• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetics of Burning Side Reaction in the Liquid-phase Oxidation of p-Xylene*

    2009-05-12 03:32:48ChengYouwei成有為PengGe彭革WangLijun王麗軍andLIXi李希
    關(guān)鍵詞:李希

    Cheng Youwei (成有為), Peng Ge (彭革), Wang Lijun (王麗軍),* andLI Xi (李希)

    ?

    Kinetics of Burning Side Reaction in the Liquid-phase Oxidation of-Xylene*

    Cheng Youwei (成有為)1, Peng Ge (彭革)2, Wang Lijun (王麗軍)1,*andLI Xi (李希)1

    1Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China2Chemical Engineering Department, Ningbo University of Technology, Ningbo 315010, China

    During the liquid-phase oxidation of-xylene, over-oxidation of reactant, intermediates and solvent to carbon dioxide and carbon monoxide is generally known as the burning side reaction. Batch and semi-continuous experiments were carried out, and the experimental data of the burning side reaction were analyzed and reported in this paper. The results showed that the rates of burning side reactions were proportional to the rates of the main reaction, but decreased with the increasing concentrations of reactant and intermediates. The inter-stimulative and competitive relationship between the burning side reaction and the main reaction was confirmed, and the rates of the burning side reaction could be described with some key indexes of the main reaction. According to the mechanism of the side reactions and the kinetics model of main reaction which were proposed and tested in the previous papers, a kinetic model of the burning side reactions involving some key indexes of the main reaction was developed, and the parameters were determined by data fitting of the COrate curves. The obtained kinetic model could describe the burning side reactions adequately.

    kinetics, burning side reaction,-xylene oxidation

    1 INTRODUCTION

    Liquid-phase oxidation of methyl aromatic hydrocarbons is of great scientific, technological, and commercial importance. One of the most successful commercial applications is the production of terephthalic acid (TA) by liquid-phase oxidation of-xylene (PX) with air over a Co-Mn-Br catalyst system (cobalt acetate, manganese acetate and hydrogen bromide) in acetic acid (HOAc) solvent at 150-210°C. As practiced, this reaction is known as the MC (Mid-Century) process[1-3].

    The oxidation of PX follows the classical radical chain reaction mechanism involving the initiation, propagation, and termination steps[4, 5], in which two methyl groups on the benzene ring are oxidized and produce various kinds of intermediates and final products, such as-tolualdehyde (TALD),-toluic acid (PT), and 4-carboxybenzaldehyde (4-CBA) and TA. The brief reaction scheme is shown in Fig. 1. The efficacy of the Co-Mn-Br catalyst system is due to the fact that the catalytic cycles of cobalt, manganese, and bromide become coupled to produce synergistic results. Detailed studies on the kinetics have been conducted the last decade[6-19].

    Figure 1 The main reaction scheme for the lumped kinetics of oxidation of-xylene to terephthalic acid

    During the main reaction of PX oxidation to TA, a certain part of hydrocarbon reactant, intermediates and solvent get lost by side reactions of decarboxylation and decarbonylation, and are “over-oxidized”into carbon dioxide (CO2), carbon monoxide (CO), water (H2O), benzoic acid (BA), methyl acetate (MA) and methyl bromide,. They are generally known as the burning side reactions [2, 5, 20-24].Considering the large-scale production of TA, the loss of reactant, intermediates and HOAc solvent reaches a considerable amount. The generation of CO(CO2and CO) is generally considered as the burning side reaction rate index [5]. Ariko.studied the decarboxylation of acetic acid during the catalytic oxidation of-xylene, and found that the extent of the burning side reactions depended on the catalyst/promoter ratio but not on their absolute amounts [20, 21]. Ge reported the burning kinetics of the oxidation of pure acetic acid solvent with air over the MC catalyst system, but did not consider any function of PX oxidation to speed the solvent burning [22]. Roffia. studied methyl acetate formation in PX oxidation, and found that the recycle of methyl acetate to the oxidation medium appears a valid solution to recover acetic acid solvent [23]. Some studies show thatdecarboxylation and decarbonylation reactions of acetic acid solvent and intermediates were related to the concentration of the higher-valency form of cobalt, Co(III): more Co(III), more burning side reactions[2, 24]. The simplified mechanism of decarboxylation of acetic acid by Co(III) was shown as [2, 3, 24]

    where Co(III) coordination compounds decarboxylate acetic acid ligands to form carbon dioxide and methyl acetate.

