancies between all five SDG model predictions for the analyzed systems are also visible in Table 1 (statistical analysis of variance).

    Comparison between experimental and simulated PDDs proves, that the suggested SDG equation provides adequate description of ln() courses, both in characteristic, highly nonlinear segment corresponding to the smallest sizes and in apparently linear fragment for the larger ones. This flexibility enables one to apply a recommended SDG model in the calculation- design works, covering a more detailed estimation of cumulative distribution of specific surface area() or cumulative crystal mass distribution()—the “derivative relationships” based on the fundamental() course. Contrary, frequent application of oversimplified SIG (size-independent growth) kinetic model, based on the assumption of ln() function’s linearity in the whole crystal size range, thus excluding clear, nonlinear increment (even by several orders of magnitude) invalues within the smallest sizes, results in a significant accumulation of error thus incorrect prediction of(()) or(()) distributions within this the most interesting size range.

    3.5 Hydrodynamic problems-overcoming suggestions

    Among two jet-pump DTM crystallizer constructions tested: DTM↑ with a feeding nozzle situated in the apparatus bottom (upward circulation of suspension in a mixing chamber) and DTM↓ with a feeding nozzle located under free level of medium (downward circulation) a more convenient design proved to be a DTM↓ one. It was technically possible by appropriate arrangement of a DTM↓ crystallizer interior (.. appearance of the stable pseudo-fluidal layer in a “crystal growth zone”). Higher concentration of solid phase in a working volume acted here advantageously by creating local whirls, making better distribution of MAP supersaturation within the reaction environment possible. Relatively large specific surface area of crystal phase (positive influence of attrition—however considerably restricted) reduces the mass transfer resistances. It protects also against appearance of the excessive supersaturation peaks, thus improves the process stability. As a result, larger crystals were withdrawn from a DTM↓ construction, of the size increasing with the increase in Mg2+ions concentration in a feeding solution. Other considered criteria were: location and mode of introduction of a feeding solution, stability of operation and the final results (CSD of product). It should be emphasized, that both DTM crystallizers produce crystal populations of comparable or larger mean sizes than a DT crystallizer does.

    The only disadvantage observed during laboratory- scale tests of jet-pump DTM crystallizers was undesirable presence of crystal fines in the external circulation loop (however of small mass fraction in relation to the whole suspension). It resulted in their appearance in a circulation pump (intensive attrition and breakage of crystals). Constructional corrections in a classical design,.. increase in a cross-section area of overflow part, can only slightly improve the separation effectiveness in a sedimentation zone. However, decrease in a removable size is not sufficient enough for the total elimination of this unintentional behavior for the sake of extreme small size range (even below 1mm) of particles created in reaction-crystallization processes. It seems that the only rational engineering strategy to provide larger product-crystals is to eliminate the external loop totally, providing jet-pump with compressed gas stream (.. air). In reaction- crystallization processes of struvite and hydroxyapatite application of air (aeration) is also well-grounded by technological requirements [10-12]. Application of compressed gas stream provides stable internal circulation coupled with efficient micro-and macromixing within the complex three-phase dispersed systems [31]. It should be noted, however, that in industrial-scale mass crystallization processes, where mean crystal sizes are several hundred times larger compared to the specific reaction-crystallization products, introduction of external circulation loop in a jet-pump DTM apparatussystem does not affect the process run and its results substantially while other advantages predominate.

    4 CONCLUSIONS

    Experimentally verified RH SDG kinetic equation can be recommended for modeling of the struvite reaction-crystallization process in the presented conditions. It represents in practice the overall kinetics of closely integrated system: fast ionic reaction-struvite precipitation-MAP crystals growth, giving consideration to the essential dependency of growth kinetics on the crystal size, as well as incorporating the net effect of all, frequently opposite hydrodynamic and partial processes. Thus, adjusting the nucleation and growth kinetics by advisable modification of technological parameters vector it becomes possible to produce the crystal population of required CSD and quality, thus synthesize preliminary designed product demanding nofurther mechanical operations (.. milling, sieving,.).

