• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Immune Self-adaptive Differential Evolution Algorithm with Application to Estimate Kinetic Parameters for Homogeneous Mercury Oxidation*

    2009-05-12 03:32:50HUChunping胡春平andYANXuefeng顏學峰

    HU Chunping (胡春平) and YAN Xuefeng (顏學峰)

    ?

    An Immune Self-adaptive Differential Evolution Algorithm with Application to Estimate Kinetic Parameters for Homogeneous Mercury Oxidation*

    HU Chunping (胡春平) and YAN Xuefeng (顏學峰)**

    Automation Institute, East China University of Science and Technology, Shanghai 200237, China

    A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to improve the performance of the DE algorithm. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters’ self-adaptation. The performance of the proposed method is studied with the use of nine benchmark problems and compared with original DE algorithm and other well-known self-adaptive DE algorithms. The experiments conducted show that the ISDE clearly outperforms the other DE algorithms in all benchmark functions. Furthermore, ISDE is applied to develop the kinetic model for homogeneous mercury (Hg) oxidation in flue gas, and satisfactory results are obtained.

    differential evolution, immune system, evolutionary computation, parameter estimation

    1 Introduction

    Differential evolution (DE) [1] is a new generation evolutionary algorithm (EA) and has been successfully applied to solve a wide range of optimization problems. Differential evolution is stochastic, population- based, and direct search algorithm for globally optimizing functions with real valued parameters. In the first international IEEE Competition on evolutionary optimization, DE proved to be one of the fastest EAs. Storn and Price [1] have compared DE with adaptive simulated annealing [2], the annealed Nelder and Mead approach [3], the breeder genetic algorithm [4], the EA with soft genetic operators [5], and the method of stochastic differential equations [6]. In most instances, DE outperformed all of the above minimizations approaches. Vesterstrom and Thomsen [7] applied 34 widely used benchmark problems to evaluate the performance of DE, particle swarm optimization (PSO) [8], and EA. Their study shows that DE generally outperforms the other algorithms. Krink. [9] introduced three search approaches [genetic algorithm (GA) [10], PSO, and DE] to develop bank rating systems, respectively, and turned out that DE is clearly and consistently superior compared with GA and PSO both in respect to precision and reliability.

    In recent years, researchers have developed various strategies for adjusting control parameters dynamically. Abbass [15] proposed a self-adaptive Pareto DE (SPDE). In SPDE, the mutation rate is sampled for each individual from a Gaussian distribution,(0, 1). The crossover rate is first initialized for each individual from a uniform distribution,(0, 1). Then, CR is adapted as

    where

    In self-adaptation parameter control, the idea of an evolutionary search can be used to implement the self-adaptation of search parameters [19]. In other words, the concept of coevolution can be used to adapt the control parameters. Coevolution method is an effective approach to decompose complex structure and achieve better performance. Several applications of coevolution method, which have been proven to be useful, were described in the literatures [20-22]. In this article, the immune concepts and methods are applied to determine the parameter setting of DE. Further, the proposed method, named immune self-adaptive differential evolution (ISDE), is compared with the versions of DE proposed by Price and Storn [23], the SPDE proposed by Abbass [15], and the self-adaptive DE (SDE) proposed by Omran[16].

    For illustration, ISDE was applied to develop the kinetic model for homogeneous mercury (Hg) oxidation in flue gas. Homogeneous mercury oxidation in flue gas is a highly nonlinear reaction with reference to optimal operating conditions with many equality and inequality constraints. The kinetic model involves five reactions. Two of these reactions are reversible and three are irreversible. The preexponential factor and activation energy values in the rate constant term for each reaction need to be determined. Then, ISDE was used to determine the kinetic parameters for homogeneous mercury oxidation in flue gas with the data obtained in a laboratory scale apparatus, reported by Agarwal. [24, 25], and the kinetic model with good precision for homogeneous mercury oxidation in flue gas was developed.

    2 Differential evolution algorithm

    The procedure of executing DE can be described in the following:

    (7) Repeat steps 2-6 as long as the number of generations is smaller than the allowable maximum numbermand the best individual is not obtained.

    The mutation strategy described above is known as DE/rand/1, meaning that the vector to be perturbed is randomly chosen, and that the perturbation consists of one weighted difference vector. DE/rand/1 is the most successful and the most widely used strategy [14].Other useful strategies are:

    “DE/rand-to-best/1”:

    “DE/best/2”:

    “DE/rand/2”:

    3 Immune Self-adaptive Differential Evolution

    In self-adaptation parameter control, the idea of an evolutionary search can be used to implement the self-adaptation of search parameters. The parameters to be adapted are coded into the chromosomes that undergo mutation and recombination. Better values for these encoded parameters are supposed to result in better individuals that in turn are more likely to survive and produce offspring and hence propagate better parameter values [19]. In other words, self-adaptation is a strategy in which the idea of an evolutionary search was used to choose the optimal parameters.