    In our previous works,a large number of batch experiments were carried out to study the burning side reactions [5, 14, 18].The experimental results showed that the rate of burning side reactions was related to the main reaction closely and varied insignificantly during the PX oxidation. Considering the detailed radical chain reaction mechanism involved in the burning side reactions and several reasonable assumptions, we had hammered outa fractional-like kinetic model of burning side reactions:

    which can describe well the batch experimental dynamic curves of the generation rate of CO. The model Eq. (2) explained that the aldehyde intermediates and acetic acid were the primary contributors to the generation ofCO. This model was explained in detail in Refs. [5, 14].

    Recently, we carried outa number of semi-continuous experiments of PX oxidation to TA, and found that the percentage error between the experimental burning rate and that predicted by Eq. (2) was up to 80% or more [19].It indicated that Eq. (2) was faulty in describing the burning side reaction in semi-continuous experiments. Therefore, a more practical kinetic model is required to be derived from the batch and the semi-continuous experimental data in connection with the mechanism of the burning side reaction, and the model parameters are to be determined based on both the batch and semi-continuous experimental results.

    The purpose of this work is to report the relation between the burning side reactions and the main reaction during the liquid-phase oxidation of-xylene to terephthalic acid and more reliable kinetics of the burning side reactions are obtained. This work will be helpful for the optimizing control and reduction of consumption in the commercial plant.

    2 EXPERIMENTAL

    As the milder conditions alleviate the burning side reaction, the low-temperature oxidation technique is likely more competitive [25-27]. Therefore, several experiments at 160°C involved oxidation of PX to TA were carried out to study the kinetics of the burning side reaction in the present paper, including batch experiments and semi-continuous experiments.

    2.1 Batch experiment

    2.2 Semi-continuous experiment

    2.3 Analysis

    The reproducibility of the experimental runs was verified by repeating each of them at least twice. The liquid components of solvent, reactant, intermediates and product such as HOAc, PX, TALD, PT, 4-CBA and TA were analyzed by the Shimadzu GC-9A gas chromatography (GC) and Agilent 1100 liquid chromatograph (HPLC). Toluene was used as the internal standard substance to correlate the data obtained from GC and HPLC analysis.The analytical methods used in this work were described in detail by Cheng[5, 10, 15].

    3 RESULTS AND DISCUSSION

    3.1 Characteristics of the burning side reactions

    The batch experimental data of the COgeneration rate were shown in Figs. 2 (a) and 2 (b). According to these experimental curves, it is evident that the generation rate of COcan be nearly divided into three stages: in the initial stage of the reaction, with the going on of the main reaction of PX oxidation, the generation rate of COalso increases sharply, and then the first peak value of the COgeneration rate appears; the generation rate of COdecreases at a slow rate in the middle portion of the reaction; on the later stage, the generation rate of COrises again, and drops suddenly and form a step at the end of main reaction. Combine the PX oxidation kinetic discussed in our previous works we can know that these characteristics are related with the main reaction closely. These will be described in detail in Section 3.3.

    Figure 2 Rate of COgenerationtime in batch oxidation experiment(HOAc)/(PX):□?20/1, exp.;○?10/1, exp.;△?5/1, exp.; ▽?3/1, exp. ——: model fitting

    Like the batch experimental results, the COgeneration rate presents the similar characteristic during the semi-continuous oxidation of-xylene. The generation rate of COincreases quickly at the beginning of the reaction; after the value reaches a platform, the rate remains invariable relatively during the oxidation; at the end of the semi-continuous oxidation, the generation rate of COdrops suddenly with the shutdown of the feed of-xylene. The semi-continuous experimental data of the COgeneration rate were shown in Figs. 3 (a) and 3 (b).

    Figure 3 Rate of COgenerationtime in semi-continuous experimentPX/mol·min-1:□?2.61×10-2, exp.;○?3.17×10-2, exp.; △?3.55×10-2, exp.;▽?4.00×10-2, exp. ——: model fitting

    3.2 Mechanisms of the burning side reactions

    3.2.1

    Like the main reaction, the burning side reactions follow the radical chain reaction mechanism, too. They include the over-oxidation of reactant and intermediates, and the decarboxylation of the solvent acetic acid. Several active hydrocarbon radical, peroxide radical or oxygenic radical will be produced during the oxidation of PX [5]. Among these free radicals, RCO· and RCOO· mostly capture the hydrogen atoms of the reactant and intermediates and form products. At the same time, a small part of RCOO· and RCO· undergoes decarboxylation and decarbonylation and produces CO2and CO. Theconceivable reaction mechanism is shown in reactions (5)-(9):

    As the acetic acid solvent is one hydrogen-rich reactable compounds, it can be attacked by active free radicals and higher-valency metal ions, and produces CH3COO· or CH2·COOH radicals. They mostly can capture other hydrogen atoms of reactant to reduce into the acetic acid mostly, but a part of CH3COO· and CH2·COOH can also carry out decarboxylation and decarbonylation and over-oxidized into CO2, CO, water, methyl acetate and methyl bromide,. Theconceivable reaction mechanism consists of reactions (10)-(14):

    where I· stands for active free radicals and higher- valency metal ions such as Co (III ) and Mn (III ),.

