• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved Mixed Integer Optimization Approach for Data Rectification with Gross Error Candidates*

    2009-05-12 03:33:02LIJianlie李筧列andRONGGang榮岡

    LI Jianlie (李筧列) and RONG Gang (榮岡)

    ?

    Improved Mixed Integer Optimization Approach for Data Rectification with Gross Error Candidates*

    LI Jianlie (李筧列) and RONG Gang (榮岡)**

    State Key Laboratory of Industrial Control Technology, Institute of Cyber System and Control, Zhejiang University, Hangzhou 310027, China

    Mixed integer linear programming (MILP) approach for simultaneous gross error detection and data reconciliation has been proved as an efficient way to adjust process data with material, energy, and other balance constrains. But the efficiency will decrease significantly when this method is applied in a large-scale problem because there are too many binary variables involved. In this article, an improved method is proposed in order to generate gross error candidates with reliability factors before data rectification. Candidates are used in the MILP objective function to improve the efficiency and accuracy by reducing the number of binary variables and giving accurate weights for suspected gross errors candidates. Performance of this improved method is compared and discussed by applying the algorithm in a widely used industrial example.

    data rectification, gross error detection, graphic theory, Bayesian method

    1 INTRODUCTION

    In most chemical plants, measurement error will lead to poor decisions in the regular plant activities such as planning and process optimization. After the idea of data reconciliation was brought in 1961 [1], the problem of improving the accuracy of process data to let them satisfy the material, component, and energy balance with less adjustment and shorter time has been studied for decades. Besides the widely used solution of linear and nonlinear problem using matrix projection [2, 3], many other methods such as mixed integer linear programming (MILP) method [4], principal component analysis (PCA) method [5], measurement test and node test (MTNT) method [6-8], and redundancy analysis method [9] have been developed to solve the steady-state data rectification problem. More information about the history of data rectification methods can be obtained from a perspective written by Crowe [10].

    MILP framework of simultaneous data reconciliation and gross error detection is prompted to remove random errors of plant data, as well as identify and compensate gross errors for the final solution. MILP method defines an associated binary variable for each measurement to indicate the existence of gross error and add penalty in the objective function to activate the binary variables. However, the efficiency will decrease significantly when the method is applied to large-scale problems, as there will be too many binary variables in the calculation. Fortunately, we found that before performing the mixed integer linear optimization, the number of binary variables can be reduced on the basis of historic data. Moreover, accurate weighting factors in the objective function should also improve the results.

    This article describes a method for searching gross error candidates in a directed diagram of process flowsheet and calculating their reliability factors. The gross error candidates are used to decide binary variables in the MILP objective function.

    2 BASIC MILP METHOD

    For a linear, time invariant, and steady state system such as a network of flow rate, balance equation can be written as:

    The MILP method is derived from the standard formulation of data reconciliation:

    By substituting the Eq. (2) into Eq. (3) and defining each measurement a binary variable corresponding to the existence of a bias, the new objective function with MILP formulation can be written as:

    Figure 1 Spanning trees for a simple flowsheet

    3 GENERATION OF GROSS ERROR CANDIDATES

    Because the data reconciliation and gross error detection problems are formulated as MILP frameworks, it is easy to apply other techniques to enhance the performance. Soderstrom suggests using some standard statistical tests for bias as constrains; however, these modifications not offer much benefits over the basic method. And moreover, as an optimization problem, this technique is significantly more computationally intensive. Generate a list of gross error candidates and reduce the binary variables in the objective function is obviously an efficient way to improve the efficiency of the MILP method.

    In order to generate gross error candidates with weighting factors and reduce the binary variables in the objective function, an efficient method based on graphic theory and Bayesian method is prompted. This method can generate gross error candidates with prior information and cost less computation time.

    Tamhane. [11, 12] used Bayesian approach to detect gross error in which the prior probabilities of gross error occurrence are updating in the light of accumulating data. And the probability of gross error occurrence for instrument is:

    Once the prior probabilities are confirmed, the next step is to use these probabilities to generate gross error candidates before using the MILP method. This step can be modified or even removed when there are expert experiences or no accumulated process data. Experts can determine the prior probabilities by checking the quality of process data or starting with same prior probabilities and allowing these values to be updated in the next iteration.