    Immune system, a highly evolved biological system with learning, memory, and pattern recognition capabilities [26], has been successfully integrated into many other evolution algorithms [27-29]. In our work, the immune concepts and methods are applied to determine the parameter setting of DE. To be exact, the aim of leading immune concepts and methods into DE is theoretically to use the previous state information of search for seeking the optimal parameters,and CR. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters’ self-adaptation. In ISDE, the first initial antibodies are randomly generated within the feasible range. The two parameters of each individual are initialized from a normal distribution within the feasible range. The affinity values of the antibodies are calculated. Then, depending on the affinity values, the parameters are replaced by antibody with a certain probability defined previously. In each generation, a percentage of antibodies in the antibody population are replaced by created new antibodies. Thus, the coevolution method is established. Differential evolution is used to perform evolution search in spaces of solutions, and immune system is used to perform evolution search in spaces of control parameters. The solutions and control parameters evolve interactively and selfadaptively, and both the satisfactory solutions and suitable control parameters can be obtained simultaneously.

    The procedure of executing ISDE can be described in the following:

    (1) Initialization operation

    (3) Mutation operation

    (4) Crossover operation

    (5) Evaluation operation

    (6) Create new antibodies

    (7) Update antibodies

    (8) Generate the parameters for next generation

    whereis the parameter that controls the probability between different antibodies.

    (10) Repeat steps 2-9 as long as the number of generations is smaller than the allowable maximum numbermand the best individual is not obtained.

    4 Benchmark function

    Nine benchmark functions were used in our experimental studies. These benchmark functions were divided into three classes: functions with single optima, many local minima, and a few local minima. The benchmark functions are given in Table 1.stands for the dimension of the function,0denotes their ranges, andminis a function value of the global optimum. A more detailed description of each function is given in Yao. [30], Krink. [31], and Salman[32].

    5 Experimental results

    Maximal number of evaluations: 50000;

    The results reported in this section are average results of 30 independent runs.

    Table 1 Benchmark function

    5.1 No-noisy benchmark functions

    Table 3 summarizes the results obtained by applying the different approaches to the multimodal benchmark functions. The results show that the ISDE significantly outperformed (or at least equal to) the other methods in all the multimodal functions.

    From above experiments, it can be turned out that ISDE is clearly superior compared with the original DE strategies, SPDE, and SDE in all benchmark functions.

    5.2 Noisy benchmark functions

    In this subsection, the effect of noise on the performance of ISDE is investigated. The noisy versions of the benchmark functions are defined as:

    Table 4 and Table 5 summarize the results obtained for the noisy problems for the unimodal and multimodal functions, respectively. Table 4 and 5 show that the ISDE was less prone to noise than other DE strategies for all benchmark functions. The ISDE retained its position as the best performer when applied to all benchmark functions even in the presence of noise. The only exception is the noisy Rastrigin’s function where SDE outperformed the ISDE. However, even for the noisy Rastrigin’s function where ISDE’s average is worse than SDE, it is not significantly worse. In addition, the improvement is even more significant for the noisy Ackley’s function, where all strategies were trapped in a local optimum. Hence, compared with the other tested strategies, the ISDE seems to be less badly affected by noise. This is a significant improvement over the conventional DE, which is not a good approach to achieve results with high accuracy for noisy functions [31].

    Table 2 Mean and standard deviation (±SD) of the unimodal function optimization results (The data about DE/rand/1, DE/best/1, DE/rand-to-best/1, DE/rand/2, DE/best/2, SPDE, and SDE were reported by Salman et al. [32])

    Table 3 Mean and standard deviation (±SD) of the multimodal function optimization results (The data about DE/rand/1, DE/best/1, DE/rand-to-best/1, DE/rand/2, DE/best/2, SPDE, and SDE were reported by Salman et al. [32])

    Table 4 Mean and standard deviation (±SD) of the noisy unimodal function optimization results (The data about DE/rand/1, DE/best/1, DE/rand-to-best/1, DE/rand/2, DE/best/2, SPDE, and SDE were reported by Salman et al. [32])

    Table 5 Mean and standard deviation (±SD) of the noisy multimodal function optimization results (The data about DE/rand/1, DE/best/1, DE/rand-to-best/1, DE/rand/2, DE/best/2, SPDE, and SDE were reported by Salman et al. [32])

    5.3 Effect of α, β, and

    6 Application

    Mercury emissions from coal-fired power plants are highly dependent upon mercury speciation [33]. Mercury in the flue gas is most commonly classified in three forms: elemental mercury (Hg0), oxidized mercury (Hg2+), and particulate bound mercury (HgP). The particulate bound mercury is usually trapped by ash collection devices within power plants, such as electrostatic precipitators, mechanical hoppers, or bag houses. Elemental mercury is relatively inert and difficult to capture because of its nonreactivity. It is also volatile at high temperatures and insoluble in water. In contrast, oxidized mercury is very water soluble and has an affinity for adsorbing onto particulate matter such as fly ash or on metal surfaces in the duct. As a result of these physical and chemical properties of Hg0and Hg2+, the removal of mercury is enhanced when elemental Hg is converted to its oxidized form [34].