    NOMENCLATURE

    a parameter in ASL, CR, RE and RH SDG kinetic models, m-1

    nucleation rate, m-3·s-1

    exponent in ASL SDG kinetic model

    efeeding nozzle diameter, m

    () cumulative size-distribution of specific surface area of crystals, m2·m-3

    linear growth rate of crystals, m·s-1

    ¥maximal linear growth rate of crystals, m·s-1

    0minimal linear growth rate of crystals (growth rate of nuclei), m·s-1

    spsolubility product of struvite, mol3·dm-9

    vvolumetric shape factor of crystal

    characteristic linear size of crystal, m

    mmean size of crystal population, m

    zlinear size of nucleus, m

    Tconcentration of crystal phase in suspension, kgcryst·m-3

    [Mg2+]RMmass concentration of magnesium ions in a feeding solution, %

    () cumulative size distribution of crystals mass (undersize), kg·m-3

    () population density (number of crystals within the specified size range in a unit volume of suspension per this size range width), m-1·m-3

    calcpopulation density calculated, m-1·m-3

    expexperimental population density, m-1·m-3

    0population density of nuclei (zero-size crystals), m-1·m-3

    euunit power of feeding stream, W·kg-1

    number of experimental points

    dedynamic pressure of feeding stream, Pa

    vevolumetric flow rate of feeding stream, m3·s-1

    vsvolumetric flow rate of crystal suspension, m3·s-1

    MSDroot mean square deviation

    process temperature, K

    wcrystallizer working volume, m3

    elinear velocity of feeding stream, m·s-1

    solsolution density, kg·m-3

    sussuspension density, kg·m-3

    mean residence time of suspension in a crystallizer working volume (w/vs), s

    1 Rojkowski, Z., Synowiec, J., Crystallization and Crystallizers, WNT, Warszawa (1991). (in Polish)

    2 Mullin, J.W., Crystallization, Butterworth-Heinemann, Oxford (1993).

    3 Matynia, A., “Crystallizers with a jet pump”,..., 36 (6), 9-14 (1997). (in Polish)

    4 Koralewska, J., Matynia, A., Piotrowski, K., Wierzbowska, B., “Precipitation of barium ions with solid ammonium sulphate in a continuous DTM crystallizer with liquid jet-pump of ascending suspension flow in a mixing chamber”,..., 27, 1555-1579 (2006).

    5 Koralewska, J., Matynia, A., Piotrowski, K., Wierzbowska, B., “Crystallization of barium sulphate in a continuous DTM type crystallizer with a jet-pump of descending suspension flow in a mixing chamber”, In: Materials of the International Congress of Chemical and Process Engineering CHISA 2006, No. 278, Prague, Czech Republic (2006).

    6 Matynia, A., Koralewska, J., Wierzbowska, B., Piotrowski, K., “Jet-pump crystallizers in the reaction-crystallization processes of sparingly soluble salts”,...., 7 (3), 56-64 (2005).

    7 Koralewska, J., Matynia, A., Wierzbowska, B., Piotrowski, K., “Hydroxyapatite crystallization process in a DTM crystallizer of descending suspension flow in a mixing chamber”,...., 8 (3), 25-27 (2006).

    8 Koralewska, J., Piotrowski, K., Wierzbowska, B., Matynia, A., “Nucleation and crystal growth rates of struvite in DTM type crystallizer with a jet-pump of descending suspension flow in a mixing chamber”,....., 2 (4), 260-266 (2007).

    9 Koralewska, J., Piotrowski, K., Wierzbowska, B., Matynia, A., “Reaction-crystallization of struvite in a continuous liquid jet-pump DTM MSMPR crystallizer with upward circulation of suspension in a mixing chamber-an SDG kinetic approach”,..., 30 (11), 1576-1583 (2007).

    10 Donnert, D., Salecker, M., “Elimination of phosphorus from waste water by crystallization”,.., 20, 735-742 (1999).

    11 Parsons, S.A., “Recent scientific and technical developments: Struvite precipitation”,., 41, 15-22 (2001).

    12 Doyle, J., Parsons, S.A., “Struvite formation, control and recovery”,.., 36, 3925-3940 (2002).

    13 Booker, N.A., Pristley, A.J., Fraser, I.H., “Struvite formation in wastewater treatment plants: Opportunities for nutrient recovery”,.., 20, 777-782 (1999).