    In the view of graphic theory, the flowsheet can be regard as a directed graphic. As illustrated in Fig. 1, spanning tree is the subgraph of a graphic, and this subgraph does not contain any loops. So the streams in the flowsheet can be divided into two sets: branches and chords of the spanning tree. Obviously, the true value of every branch can be obtained through true values of some chords. For example, the branches of spanning tree No.1 in Fig. 1 is stream 2, 3, and 4, so the chords will be stream 1 and 5. So the true value of stream 2 and stream 4 is as same as the true value of stream 1, and true value of stream 3 is identical to the sum of true values of stream 1 and stream 5. In this case, we called these chords as independent variables (IV) and branches as dependent variables (DV).

    Usually, there are a large number of spanning trees in a given graph, so the choice of independent variables is not exclusive. In this method, because the independent variables are used as benchmarks in the gross error candidate generation, we choose the chords of graph’s maximal spanning tree as independent variables. And the weight of the given flowsheet is defined as prior probabilities calculated by Eq. (5).

    Statisticis established to indicate the measurement bias for dependent variables that has an upper threshold limit ofZfor a level of significance

    There is a remaining problem that independent variables have certain probabilities to include gross error and cause the type I error of gross error candidates in the dependent variables. In order to solve this problem, if an independent variable contains gross error, we assume that all the dependent variables corresponding to this independent variable will be suspected. The probability of gross error occurrence between this independent variable and all the corresponding dependent variables will be compared to decide the gross error candidate. Assume that the probability of gross error occurrence is 0.2 for streams 2, 3, 4, and 0.1 for stream 1 in Fig. 1. If streams 2, 3, and 4, which are corresponding to stream 1, are suspected with gross errors, stream 1 will be added into gross error candidate list because the probability of all streams 2, 3, and 4 that contain gross errors will be 0.23, which is smaller than the probability of gross error occurrence for stream 1. Once there are candidates in the independent variables, all dependent variables not in the candidate list will be removed from graph and new iteration will be performed in the subgraph till there are no new gross error candidates in the subgraph. Details of the gross error candidate generation method are described as follows:

    Step 1 Weight all measured streams with their probability of gross error occurrence calculated by Eq. (5).

    Step 2 Finding the maximal spanning tree of the graph (subgraph), classify the streams into independent and dependent variables.

    Step 5 Merge all nodes without any inner gross error candidates to generate subgraph then go to Step 2.

    4 APPLY CANDIDATES IN THE MILP METHOD

    Gross error candidates generated in the last section will be introduced into Eq. (4) to improve its calculation efficiency. This step is accomplished by removing the binary variables in Eq. (4) that represent the streams not in the candidates. And the problem can be represented as:

    When there are equivalent sets in the detected biases, the updated weighting factors can be used further to output suspect biases with higher probabilities. This strategy can be regarded as the utilization of both spatial and temporal redundancy of the measurement network. In order to understand this method easily, a flow chart that represents the improved method is shown in Fig. 2.

    Figure 2 Flowchart of the improved method

    5 SIMULATION STUDY

    The system chosen for study was an industrial steam metering process [13]. And this system was also used for comparison in many other gross error detection methods [14]. The system used for simulation is illustrated in Fig. 3, and the true flow rates can be found in Table 1.

    Table 1 True values for the flow rates in steam metering process

    Figure 3 System of steam metering process

    Average number of type I error (AVTI) and overall power (OP) [15] were applied to evaluate the performance of the improved method. The criteria are defined as follows:

    Both OP and AVTI are calculated after 100 simulation runs in different conditions.

    Several interesting comparison can be made by checking the simulation results presented below. One of these is the influence of choosing more reliable independent variables. In the simulation trials, the number of higher weight bias is set as 0,1/3,2/3,1 times of number of the random selected biases. Higher the weight (prior probability of gross error occurrence) the stream has, less probability that this stream will be chosen as independent variable. Nearly all the OP is increased together with the number of higher weight bias, whereas the AVTI remains at the same level. When all biased streams are weighted with higher value, the OP increases significantly. But it is rare that all the biased streams have higher weights; however, the result seems acceptable when few biased streams are given higher weights. Fig. 4 and Fig. 5 show that good results can be obtained by fewer high weight biased streams.