    3.2.2

    We have developed a fractional kinetic model:

    Table 1 Parameters in the kinetics model Eq. (15) [19]

    3.2.3

    The active free radicals and higher-valency metal ions are produced continually along with the main reaction, and these active free radicals and higher-valency metal ions are essential for the occurrence of the burning side reactions. Meanwhile, some active free radicals and higher-valency metal ions will be consumed during the burning side reactions, as shown in Eqs. (5)-(14),., it may reduce the opportunity that the reactant being attacked by the active components. Therefore, the two may have certain competition relations.

    To promote more systematic and deeper studies on the burning side reaction, analysis and comparison between the main and the side reaction are needed. Some indexes for the main and burning side reaction under the typical conditions are compared in this section.

    This correlation was also indicated by the semi- continuous experiments shown in Fig. 5.

    3.3 Kinetics of the burning side reactions

    According to the above mechanism analysis and data analysis, there exist both inter-stimulative and competitive relations between the burning side reaction and the main reaction, and the rate of the burning side reaction can be described with some key indexes of the main reaction, such as Eqs. (16) and (17). Combining Eqs. (16), (17) and (4), the kinetics of the burning side reaction can be described as follows:

    whereCstand for the mole concentration (mol·L-1) of reactant and intermediates;rstand for the rate of corresponding step main reaction that shown in Fig. 4, which is calculated from Eq. (15);α,andare model parameters introduced and determined by experimental data fitting.

    Table 2 Model parameters for the kinetics of burning side reaction in Eq. (18)

    Table 3 Comparison of model estimated and measured results in industry reactor

    3.4 Correlation of the selectivity of TA with burning side reactions

    The mol selectivity of TA can be calculated from the mass of TA product and PX charged into the reactors. On account of the TA product consumption during sampling, separation and the leftover in the reactor, it was difficult to get accurately the total TA mass, which were statistic averages of 3 to 5 repeated experiments. The average generation rate of COin each run could be estimated by the experimental generation rate of CO2and CO..,

    4 CONCLUSIONS

    In this paper, batch and semi-continuous experiments were carried out to investigate the burning side reactionduring the MC catalytic oxidation of-xylene to terephthalic acid by molecular oxygen. The rate of generation of CO(CO2and CO) can be generally considered as the burning side reaction rate index. The experimental data showed that there were two factors that can influence the rates of burning rate markedly. One is the concentrations of reactant and intermediates, and another is the rates of the main reaction. The burning rateswere proportional to the rates of the main reaction, but decreased with the increasing of the concentrations of reactant and intermediates. According to the mechanism analysis and data analysis, the inter-stimulative and competitive relations between the burning side reaction and the main reaction were confirmed.

    Furthermore, a kinetic model of the burning side reaction was developed as Eq. (18), and the model parameters were determined by data fitting.The obtained kinetics model could describe the burning side reaction adequately.

    NOMENCLATURE

    all1+2+3+4, mol·L-1

    Cconcentration ofth component, mol·L-1

    k rate constants of the main reaction, min-1

    Si,Si,Si,Sformer kinetics model parameters from batch experiments

    flow rate of air inlet, mol·min-1

    all1+2+3+4, mol·L-1·min-1

    COrate of CO generation, mol·L-1·min-1

    rrate of theth step of the main reaction, mol·L-1·min-1

    242+4, mol·L-1·min-1

    rreaction volume, L

    1,2,kinetic parameters from batch and semi-continuous experiments

    model parameters, mol·L-1

    1 Raghavendrachar, P., Ramachandran, S., “Liquid-phase catalytic oxidation of-xylene”,...., 31, 453-462 (1992).

    2 Partenheimer, W., “Methodology and scope of metal/bromide autoxidation of hydrocarbons”,., 23, 69-150 (1995).

    3 Cesar, M.A., PEP Report 9F: Terephthalic Acid, SRI Consulting (2005).

    4 Suresh, A., Sharma M., Sridhar, T., “Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons”,...., 39, 3958-3997 (2000).