    In order to better understand the reaction mechanism that takes place in the gas phase, a model needs to be developed where the percentage of mercury oxidized can be predicted based on the concentrations of these flue gas components. The reaction mechanism, proposed by Agarwal and Stenger [34], is a five-reactionsystem, where two reactions are reversible and three reactions are irreversible. These reactions are listed below:

    where the term (s, g) denotes that the species could be in solid (s), gas (g) or both phases.

    The reaction rate equations can be written as follows:

    Table 6 Influence of α on the performance of ISDE

    Table 7 Influence of β on the performance of ISDE

    Table 8 Influence of??on the performance of ISDE

    Table 9 Optimal parameters and objective function values corresponding to reported data [34] and ISDE

    7 Conclusions

    This article presents an efficient self-adaptive DE algorithm for global optimization. In the proposed method, the immune concepts and methods are applied to determine the parameter setting, which utilizes the previous state information of search for seeking the optimal parameters,and CR. In the benchmark tests, both noisy and nonoisy functions, the results show that the performance of ISDE is outstanding in comparison with the original DE strategies, SPDE and SDE tested. Among the tested strategies, the ISDE can rightfully be regarded as an excellent first choice when faced with a new optimization problem to solve. Thus, the algorithm was subsequently used to estimate the kinetic parameters for homogeneous mercury oxidation in flue gas. The results marked a noticeable improvement over previously reported solutions.

    1 Storn, R., Price, K., “Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces”, Technical Report TR-95-012, International Computer Science Institute, Berkeley, CA, USA (1995).

    2 Ingber, L., “Simulated annealing: Practicetheory”,..., 18, 29-57 (1993).

    3 Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., Numerical Recipes in C, Cambridge University Press, UK (1992).

    4 Muehlenbein, H., Schlierkamp, V., “Predictive models for the breeder genetic algorithm (I) Continuous parameter optimizations”,.., 1, 25-49 (1993).

    5 Voigt, H.M., “Soft genetic operators in evolutionary algorithms”,, 899, 123-141 (1995).

    6 Aluffi-Pentini, F., Parisi, V., Zirilli, F., “Global optimization and stochastic differential equations”,..., 47, 1–16 (1985).

    7 Vesterstrom, J., Thomsen, R., “A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems”, In: Proceedings of the Sixth Congress on Evolutionary Computation, IEEE Press, USA, 332-339 (2004).

    8 Eberhart, R., Kennedy, J., “A new optimizer using particle swarm theory”, In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, IEEE Press, Nagoya, Japan, 39-43 (1995).

    9 Krink, T., Paterlini, S., Resti, A., “Using differential evolution to improve the accuracy of bank rating systems”,..., 52, 68-87 (2007).

    10 Holland, J.H., Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Harbor (1975).

    11 Brest, J., Bo?kovi?, B., Greiner, S., ?umer, V., Mau?ec., M., “Performance comparison of self-adaptive and adaptive differential evolution algorithms”,., 11, 617-629 (2007).

    12 Liu, J., Lampinen., J., “A fuzzy adaptive differential revolution algorithm”, In: Proceedings of the IEEE International Region 10 Conference on Computers, Communications, Control and Power Engineering, IEEE Press, Beijing, China, 606-611(2002).

    13 Storn, R., “On the usage of differential evolution for function optimization”, In: Biennial Conference of North American Fuzzy Information Processing Society, IEEE Press, Berkeley, USA, 519–523 (1996).

    14 Babu, B., Jehan, M., “Differential evolution for multi-objective optimization”, In: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE Press, Canberra, Australia, 2696-2703 (2003).

    15 Abbass., H., “The self-adaptive pareto differential evolution algorithm”, In: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE Press, Hawaii, USA, 831-836 (2002).

    16 Omran, M., Salman, A., Engelbrecht, A., “Self-adaptive differential evolution”, In: Proceedings of the International Conference on Computational Intelligence and Security, IEEE Press, Xi’an, China, 192-199 (2005).

    17 Yuan, X.H., Zhang, Y., Wang, L., Yuan, Y.B., “An enhanced differential evolution algorithm for daily optimal hydro generation scheduling”,..., 55, 2458-2468 (2008).

    18 Nobakhti, A., Wang, H., “A simple self-adaptive differential evolution algorithm with application on the ALSTOM gasifier”,.., 8, 350–370 (2008).