    Table 2 Results for the improved method ()

    Figure 4 Influence of high weight biases percentage on overall power◆?3 biases; ■?5 biases;▲?7 biases

    Figure 5 Influence of high weight biases percentage on average type I error◆?3 biases; ■?5 biases;▲?7 biases

    Table 3 indicates the simulation results for this method and other widely used gross error detection methods. Under most situations, performance measures of improved method (IMILP) are higher than modified iterative measurement test (MIMT) [13], modified simultaneous estimation of gross error (MSEGE), and serial identification with collective compensation (SICC) [17]. The result clearly shows that when historical data are used to evaluate the prior probability of gross error occurrence, the identification of gross errors is more accurate than just using statistical methods. However, when there are no historical data can be used to calculate prior gross error occurrence, the performance of improved method are also better than the original MILP method because the binary variables are significantly reduced.

    The number of the dependent variables is equal to the number of branches in the flowsheet, so the relationship between number of dependent variable (DV); the number of independent variables (IV); and the total number of the measurements () are:

    When the independent variable has bigger, the bias in the streams with small true value might be ignored in the candidate generation. This problem may be improved by adjusting the weights of streams with small(increase a little to raise the probability of being independent variable). Once the equivalent set exists because the candidate streams form a loop in the graph representing the flowsheet [16], a solution can be used by updating weights to give gross error candidates with larger probabilities.

    Simulation time of different conditions is presented in Table 4. The results show that the solution time of gross error candidate generation (Average CPU time 1) is rather limited.

    The solution time (Average CPU time 2) is increased due to the increase in the number of biased streams. And the trend is opposite when the percentage of high weight biases is increased.

    Table 3 Performance comparison ()

    6 CONCLUSIONS

    This article proposes an improved MILP method for simultaneous gross error detection and data reconciliation. The data reconciliation and gross error detection based on the framework of MILP has a great advantage of process system integration in process industry. Because the planning/scheduling are normally solved under the framework of MILP or mixed integer nonlinear programs (MINLP), it will be much more convenient to integrate data rectification into the refinery manufacturing execution system than other methods. Effective gross error candidate generation method is applied before using the original mixed integer linear programming. Performance and comparison show that choosing reliable independent variables can improve the accuracy of measurements within a short period of time. Also, this method was found to have better performance over the original MILP method and other commonly used methods. Reduction of binary variables in the objective function leads to a superior improvement of the calculation efficiency. This improvement makes the MILP method more suitable for the application in large-scale process industries.

    NOMENCLATURE

    constraint matrix

    acorrelative parameter

    binary variable

    set of gross error candidates

    true flow rate

    number of previous failure

    sum of previous lifetimes

    DVnumber of dependent variables

    IVnumber of independent variables

    number of process nodes

    set of independent variables used to estimate the dependent variable

    number of streams

    weighting factor

    1 Kuehn, D.R., Davidson, H., “Computer control (II) Mathematics of control”,, 57 (6), 44-47 (1961).

    2 Crowe, C.M., “Reconciliation of process flow rates by matrix projection (II) Nonlinear case”,., 32 (4), 616-623 (1986).

    3 Crowe, C.M., Campos, Y.A.G., Hrymak, A., “Reconciliation of process flow rates by matrix projection (I) Linear case”,., 29 (6), 881-888 (1983).

    4 Soderstrom, T.A., Himmelblau, D.M., Edgar, T.F., “A mixed integer optimization approach for simultaneous data reconciliation and identification of measurement bias”,, 9 (8), 869-876 (2001).

    5 Tong, H., Crowe, C.M., “Detection of gross erros in data reconciliation by principal component analysis”,., 41 (7), 1712-1722 (1995).

    6 Wang, F., Jia, X.P., Zheng, S.Q., Yue, J.C., “An improved MT-NT method for gross error detection and data reconciliation”,..., 28 (11), 2189-2192 (2004).

    7 Yang, Y., Ten, R., Jao, L., “Study of gross error detection and data reconciliation in process industries”,..., 19 (Suppl), S217-S222 (1995).

    8 Mei, C., Su, H., Chu, J., “An NT-MT combined method for gross error detection and data reconciliation”,...., 14 (5), 592-596 (2006).

    9 Zhang, P., Rong, G., Wang, Y., “A new method of redundancy analysis in data reconciliation and its application”,..., 25 (7/8), 941-949 (2001).

    10 Crowe, C.M., “Data reconciliation—Progress and challenges”,, 6 (2/3), 89-98 (1996).

    11 Tamhane, A.C., Iordache, C., Mah, R.S.H., “A Bayesian approach to gross error detection in chemical process data (I) Model development”,, 4 (1), 33-45 (1988).

    12 Tamhane, A.C., Iordache, C., Mah, R.S.H., “A Bayesian approach to gross error detection in chemical process data (II) Simulation results”,, 4 (2), 131-146 (1988).