    14 Bridger, G., “Fertiliser value of struvite”,., 43, 3-4 (2001).

    15 de-Bashan, L.E., Bashan, Y., “Recent advances in removing phosphorus from wastewater and its future use as fertilizer”,.., 38, 4222-4246 (2004).

    16 Matynia, A., Koralewska, J., Kwiecien, J., “The influence of the continuous crystallization process parameters on the crystal size distribution of struvite”,...., 5 (4), 83-89 (2003).

    17 Matynia, A., Koralewska, J., Piotrowski, K., Wierzbowska, B., “The influence of process parameters on struvite continuous crystallization kinetics”,..., 193, 160-176 (2006).

    18 Koralewska, J., Matynia, A., Piotrowski, K., Wierzbowska, B., “Reaction-crystallization process in a struvite precipitation technology—Application of a continuous DTM crystallizer with a jet-pump generating descending flow of suspension in a mixing chamber”,.., 7, 380-391 (2006).

    19 Bechtold, Z., Malasinska, M., Matynia, A., Piotrowski, K., “Influence of selected jet-pump design parameters on a unit power of feeding stream in a DTM crystallizer with descending suspension flow in a mixing chamber”,.., 7, 371-379 (2006).

    20 Bechtold, Z., Malasinska, M., Matynia, A., Piotrowski, K., “Influence of selected jet-pump design parameters in a DTM crystallizer with ascending suspension flow in a mixing chamber on a unit power of feeding stream”,..., 45 (4s), 13-15 (2006). (in Polish)

    21 Randolph, A.D., Larson, M.A., Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization, Academic Press, New York (1988).

    22 Bransom, S.H., “Factors in the design of continuous crystallizers”,..., 5, 838-844 (1960).

    23 Canning, T.F., Randolph, A.D., “Some aspects of crystallization theory: Systems that violate McCabe’s Delta L Law”,., 13, 5-10 (1967).

    24 Abegg, C.F., Stevens, J.D., Larson, M.A., “Crystal size distribution in continuous crystallizers when growth rate is size-dependent”,., 14, 118-122 (1968).

    25 Rojkowski, Z., “New empirical kinetic equation of size dependent crystal growth and its use”,, 12, 1121-1128 (1977).

    26 Rojkowski, Z., “New hyperbolic empirical model of size dependent crystal growth”,-, 26, 265-270 (1978).

    27 Rojkowski, Z., “Two parameter kinetic equation of size dependent crystal growth”,, 13, 1277-1284 (1978).

    28 Mydlarz, J., Jones, A.G., “On modeling the size-dependent growth rate of potassium sulphate in a MSMPR crystallizer”,..., 90, 47-56 (1990).

    29 Mydlarz, J., “A hyperbolic crystal growth rate model”, In: Proceedings of 13th Symposium on Industrial Crystallization, Toulouse, France, 275-280 (1996).

    30 Machej, K., Piotrowski, K., “Review and comparison of kinetic equations for mass crystallization design purposes”,..., 40 (5), 17-18 (2001). (in Polish)

    31 Kamienski, J., Mixing Processes in the Multiphase Systems, WNT, Warszawa (2004). (in Polish)

    2008-01-07,

    2008-12-15.

    * To whom correspondence should be addressed. E-mail: krzysztof.piotrowski@polsl.pl