    19 Eiben, A., Hinterding, R., Michalewicz, Z., “Parameter control in evolutionary algorithms”,..., 3, 124-141 (1999).

    20 Carlos, A.C.C., “Use of a self-adaptive penalty approach for engineering optimization problems”,.., 41, 113-127 (2000).

    21 He, Q., Wang, L., “An effective co-evolutionary particle swarm optimization for constrained engineering design problems”,...., 20, 89-99 (2007).

    22 Hu, F.Z., Wang, L., He, Q., “An effective co-evolutionary differential evolution for constrained optimization”,..., 186, 340-356 (2007).

    23 Storn, R., Price, K., “Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces”,.., 11, 341-359 (1997).

    24 Agarwal, H., Stenger, H.G., Wu, S., Fan, Z., “Effects of H2O, SO2and NO on homogeneous Hg oxidation by Cl2”,.., 20, 1068-1075 (2006).

    25 Agarwal, H., Romero, C.E., Stenger, H.G., “Comparing and interpreting laboratory results of Hg oxidation by a chlorine species”,.., 88, 723-730 (2007).

    26 Farmer, J.D., Packard, N.H., Perelson, A.S., “The immune system, adaptation, and machine learning”,., 2, 187-204 (1986).

    27 Wu, X.L., Lu, J.G., Sun, Y.X., “An improved differential evolution for optimization of chemical process”,...., 16, 228-234 (2008).

    28 Jiao, L.C., Wang, L., “A novel genetic algorithm based on immunity”,..., 30, 552-561 (2000).

    29 Zeng, C.W., Gu, T.L., “A novel immunity-growth genetic algorithm for traveling salesman problem”, In: Proceedings of IEEE Conference on Natural Computation, IEEE Press, Haikou, China, 394-398 (2007).

    30 Xin, Y., Liu, Y., Lin, G.M., “Evolutionary programming made faster”,..., 3, 82-102 (1999).

    31 Krink, T., Filipi?, B., Fogel, B., “Noisy optimization problems—A particular challenge for differential evolution?”, In: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE Press, Portland, USA, 332-339 (2004).

    32 Salman, A., Engelbrecht, A., Omran, M., “Empirical analysis of self-adaptive differential evolution”,...., 83, 785–804 (2007).

    33 Niksa, S., Helble, J.J., Fujiwara, N., “Kinetic modeling of homogeneous mercury oxidation: The importance of NO and H2O in predicting oxidation in coal-derived systems”,..., 35, 3701-3706 (2001).

    34 Agarwal, H., Stenger, H.G., “Development of a predictive kinetic model for homogeneous Hg oxidation data”,..., 45, 109-125 (2007).

    2008-07-28,

    2008-12-24.

    the National Natural Science Foundation of China (20506003, 20776042) and the National High-Tech Research and Development Program of China (2007AA04Z164).