    13 Serth, R.W., Heenan, W. A., “Gross error detection and data reconciliation in steam-metering systems”,., 32 (5), 733-742 (1986).

    14 Rollins, D.K., Cheng, Y., Devanathan, S., “Intelligent selection of hypothesis tests to enhance gross error identification”,..., 20 (5), 517-530 (1996).

    15 Narasimhan, S., Jordache, C., Data Reconciliation & Gross Error Detection, Gulf Publishing Company, Houston (2000).

    16 Jiang, Q., Bagajewicz, M.J., “On a strategy of serial identification with collective compensation for multiple gross error estimation in linear steady-state reconciliation”,...., 38 (5), 2119-2128 (1999).

    17 Jiang, Q., Sanchez, M., Bagajewicz, M.J., “On the performance of principal component analysis in multiple gross error identification”,...., 38 (5), 2005-2012 (1999).

    2008-05-28,

    2008-11-06.

    the National High Technology Research and Development Program of China (2007AA40702 and 2007AA04Z191).

    ** To whom correspondence should be addressed. E-mail: grong@mail.hz.zj.cn

    欧美精品人与动牲交sv欧美| 国产精品国产av在线观看| 不卡视频在线观看欧美| 国产一区二区三区av在线| 精品一区在线观看国产| 午夜激情av网站| 无遮挡黄片免费观看| 国产精品一区二区在线观看99| 91国产中文字幕| 日本猛色少妇xxxxx猛交久久| 国语对白做爰xxxⅹ性视频网站| 中文字幕制服av| 中文字幕人妻丝袜一区二区 | 97人妻天天添夜夜摸| 丝袜喷水一区| 黄频高清免费视频| 中文字幕色久视频| 国产片特级美女逼逼视频| 91成人精品电影| 黄色视频不卡| 一区二区av电影网| 色播在线永久视频| 亚洲成人免费av在线播放| 色94色欧美一区二区| 99热国产这里只有精品6| 精品一区二区三区av网在线观看 | 亚洲欧美精品自产自拍| 久久久久视频综合| 亚洲国产精品成人久久小说| 亚洲第一av免费看| 日韩av不卡免费在线播放| 欧美日韩亚洲国产一区二区在线观看 | 十分钟在线观看高清视频www| 毛片一级片免费看久久久久| www.自偷自拍.com| 丝袜美腿诱惑在线| 色综合欧美亚洲国产小说| 最近手机中文字幕大全| 欧美97在线视频| 欧美日韩综合久久久久久| 日韩不卡一区二区三区视频在线| 亚洲精品国产av成人精品| 乱人伦中国视频| 成人免费观看视频高清| 七月丁香在线播放| 亚洲一区中文字幕在线| kizo精华| 男人操女人黄网站| 精品卡一卡二卡四卡免费| 欧美 日韩 精品 国产| 精品少妇黑人巨大在线播放| 欧美日韩视频精品一区| 91精品伊人久久大香线蕉| 999久久久国产精品视频| 国产在线视频一区二区| 观看av在线不卡| 