    欧美xxxx性猛交bbbb| 欧美日韩亚洲高清精品| 亚洲精品成人久久久久久| 岛国毛片在线播放| 如何舔出高潮| 好男人视频免费观看在线| 国产男人的电影天堂91| av播播在线观看一区| 国内精品美女久久久久久| 天堂av国产一区二区熟女人妻| 婷婷色综合www| 淫秽高清视频在线观看| 精品久久国产蜜桃| 美女黄网站色视频| 午夜福利高清视频| 成人亚洲精品一区在线观看 | 一级毛片aaaaaa免费看小| 蜜桃久久精品国产亚洲av| 精品久久久久久久久久久久久| 日日啪夜夜爽| 中文在线观看免费www的网站| 春色校园在线视频观看| 日韩精品有码人妻一区| 人人妻人人澡人人爽人人夜夜 | 人妻一区二区av| 亚洲久久久久久中文字幕| 超碰97精品在线观看| 国产麻豆成人av免费视频| 亚洲精品影视一区二区三区av| 亚洲国产精品专区欧美| 免费高清在线观看视频在线观看| 国产高清不卡午夜福利| 免费观看精品视频网站| 直男gayav资源| 亚洲精品成人av观看孕妇| 18禁在线无遮挡免费观看视频| 亚洲自偷自拍三级| 亚洲精品aⅴ在线观看| 久久久久免费精品人妻一区二区| 成人欧美大片| 欧美一级a爱片免费观看看| 精品久久久噜噜| av线在线观看网站| 丝瓜视频免费看黄片| 我的女老师完整版在线观看| 一个人看的www免费观看视频| 亚洲在线观看片| 亚洲精品乱码久久久v下载方式| 一级黄片播放器| 婷婷色综合www| 亚洲aⅴ乱码一区二区在线播放| 国产高清国产精品国产三级 | 亚洲国产精品成人久久小说| 欧美成人一区二区免费高清观看| 天天躁日日操中文字幕| 一夜夜www| 天美传媒精品一区二区| 青春草亚洲视频在线观看| 九色成人免费人妻av| 一个人看视频在线观看www免费| 国产人妻一区二区三区在| 国产一区亚洲一区在线观看| 99视频精品全部免费 在线| 免费黄频网站在线观看国产| 在线 av 中文字幕| 日本猛色少妇xxxxx猛交久久| freevideosex欧美| 亚洲欧美一区二区三区黑人 | 最近的中文字幕免费完整| 99久国产av精品国产电影| 午夜老司机福利剧场| 欧美成人一区二区免费高清观看| 又粗又硬又长又爽又黄的视频| 久久久亚洲精品成人影院| 亚洲最大成人中文| 黄色欧美视频在线观看| 成人亚洲精品av一区二区| 亚洲欧美清纯卡通| 精品一区在线观看国产| 国产 亚洲一区二区三区 | 日韩欧美 国产精品| 国产白丝娇喘喷水9色精品| 欧美日本视频| 欧美激情国产日韩精品一区| 国产成人精品久久久久久| 国产黄色免费在线视频| 人人妻人人澡人人爽人人夜夜 | 我的老师免费观看完整版| 网址你懂的国产日韩在线| 国产精品不卡视频一区二区| av线在线观看网站| 亚洲色图av天堂| 国产色婷婷99| 直男gayav资源| 青春草视频在线免费观看| 一级毛片aaaaaa免费看小| 久久精品熟女亚洲av麻豆精品 | 国产白丝娇喘喷水9色精品| 亚洲精品一二三| 特大巨黑吊av在线直播| 老司机影院成人| av女优亚洲男人天堂| 国产片特级美女逼逼视频| 久久久久精品性色| 成人无遮挡网站| 搡老妇女老女人老熟妇| 一夜夜www| 日日摸夜夜添夜夜爱| 色播亚洲综合网| 欧美成人一区二区免费高清观看| 18禁裸乳无遮挡免费网站照片| 亚洲精品国产av成人精品| 一本久久精品| 国产在视频线精品| 国产精品一区www在线观看| 色视频www国产| 精品久久久久久久久av| 日韩一本色道免费dvd| www.av在线官网国产| 99久久人妻综合| 国产亚洲精品久久久com| 舔av片在线| 亚洲av成人av| 