    ** To whom correspondence should be addressed. E-mail: yan_xuefeng@hotmail.com

    国产高清激情床上av| 成人三级做爰电影| 一卡2卡三卡四卡精品乱码亚洲| 成人三级做爰电影| 日韩欧美在线二视频| 国产亚洲欧美在线一区二区| 午夜福利高清视频| 婷婷精品国产亚洲av在线| 亚洲少妇的诱惑av| 丁香欧美五月| 97人妻精品一区二区三区麻豆 | 亚洲国产中文字幕在线视频| 正在播放国产对白刺激| 亚洲精品国产一区二区精华液| 日韩欧美国产在线观看| 国产日韩一区二区三区精品不卡| 在线av久久热| 精品国产一区二区久久| 性欧美人与动物交配| 日韩一卡2卡3卡4卡2021年| e午夜精品久久久久久久| svipshipincom国产片| 淫妇啪啪啪对白视频| 成熟少妇高潮喷水视频| 久久久国产成人精品二区| 中文字幕最新亚洲高清| 夜夜躁狠狠躁天天躁| 久久影院123| 我的亚洲天堂| 久久国产精品人妻蜜桃| 日本在线视频免费播放| 欧美色视频一区免费| 最新美女视频免费是黄的| 国产精品99久久99久久久不卡| 亚洲美女黄片视频| 两个人视频免费观看高清| 亚洲一区高清亚洲精品| 日韩国内少妇激情av| 国产av在哪里看| 久久久国产精品麻豆| 久99久视频精品免费| 国内精品久久久久精免费| 日本黄色视频三级网站网址| 久久精品影院6| 91国产中文字幕| 正在播放国产对白刺激| 妹子高潮喷水视频| 长腿黑丝高跟| 久久久精品国产亚洲av高清涩受| 国产亚洲精品一区二区www| 国产精品久久久久久亚洲av鲁大| 香蕉丝袜av| 两人在一起打扑克的视频| 亚洲av片天天在线观看| 亚洲精品在线观看二区| 51午夜福利影视在线观看| 十分钟在线观看高清视频www| 国产亚洲精品av在线| 韩国精品一区二区三区| 淫秽高清视频在线观看| 精品欧美一区二区三区在线| 免费无遮挡裸体视频| 国产xxxxx性猛交| 一夜夜www| 成人国语在线视频| 热re99久久国产66热| 999久久久国产精品视频| 亚洲av成人av| 美女 人体艺术 gogo| 日日夜夜操网爽| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品美女久久av网站| 亚洲精华国产精华精| 日本三级黄在线观看| 久久国产精品影院| 99热只有精品国产| 久久性视频一级片| 精品久久久久久久人妻蜜臀av | 免费看十八禁软件| 亚洲欧洲精品一区二区精品久久久| 成人国产综合亚洲| 亚洲欧美精品综合一区二区三区| 亚洲av电影不卡..在线观看| 中文亚洲av片在线观看爽| 黄频高清免费视频| 欧美日韩中文字幕国产精品一区二区三区 | 超碰成人久久| 9热在线视频观看99| 麻豆成人av在线观看| 99久久久亚洲精品蜜臀av| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲,欧美精品.| 亚洲人成77777在线视频| 色播亚洲综合网| 欧美日韩一级在线毛片| 国产人伦9x9x在线观看| 淫妇啪啪啪对白视频| 久久久久久免费高清国产稀缺| 亚洲成av片中文字幕在线观看| tocl精华| 精品卡一卡二卡四卡免费| 免费看a级黄色片| 黄频高清免费视频| 两个人看的免费小视频| 亚洲精品在线观看二区| 国产精品久久视频播放| 淫妇啪啪啪对白视频| 大型黄色视频在线免费观看| 欧美日韩亚洲综合一区二区三区_| 国产成人欧美在线观看| 亚洲三区欧美一区| 亚洲精品美女久久av网站| 免费在线观看亚洲国产| 又黄又爽又免费观看的视频| 亚洲熟妇中文字幕五十中出| 十分钟在线观看高清视频www| 色老头精品视频在线观看| 久热这里只有精品99| 久久性视频一级片| 咕卡用的链子| 欧美黑人精品巨大| 两性夫妻黄色片| 男男h啪啪无遮挡| 午夜影院日韩av| 亚洲国产精品成人综合色| 午夜久久久久精精品| 国产一区二区三区视频了| 国产午夜精品久久久久久| 性少妇av在线| 女性被躁到高潮视频| 精品人妻在线不人妻| 嫁个100分男人电影在线观看| 国产成人av激情在线播放| 国产欧美日韩一区二区三区在线| 欧美在线一区亚洲| 黑人欧美特级aaaaaa片| 亚洲精品在线观看二区| 夜夜爽天天搞| 免费在线观看日本一区| 97人妻精品一区二区三区麻豆 | 黄色片一级片一级黄色片| 在线观看舔阴道视频| 欧美在线黄色| 精品欧美国产一区二区三| 日日摸夜夜添夜夜添小说| 欧美日本亚洲视频在线播放| 