久久精品久久精品一区二区三区| 99久久人妻综合| 久久久国产精品麻豆| 少妇人妻 视频| 男男h啪啪无遮挡| 亚洲专区中文字幕在线 | 免费日韩欧美在线观看| 热99久久久久精品小说推荐| 日本色播在线视频| 精品卡一卡二卡四卡免费| 日日啪夜夜爽| 免费观看人在逋| 七月丁香在线播放| 亚洲欧美精品综合一区二区三区| 人妻 亚洲 视频| a级毛片在线看网站| 一级毛片电影观看| 亚洲国产欧美日韩在线播放| videosex国产| 亚洲伊人久久精品综合| 高清欧美精品videossex| 一级爰片在线观看| 最新的欧美精品一区二区| av天堂久久9| 另类精品久久| 夫妻性生交免费视频一级片| 男女边吃奶边做爰视频| 麻豆乱淫一区二区| 伦理电影大哥的女人| 精品国产一区二区久久| 老司机影院成人| 国产欧美日韩一区二区三区在线| 极品少妇高潮喷水抽搐| 精品第一国产精品| 精品少妇久久久久久888优播| av电影中文网址| 欧美成人午夜精品| 欧美变态另类bdsm刘玥| 天堂中文最新版在线下载| 一区二区av电影网| 丝袜美足系列| 女的被弄到高潮叫床怎么办| 熟女av电影| a级毛片在线看网站| 日韩av免费高清视频| 女性被躁到高潮视频| 韩国精品一区二区三区| 亚洲国产日韩一区二区| 男女之事视频高清在线观看 | 国产成人一区二区在线| 欧美激情极品国产一区二区三区| 精品国产乱码久久久久久男人| 久久久亚洲精品成人影院| 亚洲av成人精品一二三区| 一级毛片电影观看| 一本久久精品| 纯流量卡能插随身wifi吗| 亚洲第一青青草原| 黄频高清免费视频| 操出白浆在线播放| 搡老乐熟女国产| 我要看黄色一级片免费的| 晚上一个人看的免费电影| 在线观看免费视频网站a站| 国产精品一区二区在线观看99| 国产精品成人在线| 高清不卡的av网站| 久久久国产欧美日韩av| 久久精品久久久久久久性| 午夜福利,免费看| 免费在线观看黄色视频的| 午夜91福利影院| 精品国产一区二区三区四区第35| 国产 一区精品| 国产成人免费无遮挡视频| 国产亚洲av片在线观看秒播厂| 51午夜福利影视在线观看| 男女边吃奶边做爰视频| 亚洲av成人不卡在线观看播放网 | 伦理电影大哥的女人| 七月丁香在线播放| 久久精品久久久久久久性| videosex国产| 男女国产视频网站| 乱人伦中国视频| 国产成人精品久久二区二区91 | 免费少妇av软件| 男女免费视频国产| xxxhd国产人妻xxx| 日本欧美视频一区| 婷婷色麻豆天堂久久| 国产99久久九九免费精品| 日日啪夜夜爽| 国产精品成人在线| 超碰成人久久| 国产探花极品一区二区| 成年女人毛片免费观看观看9 | www.自偷自拍.com| 这个男人来自地球电影免费观看 | 51午夜福利影视在线观看| 亚洲精品国产色婷婷电影| 丝袜在线中文字幕| 51午夜福利影视在线观看| 国产精品一区二区在线不卡| 少妇精品久久久久久久| 69精品国产乱码久久久| 下体分泌物呈黄色| 九草在线视频观看| 一级毛片电影观看| av在线老鸭窝| 男人操女人黄网站| 又黄又粗又硬又大视频| 在线天堂中文资源库| 国产一区亚洲一区在线观看| 久久久久久久国产电影| 电影成人av| 一区二区三区四区激情视频| 久久精品aⅴ一区二区三区四区| 一区二区三区精品91| 国产成人a∨麻豆精品| 美女午夜性视频免费| 一区二区三区精品91| 99久久综合免费| 精品视频人人做人人爽| 国产精品秋霞免费鲁丝片| 色婷婷久久久亚洲欧美| 久久精品人人爽人人爽视色| 国产一区二区 视频在线| 乱人伦中国视频| 一级,二级,三级黄色视频| 国产成人免费无遮挡视频| 日韩电影二区| 免费不卡黄色视频| 欧美成人精品欧美一级黄| 欧美日韩一区二区视频在线观看视频在线| 精品少妇久久久久久888优播| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一卡2卡3卡4卡5卡精品中文| 2021少妇久久久久久久久久久| 亚洲第一青青草原| 