亚洲精品成人久久久久久| 日韩av不卡免费在线播放| 久久热精品热| av免费观看日本| 搡女人真爽免费视频火全软件| 国产精品久久久久久精品电影| 国产成年人精品一区二区| av免费在线看不卡| 国产精品久久久久久精品电影| 高清av免费在线| 亚洲欧洲国产日韩| 黄片无遮挡物在线观看| 日韩人妻高清精品专区| 欧美日本视频| 又爽又黄a免费视频| 日韩成人av中文字幕在线观看| 久久人人爽人人爽人人片va| 亚洲av男天堂| 精品一区二区免费观看| 少妇丰满av| 中文欧美无线码| 国产一区二区三区av在线| 只有这里有精品99| 国产亚洲5aaaaa淫片| 亚洲真实伦在线观看| 久久国产乱子免费精品| 看非洲黑人一级黄片| 久久久久精品久久久久真实原创| 国产真实伦视频高清在线观看| 街头女战士在线观看网站| 国产免费福利视频在线观看| 你懂的网址亚洲精品在线观看| 成人亚洲精品一区在线观看 | av在线观看视频网站免费| 国产伦精品一区二区三区视频9| 国产成年人精品一区二区| av在线天堂中文字幕| 少妇猛男粗大的猛烈进出视频 | 亚洲av男天堂| 91aial.com中文字幕在线观看| 日韩av不卡免费在线播放| 97人妻精品一区二区三区麻豆| 国产免费一级a男人的天堂| 国产老妇女一区| 国内精品美女久久久久久| 男女边摸边吃奶| 五月伊人婷婷丁香| 免费不卡的大黄色大毛片视频在线观看 | 国产成人freesex在线| 伦理电影大哥的女人| 国产老妇女一区| 2021天堂中文幕一二区在线观| 免费观看在线日韩| 91午夜精品亚洲一区二区三区| 日韩视频在线欧美| 亚洲av.av天堂| 亚洲av中文av极速乱| 蜜臀久久99精品久久宅男| 亚洲成人中文字幕在线播放| 日日撸夜夜添| a级毛片免费高清观看在线播放| 天美传媒精品一区二区| 日本一二三区视频观看| 简卡轻食公司| 亚洲久久久久久中文字幕| 国产久久久一区二区三区| 欧美97在线视频| av专区在线播放| 麻豆av噜噜一区二区三区| 国产亚洲av嫩草精品影院| 国产老妇伦熟女老妇高清| 六月丁香七月| 久久99热这里只频精品6学生| 视频中文字幕在线观看| 亚洲av一区综合| 69av精品久久久久久| 男女视频在线观看网站免费| 国产精品久久视频播放| 美女cb高潮喷水在线观看| 能在线免费观看的黄片| 日本黄色片子视频| 亚洲精品国产av蜜桃| 中文字幕人妻熟人妻熟丝袜美| 又黄又爽又刺激的免费视频.| 中文字幕久久专区| 久久精品熟女亚洲av麻豆精品 | 精品欧美国产一区二区三| 亚洲精品成人av观看孕妇| 91精品国产九色| 亚洲国产成人一精品久久久| 国产乱来视频区| 夜夜爽夜夜爽视频| 欧美人与善性xxx| 永久免费av网站大全| 国产精品国产三级专区第一集| 亚洲国产精品专区欧美| 91在线精品国自产拍蜜月| 日韩av在线大香蕉| 国产精品女同一区二区软件| 久久97久久精品| 国产成人a∨麻豆精品| 69人妻影院| 熟女人妻精品中文字幕| 国产精品久久久久久久久免| 极品少妇高潮喷水抽搐| 特级一级黄色大片| 日韩欧美 国产精品| 搡女人真爽免费视频火全软件| 久久久久久久午夜电影| 视频中文字幕在线观看| 国产老妇伦熟女老妇高清| 免费看av在线观看网站| 久久这里有精品视频免费| 欧美+日韩+精品| 国产av码专区亚洲av| 国产极品天堂在线| av免费在线看不卡| av播播在线观看一区| 天天躁夜夜躁狠狠久久av| 两个人的视频大全免费| av天堂中文字幕网| 不卡视频在线观看欧美| 亚洲色图av天堂| 日韩,欧美,国产一区二区三区| 