亚洲五月婷婷丁香| 国产亚洲精品一区二区www| 国产高清激情床上av| 欧美成狂野欧美在线观看| 欧美最黄视频在线播放免费| 国产真人三级小视频在线观看| 国产亚洲精品久久久久5区| 国产欧美日韩一区二区精品| 精品卡一卡二卡四卡免费| 动漫黄色视频在线观看| 午夜福利免费观看在线| 丰满人妻熟妇乱又伦精品不卡| 精品国产超薄肉色丝袜足j| 亚洲av电影在线进入| 大码成人一级视频| 午夜视频精品福利| 亚洲国产欧美一区二区综合| 波多野结衣巨乳人妻| 丁香欧美五月| 禁无遮挡网站| 99国产精品一区二区三区| 一进一出好大好爽视频| 非洲黑人性xxxx精品又粗又长| 老司机深夜福利视频在线观看| 宅男免费午夜| 国产单亲对白刺激| 国产成人欧美| 国产精品久久久久久人妻精品电影| 精品第一国产精品| 国产成人系列免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区字幕在线| 国产xxxxx性猛交| 国产私拍福利视频在线观看| 女生性感内裤真人,穿戴方法视频| 久久九九热精品免费| 亚洲av电影不卡..在线观看| 午夜福利免费观看在线| 欧美日本亚洲视频在线播放| 天堂动漫精品| 在线观看日韩欧美| 国产成人欧美在线观看| 亚洲天堂国产精品一区在线| 老鸭窝网址在线观看| 精品欧美国产一区二区三| 亚洲第一电影网av| 91在线观看av| 亚洲专区字幕在线| 欧美av亚洲av综合av国产av| 久久亚洲真实| www.熟女人妻精品国产| 身体一侧抽搐| 91成年电影在线观看| 亚洲成国产人片在线观看| 国产精品一区二区精品视频观看| 久久精品亚洲熟妇少妇任你| 亚洲美女黄片视频| 免费女性裸体啪啪无遮挡网站| 日本一区二区免费在线视频| 男男h啪啪无遮挡| 亚洲美女黄片视频| 日韩欧美免费精品| 午夜福利视频1000在线观看 | 日韩欧美国产在线观看| av天堂久久9| 在线观看舔阴道视频| 波多野结衣av一区二区av| 久久精品人人爽人人爽视色| 99久久精品国产亚洲精品| 国内精品久久久久精免费| 精品国产乱子伦一区二区三区| 老熟妇乱子伦视频在线观看| av中文乱码字幕在线| 欧美激情 高清一区二区三区| 香蕉丝袜av| 国产极品粉嫩免费观看在线| 久久性视频一级片| 91大片在线观看| 曰老女人黄片| ponron亚洲| 欧美午夜高清在线| 久久中文字幕人妻熟女| 老鸭窝网址在线观看| 老司机午夜福利在线观看视频| 在线观看舔阴道视频| 国产精品影院久久| 老汉色av国产亚洲站长工具| 禁无遮挡网站| 正在播放国产对白刺激| 亚洲天堂国产精品一区在线| 一级黄色大片毛片| 久久亚洲精品不卡| 久久久久久久精品吃奶| 日韩大尺度精品在线看网址 | 电影成人av| 久久伊人香网站| 757午夜福利合集在线观看| 欧美av亚洲av综合av国产av| 女性生殖器流出的白浆| 国产成人av教育| av天堂久久9| 亚洲av五月六月丁香网| 国产xxxxx性猛交| 午夜亚洲福利在线播放| 在线观看免费日韩欧美大片| 欧美大码av| 精品不卡国产一区二区三区| 免费少妇av软件| 99国产综合亚洲精品| 欧美成人免费av一区二区三区| 午夜精品国产一区二区电影| 国产av又大| av免费在线观看网站| 久久久精品欧美日韩精品| 九色国产91popny在线| 久久国产乱子伦精品免费另类| 99在线视频只有这里精品首页| 曰老女人黄片| 日日干狠狠操夜夜爽| 中文字幕av电影在线播放| 一进一出好大好爽视频| 亚洲国产精品久久男人天堂| 一a级毛片在线观看| 性少妇av在线| 国产精品影院久久| 久久久国产成人免费| 侵犯人妻中文字幕一二三四区| 国产精品av久久久久免费| 欧美一级a爱片免费观看看 | 搡老岳熟女国产| 欧美日韩一级在线毛片| 亚洲中文字幕日韩| 日韩大码丰满熟妇| 午夜激情av网站| 午夜亚洲福利在线播放| 国产精品亚洲美女久久久| 久久精品影院6| 亚洲欧洲精品一区二区精品久久久| 搡老岳熟女国产| 很黄的视频免费| 亚洲成人久久性| 18禁裸乳无遮挡免费网站照片 | 一区二区三区高清视频在线| 真人一进一出gif抽搐免费| 国产精品免费视频内射| 国产精品 国内视频| av电影中文网址| 日韩三级视频一区二区三区| 黄色a级毛片大全视频| 日本 av在线| 桃色一区二区三区在线观看| 此物有八面人人有两片| 精品无人区乱码1区二区| 亚洲国产欧美日韩在线播放| 麻豆国产av国片精品| 一级a爱视频在线免费观看| 日日干狠狠操夜夜爽| 欧美日本视频| 亚洲av电影在线进入| 