高清av免费在线| 国产成人欧美| 亚洲av中文av极速乱| 毛片一级片免费看久久久久| 国产午夜精品一二区理论片| 成年女人毛片免费观看观看9 | 国产精品久久久av美女十八| 少妇人妻 视频| 最近2019中文字幕mv第一页| 狠狠婷婷综合久久久久久88av| 精品第一国产精品| 久久狼人影院| 99久久精品国产亚洲精品| 下体分泌物呈黄色| 叶爱在线成人免费视频播放| 黄片播放在线免费| 久久久精品免费免费高清| 99热国产这里只有精品6| 亚洲欧美中文字幕日韩二区| www.av在线官网国产| 大片电影免费在线观看免费| av在线app专区| 18在线观看网站| 日韩欧美精品免费久久| 美女高潮到喷水免费观看| 多毛熟女@视频| 亚洲av成人不卡在线观看播放网 | 亚洲欧美一区二区三区黑人| 亚洲成人手机| 深夜精品福利| 夫妻午夜视频| videos熟女内射| 亚洲美女黄色视频免费看| 免费在线观看视频国产中文字幕亚洲 | 亚洲欧美中文字幕日韩二区| 精品国产乱码久久久久久男人| 国产成人av激情在线播放| 午夜影院在线不卡| av片东京热男人的天堂| 欧美亚洲日本最大视频资源| 十八禁人妻一区二区| 夜夜骑夜夜射夜夜干| 亚洲,欧美,日韩| 精品久久蜜臀av无| 国产日韩欧美亚洲二区| 免费在线观看黄色视频的| 一级a爱视频在线免费观看| 色94色欧美一区二区| 青春草亚洲视频在线观看| 在线观看人妻少妇| 制服诱惑二区| 建设人人有责人人尽责人人享有的| 国产有黄有色有爽视频| 亚洲精品久久午夜乱码| 久久天堂一区二区三区四区| 国产精品三级大全| 人人妻,人人澡人人爽秒播 | 精品久久蜜臀av无| 涩涩av久久男人的天堂| 久久久精品国产亚洲av高清涩受| 欧美亚洲日本最大视频资源| 91国产中文字幕| a级毛片黄视频| 久久女婷五月综合色啪小说| 日本爱情动作片www.在线观看| 精品视频人人做人人爽| 日韩中文字幕视频在线看片| 91成人精品电影| 中文字幕人妻熟女乱码| 美女视频免费永久观看网站| 1024视频免费在线观看| 日韩 亚洲 欧美在线| 大陆偷拍与自拍| 我的亚洲天堂| 高清视频免费观看一区二区| 久久热在线av| 亚洲精品一二三| 色综合欧美亚洲国产小说| 亚洲av成人不卡在线观看播放网 | 久久99一区二区三区| 午夜日韩欧美国产| av有码第一页| 久久 成人 亚洲| 亚洲视频免费观看视频| 丰满乱子伦码专区| 欧美黑人精品巨大| 国产激情久久老熟女| 丁香六月天网| 日日撸夜夜添| 日日啪夜夜爽| 国产成人91sexporn| 丝袜在线中文字幕| 亚洲天堂av无毛| 亚洲欧美日韩另类电影网站| 免费女性裸体啪啪无遮挡网站| 黄色毛片三级朝国网站| www.av在线官网国产| 久久热在线av| 久久av网站| 国产亚洲午夜精品一区二区久久| 久久狼人影院| 18禁裸乳无遮挡动漫免费视频| 狠狠精品人妻久久久久久综合| 丝袜人妻中文字幕| 少妇人妻精品综合一区二区| 国产精品 国内视频| 老司机深夜福利视频在线观看 | 不卡视频在线观看欧美| 9色porny在线观看| 人妻一区二区av| 欧美中文综合在线视频| 在线观看免费视频网站a站| 各种免费的搞黄视频| 伊人久久国产一区二区| 久久久精品国产亚洲av高清涩受| 自线自在国产av| 亚洲色图 男人天堂 中文字幕| 亚洲欧美精品综合一区二区三区| 日韩一本色道免费dvd| 亚洲精品日本国产第一区| 国产熟女欧美一区二区| 丰满少妇做爰视频| 国产高清不卡午夜福利| 一区二区三区乱码不卡18| 90打野战视频偷拍视频| 男男h啪啪无遮挡| 久久鲁丝午夜福利片| 国产精品一区二区在线不卡| 亚洲第一青青草原| 天堂8中文在线网| 国产不卡av网站在线观看| 亚洲欧洲日产国产| 成人午夜精彩视频在线观看| 国产精品 欧美亚洲| 久久精品熟女亚洲av麻豆精品| 成人国语在线视频| 一个人免费看片子| 亚洲av福利一区| 免费黄频网站在线观看国产| 一本—道久久a久久精品蜜桃钙片| 国产在线一区二区三区精| 成人国产麻豆网| 