熟妇人妻久久中文字幕3abv| 你懂的网址亚洲精品在线观看| 国产av码专区亚洲av| 男女啪啪激烈高潮av片| 国产精品久久久久久精品电影| 亚洲av电影在线观看一区二区三区 | 久久久久国产网址| 国产熟女欧美一区二区| 亚洲成人精品中文字幕电影| 日日撸夜夜添| 国产av不卡久久| 成人漫画全彩无遮挡| 日韩强制内射视频| 久久久精品欧美日韩精品| 国产黄a三级三级三级人| 少妇丰满av| 亚洲怡红院男人天堂| 男女国产视频网站| 午夜福利在线观看吧| 最近的中文字幕免费完整| 别揉我奶头 嗯啊视频| 欧美一级a爱片免费观看看| 国产成人精品久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 天堂网av新在线| 国产伦在线观看视频一区| 免费av不卡在线播放| 久久热精品热| 黄片无遮挡物在线观看| 草草在线视频免费看| 久久精品国产自在天天线| 亚洲美女视频黄频| 一级a做视频免费观看| 国产在视频线精品| 一级黄片播放器| 国产日韩欧美在线精品| 免费大片黄手机在线观看| 日韩精品青青久久久久久| 一级毛片 在线播放| 亚洲aⅴ乱码一区二区在线播放| 秋霞在线观看毛片| 伊人久久国产一区二区| 久久久精品免费免费高清| 亚洲在久久综合| 我的老师免费观看完整版| 少妇人妻一区二区三区视频| 少妇的逼好多水| 久久国内精品自在自线图片| 极品教师在线视频| av在线老鸭窝| 欧美+日韩+精品| 一区二区三区高清视频在线| 亚洲欧美成人综合另类久久久| 亚洲精品久久午夜乱码| 亚洲欧美中文字幕日韩二区| 国产 一区 欧美 日韩| 欧美区成人在线视频| 人人妻人人澡欧美一区二区| 久久久国产一区二区| 丰满少妇做爰视频| 成年免费大片在线观看| 天堂影院成人在线观看| 亚洲精品一区蜜桃| 亚洲av中文字字幕乱码综合| 不卡视频在线观看欧美| 两个人的视频大全免费| 亚洲精品aⅴ在线观看| av在线观看视频网站免费| 国产一区二区亚洲精品在线观看| 激情 狠狠 欧美| 一级黄片播放器| 亚洲国产成人一精品久久久| 免费av观看视频| 国产午夜福利久久久久久| av免费在线看不卡| 能在线免费看毛片的网站| 特大巨黑吊av在线直播| 少妇的逼水好多| 午夜福利网站1000一区二区三区| 久久久国产一区二区| 亚洲婷婷狠狠爱综合网| 人妻系列 视频| 人人妻人人看人人澡| 精品国产一区二区三区久久久樱花 | 国产精品嫩草影院av在线观看| 91久久精品国产一区二区成人| 爱豆传媒免费全集在线观看| 精品国产三级普通话版| 久久久久久久久大av| 国产黄片视频在线免费观看| 免费在线观看成人毛片| 夜夜爽夜夜爽视频| 三级男女做爰猛烈吃奶摸视频| 免费观看a级毛片全部| 18禁在线播放成人免费| 国产人妻一区二区三区在| 丝袜喷水一区| 欧美区成人在线视频| 日本wwww免费看| 日韩av在线大香蕉| 五月天丁香电影| 亚洲人成网站高清观看| 国内精品一区二区在线观看| 深夜a级毛片| 国产精品三级大全| 大香蕉97超碰在线| 日日啪夜夜爽| 日韩国内少妇激情av| 国产真实伦视频高清在线观看| 精品午夜福利在线看| 午夜福利视频1000在线观看| 又黄又爽又刺激的免费视频.