国产精品电影一区二区三区| 宅男免费午夜| 最近最新中文字幕大全电影3 | av有码第一页| 成人欧美大片| 亚洲熟妇熟女久久| 啦啦啦观看免费观看视频高清 | 亚洲中文日韩欧美视频| 久久久国产精品麻豆| 久久青草综合色| 午夜福利,免费看| 黄色丝袜av网址大全| 啦啦啦免费观看视频1| 日韩一卡2卡3卡4卡2021年| 18禁观看日本| 一级作爱视频免费观看| 日韩免费av在线播放| 一区在线观看完整版| 一区二区三区激情视频| 男人的好看免费观看在线视频 | 日韩精品中文字幕看吧| 日本a在线网址| 91九色精品人成在线观看| 琪琪午夜伦伦电影理论片6080| 啦啦啦观看免费观看视频高清 | 好看av亚洲va欧美ⅴa在| 美女高潮到喷水免费观看| 亚洲欧美日韩高清在线视频| 亚洲av美国av| 中文字幕久久专区| 美女高潮到喷水免费观看| 啦啦啦观看免费观看视频高清 | 精品久久久精品久久久| 大陆偷拍与自拍| 99国产精品99久久久久| 久久久国产精品麻豆| 亚洲精品av麻豆狂野| 天堂动漫精品| 中文字幕av电影在线播放| 啦啦啦 在线观看视频| 久久久久久国产a免费观看| 欧美国产日韩亚洲一区| 精品国产美女av久久久久小说| √禁漫天堂资源中文www| 男人舔女人下体高潮全视频| 免费久久久久久久精品成人欧美视频| 久久狼人影院| 高清在线国产一区| 午夜福利,免费看| 午夜福利成人在线免费观看| 国产高清激情床上av| 午夜久久久在线观看| 亚洲第一av免费看| 午夜久久久在线观看| 一区福利在线观看| 久久伊人香网站| 久久婷婷人人爽人人干人人爱 | 在线天堂中文资源库| 淫妇啪啪啪对白视频| 中文字幕人妻丝袜一区二区| 一级毛片精品| 成在线人永久免费视频| 欧美 亚洲 国产 日韩一| 精品国产乱码久久久久久男人| 91在线观看av| 国产伦人伦偷精品视频| 亚洲av五月六月丁香网| www.www免费av| 亚洲欧美激情在线| 国产欧美日韩一区二区精品| 好男人电影高清在线观看| 无人区码免费观看不卡| 亚洲美女黄片视频| 色av中文字幕| 久久精品国产亚洲av香蕉五月| 亚洲第一电影网av| 男女床上黄色一级片免费看| 精品国内亚洲2022精品成人| videosex国产| 又黄又粗又硬又大视频| 啪啪无遮挡十八禁网站| 亚洲熟女毛片儿| 一本久久中文字幕| 欧美亚洲日本最大视频资源| 欧美人与性动交α欧美精品济南到| 一区二区三区高清视频在线| 日韩一卡2卡3卡4卡2021年| 国产野战对白在线观看| 一卡2卡三卡四卡精品乱码亚洲| 一区福利在线观看| 成人18禁高潮啪啪吃奶动态图| 美女高潮喷水抽搐中文字幕| 最近最新中文字幕大全电影3 | 嫩草影院精品99| 亚洲一区二区三区不卡视频| 黄频高清免费视频| 国产精品1区2区在线观看.| 久久精品91无色码中文字幕| 亚洲精品国产区一区二| 可以在线观看的亚洲视频| 大型黄色视频在线免费观看| 欧美黄色淫秽网站| 人人妻,人人澡人人爽秒播| 精品国产一区二区久久| 丁香欧美五月| 多毛熟女@视频| 国产免费av片在线观看野外av| 国产aⅴ精品一区二区三区波| 国产精品一区二区三区四区久久 | 午夜日韩欧美国产| 极品教师在线免费播放| 757午夜福利合集在线观看| av网站免费在线观看视频| av免费在线观看网站| 麻豆av在线久日| 亚洲专区国产一区二区| 麻豆国产av国片精品| 此物有八面人人有两片| 亚洲欧美精品综合久久99| avwww免费| 欧美国产日韩亚洲一区| 美女高潮喷水抽搐中文字幕| 国产成人精品久久二区二区免费| 免费观看人在逋| 欧美日韩精品网址| 国产精华一区二区三区| 成人国产一区最新在线观看| 精品久久蜜臀av无| 国产免费av片在线观看野外av| 国产在线精品亚洲第一网站| 女生性感内裤真人,穿戴方法视频| 精品国产国语对白av| 亚洲欧美一区二区三区黑人| 国产亚洲精品久久久久久毛片| 欧美成狂野欧美在线观看| 伊人久久大香线蕉亚洲五| 97超级碰碰碰精品色视频在线观看| 一级a爱片免费观看的视频| 丰满人妻熟妇乱又伦精品不卡| 99精品欧美一区二区三区四区| 中文字幕av电影在线播放| 丝袜美腿诱惑在线| 变态另类成人亚洲欧美熟女 | 91成人精品电影| 色综合欧美亚洲国产小说| 国产av一区二区精品久久| 久久热在线av| 国产一区二区三区在线臀色熟女| 欧美不卡视频在线免费观看 | 亚洲精华国产精华精| 999久久久精品免费观看国产| 中亚洲国语对白在线视频| 国产精品国产高清国产av| 中国美女看黄片| 欧美亚洲日本最大视频资源| e午夜精品久久久久久久| 