    5 Cheng, Y.W., “Studies on MC process of hydrocarbon liquid phase catalytic oxidation”, Ph.D. Thesis, Zhejiang University, Hangzhou, China (2004). (in Chinese)

    6 Cao, G., Massimo, P., Massimo, M., “A lumped kinetic model for liquid-phase catalytic oxidation of-xylene to terephthalic acid”,...,49, 5775-5788 (1994).

    7 Cao, G., Alberto, S., Massimo, P., “Kinetics of-xylene liquid-phase catalytic oxidation”,., 40, 1156-1166 (1994).

    8 Cincotti, A., Orru, R., Bori, A., Cao, G., “Effect of catalyst concentration and simulation of precipitation processes on liquid-phase catalytic oxidation of-xylene to terephthalic acid”,...,52, 4205-4213 (1997).

    9 Cincotti, A., Orru, R., Cao, G., “Kinetics and related engineering aspect of catalytic oxidation of-xylene to terephthalic acid”,., 52, 331-347 (1999).

    10 Cheng, Y.W., Zhang, L., Xie,G., Li, X., “Experiment technique of-xylene liquid phase catalytic oxidation”,... (), 19, 182-187 (2003). (in Chinese)

    11 Wang, L.J., Li, X., Xie,G., Cheng, Y.W., Sima, J., “Studies on the kinetics of the-xylene liquid phase catalytic oxidation (I) Mechanism and kinetic model”,....(), 54, 946-952 (2003). (in Chinese)

    12 Xie, G., Li, X., Niu, J., “Studies on the kinetics of the-xylene liquid phase catalytic oxidation (II) Temperature effect”,....(), 54, 1013-1016 (2003). (in Chinese)

    13 Cheng, Y.W., Li, X., Niu, J., “Studies on the kinetics of the-xylene liquid phase catalytic oxidation (III) Catalyst effect”,.(), 55, 580-585 (2004). (in Chinese)

    14 Cheng, Y.W., Li, X., Sima, J., “Studies on the kinetics of the-xylene liquid phase catalytic oxidation (IV) Kinetics for PX and solvent burning”,....(), 55, 1894-1899 (2004).(in Chinese)

    15 Wang, Q.B., Li, X., Wang, L.J., Cheng, Y.W., Xie, G., “Kinetics of-xylene liquid-phase catalytic oxidation to terephthalic acid”,....,44, 261-266 (2005).

    16 Wang, Q.B., Li, X., Wang, L.J., Cheng, Y.W., Xie, G., “Effect of water content on the kinetics of-xylene liquid-phase catalytic oxidation to terephthalic acid”,...., 44, 4518-4522 (2005).

    17 Cheng, Y.W., Li, X., Wang, L.J., Wang, Q.B., “Effects of guanidine on the liquid-phase catalytic oxidation of-xylene to terephthalic acid”,....,44,7756-7760 (2005).

    18 Cheng, Y.W., Li, X., Wang, L.J., Wang, Q.B., “Optimum ratio of Co/Mn in the liquid-phase catalytic oxidation of-xylene to terephthalic acid”,....,45, 4156-4162 (2006).

    19 Wang, Q.B., “Reactive crystallization in the oxidation of-xylene”, Ph.D. Thesis, Zhejiang University, Hangzhou, China (2006). (in Chinese)

    20 Ariko, N.G., “Effect of deuteration of solvent on process of catalytic oxidation of-xylene and associated decarboxylation of acetic acid”,.., 32, 757-761 (1992).

    21 Kenigsberg, T.P., Ariko, N.G., Agabekov, V.E., “Effect of catalyst composition on decreasing of CO2and CO formation in synthesis of aromatic acids”,.., 36, 677-680 (1995).

    22 Ge, X., “Studies on catalytic oxidation kinetic oxidation of acetic acid-xylene system in liquid phase”,(), 22, 715-721 (1993).(in Chinese)

    23 Roffia, P., Calini, P., Tonti, S., “Methyl acetate: byproduct in the terephthalic acid production process. Mechanisms and rates of formation and decomposition in oxidation”,....,27, 765-770 (1988).

    24 Partenheimer, W., “A chemical model for the amoco MC oxygenation process to produce terephthalic acid”, In: Catalysis of Organic Reactions, Blackburn, D.W., eds., Marcel Dekker, New York, 321-346 (1990).