| 国产成人精品福利久久| 亚洲成人精品中文字幕电影| 18禁在线播放成人免费| av女优亚洲男人天堂| 色尼玛亚洲综合影院| 日本熟妇午夜| av播播在线观看一区| 一个人免费在线观看电影| 中文乱码字字幕精品一区二区三区 | 精品人妻熟女av久视频| 国产视频内射| 国产国拍精品亚洲av在线观看| 国产黄色免费在线视频| 国产综合精华液| 国产精品一区二区三区四区久久| 2021天堂中文幕一二区在线观| 亚洲成人av在线免费| 久久精品国产亚洲av天美| 你懂的网址亚洲精品在线观看| 久久久久久久亚洲中文字幕| 日韩av在线大香蕉| 一个人免费在线观看电影| 一级毛片电影观看| 在线观看一区二区三区| 中文字幕av成人在线电影| 精品酒店卫生间| 久久久久久久久久成人| 男女那种视频在线观看| 日韩 亚洲 欧美在线| 欧美成人一区二区免费高清观看| 精品一区在线观看国产| 日日撸夜夜添| 在线免费观看的www视频| 亚洲成人精品中文字幕电影| 精品人妻偷拍中文字幕| 搞女人的毛片| 黄色欧美视频在线观看| 少妇的逼水好多| 一个人看视频在线观看www免费| 伦精品一区二区三区| 国产亚洲精品av在线| 国产探花在线观看一区二区| 欧美人与善性xxx| 尾随美女入室| 成人一区二区视频在线观看| 久久鲁丝午夜福利片| a级一级毛片免费在线观看| 午夜精品一区二区三区免费看| 免费av观看视频| 一个人看的www免费观看视频| 亚洲经典国产精华液单| 色网站视频免费| 免费av观看视频| 国产有黄有色有爽视频| 久久热精品热| 白带黄色成豆腐渣| 男女啪啪激烈高潮av片| av国产免费在线观看| 少妇丰满av| 色综合亚洲欧美另类图片| 国国产精品蜜臀av免费| 男女视频在线观看网站免费| 毛片女人毛片| 成年人午夜在线观看视频 | 观看美女的网站| 青春草亚洲视频在线观看| 六月丁香七月| 一夜夜www| 欧美xxxx性猛交bbbb| 精品久久久久久成人av| 美女脱内裤让男人舔精品视频| 欧美精品国产亚洲| 天堂俺去俺来也www色官网 | 亚洲国产精品sss在线观看| 性插视频无遮挡在线免费观看| 国产大屁股一区二区在线视频| 夜夜看夜夜爽夜夜摸| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品一区二区性色av| 我的女老师完整版在线观看| 亚洲人与动物交配视频| 天堂av国产一区二区熟女人妻| 看非洲黑人一级黄片| 69av精品久久久久久| 免费在线观看成人毛片| 免费看光身美女| www.色视频.com| 最后的刺客免费高清国语| 天堂网av新在线| 亚洲精品日韩av片在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲人成网站在线观看播放| 日韩伦理黄色片| 丰满少妇做爰视频| 99久久精品一区二区三区| 日本与韩国留学比较| 欧美xxxx黑人xx丫x性爽| 可以在线观看毛片的网站| 2022亚洲国产成人精品| 一区二区三区四区激情视频| 五月天丁香电影| videos熟女内射| 久久久午夜欧美精品| 性色avwww在线观看| 国产探花在线观看一区二区| 五月伊人婷婷丁香| 久久精品夜色国产| 人妻一区二区av| 人妻一区二区av| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产精品成人久久小说| 三级经典国产精品| 一级二级三级毛片免费看| a级毛色黄片| 99久久九九国产精品国产免费| 精品久久久久久久久亚洲| 欧美xxxx黑人xx丫x性爽| 国产成人午夜福利电影在线观看| 亚洲自拍偷在线| 国产高清有码在线观看视频| 精品久久国产蜜桃| 免费黄网站久久成人精品| 国产av码专区亚洲av| 在线观看美女被高潮喷水网站| 成人欧美大片| 亚洲美女视频黄频| 三级国产精品片| 亚洲av日韩在线播放| 欧美xxxx黑人xx丫x性爽| 搞女人的毛片| 欧美性感艳星| 