日韩精品免费视频一区二区三区| xxx96com| or卡值多少钱| 岛国在线观看网站| 亚洲五月婷婷丁香| av天堂在线播放| 国产精品久久电影中文字幕| 亚洲激情在线av| 一级毛片精品| 亚洲欧美一区二区三区黑人| 亚洲 欧美 日韩 在线 免费| 99久久国产精品久久久| 男女下面进入的视频免费午夜 | 美国免费a级毛片| 亚洲精华国产精华精| 老司机靠b影院| 最新在线观看一区二区三区| 国产欧美日韩一区二区三| 一级毛片精品| 亚洲av熟女| 在线观看www视频免费| 人人妻人人澡人人看| 国产真人三级小视频在线观看| 最新美女视频免费是黄的| 久久久国产精品麻豆| 欧美激情久久久久久爽电影 | 国产亚洲精品第一综合不卡| 国产片内射在线| 男女床上黄色一级片免费看| 黄片播放在线免费| 久久天堂一区二区三区四区| 国产精品久久电影中文字幕| 一区福利在线观看| 国产精品久久电影中文字幕| 精品一品国产午夜福利视频| 成人亚洲精品av一区二区| 男女午夜视频在线观看| 精品国产乱码久久久久久男人| 男女之事视频高清在线观看| 亚洲精品国产色婷婷电影| 色在线成人网| 亚洲免费av在线视频| 国产欧美日韩一区二区三区在线| 欧美日韩福利视频一区二区| 国产一区二区三区视频了| tocl精华| 日韩免费av在线播放| 日本一区二区免费在线视频| 国产精品影院久久| aaaaa片日本免费| 涩涩av久久男人的天堂| 亚洲免费av在线视频| 久久久国产欧美日韩av| 很黄的视频免费| 黄网站色视频无遮挡免费观看| 国产成人精品久久二区二区91| 成人欧美大片| 国产一区二区三区综合在线观看| 久久久久国产一级毛片高清牌| 久久久久亚洲av毛片大全| 非洲黑人性xxxx精品又粗又长| 村上凉子中文字幕在线| 精品久久久久久成人av| 国产又色又爽无遮挡免费看| 国产精品 欧美亚洲| 亚洲男人天堂网一区| 看免费av毛片| 国产精品日韩av在线免费观看 | 欧美黑人精品巨大| 9色porny在线观看| 亚洲久久久国产精品| 久久国产亚洲av麻豆专区| 亚洲精品国产精品久久久不卡| 我的亚洲天堂| 国产一区二区在线av高清观看| 日日夜夜操网爽| 久久精品影院6| 精品久久久久久久人妻蜜臀av | 欧美成人免费av一区二区三区| 国产免费av片在线观看野外av| 久久人妻av系列| 美女高潮喷水抽搐中文字幕| 精品国产乱子伦一区二区三区| 欧美激情极品国产一区二区三区| 免费一级毛片在线播放高清视频 | 久久久久久久久中文| 夜夜爽天天搞| 波多野结衣高清无吗| 天堂影院成人在线观看| 丝袜美腿诱惑在线| 亚洲精品中文字幕在线视频| 国产亚洲欧美精品永久| 亚洲中文av在线| 变态另类成人亚洲欧美熟女 | 国产xxxxx性猛交| 日日夜夜操网爽| 老鸭窝网址在线观看| 波多野结衣高清无吗| 久久午夜综合久久蜜桃| 欧美日韩亚洲综合一区二区三区_| 精品国产亚洲在线| 色综合欧美亚洲国产小说| 国产一区二区激情短视频| 国产精品1区2区在线观看.| 老司机午夜十八禁免费视频| 欧美激情 高清一区二区三区| 老司机深夜福利视频在线观看| 69精品国产乱码久久久| 久久亚洲精品不卡| 国产亚洲精品av在线| 91国产中文字幕| 国产真人三级小视频在线观看| 久久 成人 亚洲| a级毛片在线看网站| 波多野结衣高清无吗| 九色国产91popny在线| 亚洲欧美一区二区三区黑人| 日本免费一区二区三区高清不卡 | 视频区欧美日本亚洲| 国产视频一区二区在线看| 欧美中文日本在线观看视频| 99在线人妻在线中文字幕| 国产精品一区二区精品视频观看| 99久久精品国产亚洲精品| 日本精品一区二区三区蜜桃| 欧美不卡视频在线免费观看 | av福利片在线| 精品国产美女av久久久久小说| 又黄又粗又硬又大视频| 欧美日韩福利视频一区二区| 精品国产美女av久久久久小说| 无限看片的www在线观看| 中文字幕人妻熟女乱码| 丰满的人妻完整版| 欧美 亚洲 国产 日韩一| 日本一区二区免费在线视频| 国产一卡二卡三卡精品| 熟妇人妻久久中文字幕3abv| 久99久视频精品免费| 精品国产美女av久久久久小说| 国产免费男女视频| 一进一出抽搐动态| 在线免费观看的www视频| 在线十欧美十亚洲十日本专区| 99久久国产精品久久久| 欧美黄色片欧美黄色片| 9热在线视频观看99| 女人精品久久久久毛片| 日韩三级视频一区二区三区| 精品不卡国产一区二区三区| 久久草成人影院| 美女高潮到喷水免费观看| 亚洲成人免费电影在线观看| 校园春色视频在线观看|