    25 Wonders, A.G., Lavoie, G.G., Sumner, C.E., “Optimized liquid-phase oxidation”, US Pat., 20060205976 (2006).

    26 Sumner, C.E., Hembre, R.T., Lange, D., “Processes for producing terephthalic acid”, US Pat., 20060205977 (2006).

    27 Lin, R., “Process for energy recovery in processes for the preparation of aromatic carboxylic acids”, US Pat., 7049465 (2006).

    28 Wang, Q.B., Cheng, Y.W., Wang, L.J., Li, X., “Aging of crude terephthalic acid crystals at high temperatures”,...,46,7367-7377 (2007).

    29 Wang, Q.B., Cheng, Y.W., Wang, L.J., Li, X., “Semicontinuous studies on the reaction mechanism and kinetics for the liquid-phase oxidation of-xylene to terephthalic acid”,..., 46, 8980-8992 (2007).

    2008-02-18,

    2008-11-11.

    the Natural National Science Foundation of China (20080672) and the Research Fund for the Doctoral Program of Higher Education of China (200803351111).

    ** To whom correspondence should be addressed. E-mail: wang_lijun@zju.edu.cn

    猜你喜歡
    李希
    李希在二十屆中央紀(jì)委三次全會上作工作報告
    李希在二十屆中央紀(jì)委二次全會上作工作報告
    李希霍芬日記中的晚清四川絲綢探略
    一個被忽略的邊疆
    ——李?;舴夜P記里的遼寧
    今日民族(2019年6期)2019-07-20 02:26:46
    他的行走,命名了“絲綢之路”
    讀書(2018年5期)2018-05-05 04:43:52
    遺失的味蕾
    美食堂(2017年5期)2017-05-19 07:08:50
    大宰相不欺小買主
    誰最早命名的“絲綢之路”
    誰最早命名的『絲綢之路』
    成年av动漫网址| 亚洲高清免费不卡视频| 国产黄片视频在线免费观看| 99国产精品一区二区蜜桃av| 欧美在线一区亚洲| 国产精品久久视频播放| 午夜福利在线观看吧| 插阴视频在线观看视频| 99riav亚洲国产免费| 一本一本综合久久| 成人性生交大片免费视频hd| 国产黄片视频在线免费观看| 欧美最新免费一区二区三区| 欧美激情久久久久久爽电影| 久久久久国产网址| 99久久九九国产精品国产免费| 成人永久免费在线观看视频| 亚洲色图av天堂| 国语自产精品视频在线第100页| 欧美xxxx性猛交bbbb| 国产黄色视频一区二区在线观看 | 日本免费a在线| 在现免费观看毛片| 国产日韩欧美在线精品| 高清午夜精品一区二区三区 | 免费观看精品视频网站| 精品熟女少妇av免费看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲性久久影院| 男女啪啪激烈高潮av片| 亚洲内射少妇av| 久久久国产成人免费| 国产色婷婷99| 亚洲精品乱码久久久久久按摩| 国产一区二区激情短视频| 亚洲欧美日韩高清专用| 国产精品野战在线观看| 蜜臀久久99精品久久宅男| 久久久久久国产a免费观看| 好男人在线观看高清免费视频| 老师上课跳d突然被开到最大视频| 国产精品1区2区在线观看.| 久久精品夜夜夜夜夜久久蜜豆| 两个人视频免费观看高清| 美女高潮的动态| 日日摸夜夜添夜夜添av毛片| 五月伊人婷婷丁香| 亚洲七黄色美女视频| 一级av片app| 欧美人与善性xxx| 中文欧美无线码| 男女边吃奶边做爰视频| 久99久视频精品免费| 可以在线观看毛片的网站| 一区二区三区高清视频在线| 久久久久久国产a免费观看| 乱系列少妇在线播放| av专区在线播放| 午夜福利高清视频| 免费看美女性在线毛片视频| 精品久久久久久成人av| 日本黄色视频三级网站网址| 亚洲无线在线观看| 国产日本99.