80岁老熟妇乱子伦牲交| 亚洲精品色激情综合| 久久精品国产鲁丝片午夜精品| av免费观看日本| 亚洲精品成人av观看孕妇| 在线天堂最新版资源| 久久久久久国产a免费观看| 婷婷色av中文字幕| 精品国产一区二区三区久久久樱花 | 亚洲精品aⅴ在线观看| 久久6这里有精品| 啦啦啦韩国在线观看视频| 日韩精品有码人妻一区| 中文乱码字字幕精品一区二区三区 | 久久久亚洲精品成人影院| 插阴视频在线观看视频| 搞女人的毛片| 在线观看美女被高潮喷水网站| 亚洲性久久影院| 成人特级av手机在线观看| 精品国内亚洲2022精品成人| 精品国产三级普通话版| 麻豆av噜噜一区二区三区| 中文天堂在线官网| 能在线免费看毛片的网站| 成人美女网站在线观看视频| ponron亚洲| 日韩亚洲欧美综合| 欧美激情久久久久久爽电影| 亚洲伊人久久精品综合| 久久久久久久国产电影| 男人舔奶头视频| 大香蕉97超碰在线| 黄色配什么色好看| 一边亲一边摸免费视频| 精品一区二区三卡| 亚洲精品色激情综合| 日本一本二区三区精品| 久久久久久久久大av| 直男gayav资源| av免费观看日本| 蜜桃亚洲精品一区二区三区| 日韩人妻高清精品专区| 最近手机中文字幕大全| 国产成人一区二区在线| 又粗又硬又长又爽又黄的视频| 特大巨黑吊av在线直播| 在线观看av片永久免费下载| 精品欧美国产一区二区三| 欧美xxⅹ黑人| 一个人免费在线观看电影| 亚洲国产日韩欧美精品在线观看| 亚洲内射少妇av| 国产在线一区二区三区精| 深夜a级毛片| 男人狂女人下面高潮的视频| 日韩精品青青久久久久久| 日韩 亚洲 欧美在线| 亚洲精品自拍成人| 人妻系列 视频| av网站免费在线观看视频 | 99热6这里只有精品| 最近中文字幕2019免费版| 嫩草影院精品99| 欧美一级a爱片免费观看看| 亚洲av.av天堂| 丝瓜视频免费看黄片| 国产极品天堂在线| 99久久精品国产国产毛片| 欧美三级亚洲精品| 亚洲va在线va天堂va国产| 国产精品.久久久| 亚洲aⅴ乱码一区二区在线播放| 搞女人的毛片| 最近中文字幕高清免费大全6| 色5月婷婷丁香| 精品久久国产蜜桃| 日本一本二区三区精品| 色综合亚洲欧美另类图片| 午夜福利成人在线免费观看| 少妇人妻一区二区三区视频| 国产精品蜜桃在线观看| 人人妻人人澡欧美一区二区| 在线免费观看不下载黄p国产| 日韩欧美 国产精品| 狂野欧美白嫩少妇大欣赏| 久久久久久九九精品二区国产| 国内精品宾馆在线| 大话2 男鬼变身卡| 国产淫片久久久久久久久| 日韩一本色道免费dvd| 少妇熟女欧美另类| 亚洲精品自拍成人| 免费看日本二区| 亚洲欧美日韩无卡精品| 久久精品久久久久久久性| 精品人妻视频免费看| 精品人妻熟女av久视频| 亚洲精品亚洲一区二区| 最近的中文字幕免费完整| 91久久精品电影网| 少妇人妻精品综合一区二区| 汤姆久久久久久久影院中文字幕 | 中文字幕久久专区| 国产成人精品婷婷| 美女被艹到高潮喷水动态| 爱豆传媒免费全集在线观看| 国产综合懂色| 在线免费观看的www视频| 丝袜喷水一区| 久久人人爽人人爽人人片va| 中文字幕av在线有码专区| 日本猛色少妇xxxxx猛交久久| 久久久精品免费免费高清| 国产精品女同一区二区软件| 国内精品一区二区在线观看| 天天躁日日操中文字幕| 精品国产一区二区三区久久久樱花 | 久久久久网色| 亚洲精品乱码久久久久久按摩| 国产精品久久久久久精品电影小说 | xxx大片免费视频| 免费看不卡的av| 男女国产视频网站| 亚洲国产日韩欧美精品在线观看|