如何舔出高潮| 操出白浆在线播放| 99久久人妻综合| 亚洲欧洲国产日韩| 97在线人人人人妻| 少妇的丰满在线观看| 十八禁高潮呻吟视频| 久久这里只有精品19| 飞空精品影院首页| 99香蕉大伊视频| 国产精品久久久久久久久免| 国产欧美日韩综合在线一区二区| 黑人巨大精品欧美一区二区蜜桃| 日韩一卡2卡3卡4卡2021年| 99久久人妻综合| 久久这里只有精品19| 嫩草影视91久久| 少妇人妻 视频| 免费黄网站久久成人精品| 欧美日韩一级在线毛片| 免费黄网站久久成人精品| 国产国语露脸激情在线看| 久久人人97超碰香蕉20202| bbb黄色大片| 18禁观看日本| 日日撸夜夜添| 国产xxxxx性猛交| av又黄又爽大尺度在线免费看| 丁香六月天网| 国产精品亚洲av一区麻豆 | 中文字幕最新亚洲高清| 少妇被粗大的猛进出69影院| 中文字幕最新亚洲高清| 99re6热这里在线精品视频| 天美传媒精品一区二区| 国产精品.久久久| 中文字幕av电影在线播放| 国产成人精品福利久久| 午夜日韩欧美国产| 免费女性裸体啪啪无遮挡网站| av不卡在线播放| 天堂中文最新版在线下载| 国产精品熟女久久久久浪| 大话2 男鬼变身卡| 老司机在亚洲福利影院| 亚洲精品久久久久久婷婷小说| 青春草国产在线视频| 亚洲精品,欧美精品| 免费看av在线观看网站| 又大又黄又爽视频免费| 伊人久久国产一区二区| 中文精品一卡2卡3卡4更新| 免费少妇av软件| 一边亲一边摸免费视频| 国产一卡二卡三卡精品 | 在线观看免费视频网站a站| 欧美国产精品一级二级三级| 亚洲精品一二三| 人人澡人人妻人| tube8黄色片| 国产精品无大码| 飞空精品影院首页| 欧美人与性动交α欧美精品济南到| 老司机亚洲免费影院| 18禁观看日本| 成年av动漫网址| 国产高清不卡午夜福利| 丁香六月欧美| 亚洲,欧美,日韩| 国产激情久久老熟女| 欧美精品高潮呻吟av久久| 亚洲欧洲国产日韩| 在线观看www视频免费| 一级毛片黄色毛片免费观看视频| 亚洲情色 制服丝袜| 一级爰片在线观看| 69精品国产乱码久久久| 97人妻天天添夜夜摸| 精品国产一区二区三区久久久樱花| 亚洲情色 制服丝袜| 秋霞伦理黄片| 一级毛片 在线播放| 亚洲国产欧美日韩在线播放| 久久久亚洲精品成人影院| 超碰成人久久| 久久久久久久久久久免费av| 人人澡人人妻人| 考比视频在线观看| 亚洲成国产人片在线观看| 久久人人97超碰香蕉20202| 91国产中文字幕| 亚洲国产精品成人久久小说| 大陆偷拍与自拍| xxxhd国产人妻xxx| 午夜免费男女啪啪视频观看| 少妇的丰满在线观看| www.自偷自拍.com| 制服诱惑二区| 久久人人爽人人片av| 亚洲七黄色美女视频| 久久久久网色| 在线观看免费日韩欧美大片| 伊人久久大香线蕉亚洲五| 女人精品久久久久毛片| 久热这里只有精品99| 久久久久久久久免费视频了| videosex国产| 中文乱码字字幕精品一区二区三区| 亚洲av国产av综合av卡| 飞空精品影院首页| 一本—道久久a久久精品蜜桃钙片| 精品一品国产午夜福利视频| 午夜免费鲁丝| 最近中文字幕2019免费版| 免费日韩欧美在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲国产成人一精品久久久| 一本—道久久a久久精品蜜桃钙片| 秋霞伦理黄片| 免费观看性生交大片5| 精品国产一区二区三区久久久樱花| 成年人午夜在线观看视频| 丝袜人妻中文字幕| 嫩草影视91久久| 亚洲国产欧美在线一区| 欧美黄色片欧美黄色片| 久久人人爽人人片av| 观看av在线不卡| 国产野战对白在线观看| 激情五月婷婷亚洲| 岛国毛片在线播放| 老司机亚洲免费影院| 欧美亚洲 丝袜 人妻 在线| 狠狠精品人妻久久久久久综合| 一本—道久久a久久精品蜜桃钙片| 两个人免费观看高清视频| 校园人妻丝袜中文字幕| 美女脱内裤让男人舔精品视频| 97人妻天天添夜夜摸| 成人黄色视频免费在线看| 新久久久久国产一级毛片| 中文字幕人妻丝袜一区二区 | 两个人免费观看高清视频| 成人漫画全彩无遮挡| 国产免费现黄频在线看| a级毛片黄视频| 午夜av观看不卡| 新久久久久国产一级毛片| 男女边吃奶边做爰视频| 久久鲁丝午夜福利片| 一本大道久久a久久精品| 亚洲av国产av综合av卡| 亚洲av成人不卡在线观看播放网 | av片东京热男人的天堂| 国产午夜精品一二区理论片| 中文字幕高清在线视频| 男女免费视频国产| 国产成人欧美| 在线观看三级黄色| 国产探花极品一区二区| 欧美 亚洲 国产 日韩一| 欧美日韩成人在线一区二区| 女人高潮潮喷娇喘18禁视频| 欧美精品av麻豆av| 久久国产精品大桥未久av| 亚洲欧美一区二区三区国产| av福利片在线| 日韩精品免费视频一区二区三区| 色视频在线一区二区三区| 精品国产乱码久久久久久男人| 韩国av在线不卡| 亚洲国产av影院在线观看| avwww免费| 亚洲精品av麻豆狂野| 亚洲欧美精品自产自拍| 亚洲精品中文字幕在线视频| 爱豆传媒免费全集在线观看| 男女床上黄色一级片免费看| 亚洲综合精品二区| 汤姆久久久久久久影院中文字幕| 99久久人妻综合| 欧美少妇被猛烈插入视频| 九草在线视频观看| 欧美日韩精品网址| 久久久久精品久久久久真实原创| 久久精品aⅴ一区二区三区四区| 中文字幕av电影在线播放| 午夜福利网站1000一区二区三区| 亚洲国产欧美日韩在线播放| av网站在线播放免费| 91精品三级在线观看| 欧美人与性动交α欧美软件| 国产精品一国产av| 亚洲国产毛片av蜜桃av| xxxhd国产人妻xxx| 纵有疾风起免费观看全集完整版| 久久久久久人人人人人| 久久久国产一区二区| www.av在线官网国产| 欧美日韩av久久| 亚洲欧洲国产日韩| 国产又色又爽无遮挡免| 午夜91福利影院| 超色免费av| 亚洲少妇的诱惑av| 国产精品女同一区二区软件| 亚洲欧美精品自产自拍| 欧美日韩亚洲高清精品| 99精品久久久久人妻精品| 高清在线视频一区二区三区| 亚洲一级一片aⅴ在线观看| 一区二区日韩欧美中文字幕| 国产日韩一区二区三区精品不卡| 一本一本久久a久久精品综合妖精| 久久97久久精品| 欧美最新免费一区二区三区| 夜夜骑夜夜射夜夜干| 日韩一本色道免费dvd| 久久精品国产a三级三级三级| av天堂久久9| 中文字幕人妻丝袜制服| 亚洲av综合色区一区| 啦啦啦在线观看免费高清www| 十八禁网站网址无遮挡| 久久久久精品性色| 精品一区二区三区四区五区乱码 | 午夜福利在线免费观看网站| 国产乱来视频区| 亚洲精品乱久久久久久| 在线天堂中文资源库| 国产精品一区二区精品视频观看| 亚洲伊人久久精品综合| 人妻一区二区av| 在现免费观看毛片| 视频区图区小说| 国产午夜精品一二区理论片| av电影中文网址| 免费观看a级毛片全部| 精品视频人人做人人爽| 精品卡一卡二卡四卡免费| 在线观看免费日韩欧美大片| 免费少妇av软件| 卡戴珊不雅视频在线播放| 久久久亚洲精品成人影院| 国产日韩欧美亚洲二区| 精品少妇久久久久久888优播| 亚洲av欧美aⅴ国产| 久久精品国产a三级三级三级| 久久热在线av| 国产成人精品久久二区二区91 | 免费观看a级毛片全部| 午夜免费观看性视频| 一区二区三区乱码不卡18| 成人黄色视频免费在线看| 久热这里只有精品99| 一本久久精品| 最黄视频免费看| 亚洲精华国产精华液的使用体验| 亚洲自偷自拍图片 自拍| 免费在线观看黄色视频的| 亚洲精华国产精华液的使用体验| av不卡在线播放| 亚洲欧美成人综合另类久久久| 亚洲精品一二三| 久久久久网色| 色婷婷av一区二区三区视频| 欧美人与善性xxx| 国产精品99久久99久久久不卡 | 国产午夜精品一二区理论片| 我要看黄色一级片免费的| 日本一区二区免费在线视频| 国产不卡av网站在线观看| 国产精品嫩草影院av在线观看| 久久久精品国产亚洲av高清涩受| 欧美黑人欧美精品刺激| 97人妻天天添夜夜摸| 十分钟在线观看高清视频www|