免费观看| 日韩欧美在线乱码| 国产av在哪里看| 激情 狠狠 欧美| 麻豆精品久久久久久蜜桃| 亚洲成av人片在线播放无| 日日啪夜夜撸| 久久6这里有精品| 亚洲人成网站在线播| 亚洲av二区三区四区| 亚洲欧美成人综合另类久久久 | 久久久久久久久久久丰满| 黄色日韩在线| 在线免费观看的www视频| 99久久精品国产国产毛片| 亚洲在线观看片| 精品一区二区三区人妻视频| 91久久精品国产一区二区三区| 少妇人妻精品综合一区二区 | 久久精品影院6| 男人和女人高潮做爰伦理| 国内精品久久久久精免费| 国产女主播在线喷水免费视频网站 | 成人亚洲精品av一区二区| 大香蕉久久网| 亚洲av成人av| 久久精品国产亚洲网站| 亚洲在久久综合| 91av网一区二区| 69av精品久久久久久| 直男gayav资源| 人体艺术视频欧美日本| 欧美性猛交黑人性爽| 麻豆精品久久久久久蜜桃| 国产精品99久久久久久久久| 精品一区二区免费观看| 精品人妻熟女av久视频| kizo精华| 国产成人91sexporn| 亚洲精品国产av成人精品| 成人美女网站在线观看视频| 日日啪夜夜撸| 69人妻影院| 国产一级毛片在线| 欧美最黄视频在线播放免费| .国产精品久久| 少妇人妻一区二区三区视频| 久久韩国三级中文字幕| 国产 一区 欧美 日韩| 亚洲欧美精品自产自拍| 成人特级av手机在线观看| 国产视频内射| 三级男女做爰猛烈吃奶摸视频| 国产精品国产三级国产av玫瑰| 国产片特级美女逼逼视频| 国产激情偷乱视频一区二区| 精华霜和精华液先用哪个| 免费人成视频x8x8入口观看| 亚洲在线观看片| 你懂的网址亚洲精品在线观看 | 久久精品91蜜桃| 亚洲精品亚洲一区二区| 97超视频在线观看视频| av在线天堂中文字幕| 日本欧美国产在线视频| 国产69精品久久久久777片| av在线老鸭窝| 久久久久久久久久久免费av| 午夜福利高清视频| 久久久久久伊人网av| 日本爱情动作片www.在线观看| 国产精品久久久久久精品电影小说 | 只有这里有精品99| 日韩三级伦理在线观看| 久99久视频精品免费| 91狼人影院| 国产精品av视频在线免费观看| 日韩欧美 国产精品| 免费电影在线观看免费观看| 久久久久久国产a免费观看| 国产亚洲5aaaaa淫片| 免费不卡的大黄色大毛片视频在线观看 | 亚洲图色成人| 亚洲欧美日韩东京热| 精品熟女少妇av免费看| 日韩欧美精品v在线| 高清日韩中文字幕在线| 超碰av人人做人人爽久久| 人妻少妇偷人精品九色| 精品人妻一区二区三区麻豆| 伊人久久精品亚洲午夜| 国内少妇人妻偷人精品xxx网站| 婷婷六月久久综合丁香| 观看美女的网站| 国产成人aa在线观看| 观看免费一级毛片| 国产精品一区二区在线观看99 | 国产av麻豆久久久久久久| 国产亚洲5aaaaa淫片| 嫩草影院精品99| 精品午夜福利在线看| 久久精品国产自在天天线| av在线天堂中文字幕| 韩国av在线不卡| 国产亚洲av片在线观看秒播厂 | 婷婷色综合大香蕉| 99国产精品一区二区蜜桃av| 国产乱人偷精品视频| 精品不卡国产一区二区三区| 免费电影在线观看免费观看| 成人无遮挡网站| 一本精品99久久精品77| 国产熟女欧美一区二区| 国产精品,欧美在线| 午夜福利视频1000在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲图色成人| 18+在线观看网站| 日本-黄色视频高清免费观看| 亚洲精品日韩av片在线观看| 深爱激情五月婷婷| 在线免费十八禁| 真实男女啪啪啪动态图| 免费av不卡在线播放| 精华霜和精华液先用哪个| 听说在线观看完整版免费高清| 精品一区二区三区视频在线| 99久久成人亚洲精品观看| 岛国毛片在线播放| 欧美日韩在线观看h| 青青草视频在线视频观看| 久久99热6这里只有精品| 久久久久久久久久久免费av| 深爱激情五月婷婷| 国产成人a区在线观看| 自拍偷自拍亚洲精品老妇| 97热精品久久久久久| 国产成人午夜福利电影在线观看| 久久久久久久久久黄片| 欧美高清性xxxxhd video| av在线蜜桃| а√天堂www在线а√下载| 久久久久久久亚洲中文字幕| 男人舔女人下体高潮全视频| 99久久精品国产国产毛片| 一本精品99久久精品77| 亚洲欧美精品专区久久| 乱人视频在线观看| 免费看日本二区| 国产午夜福利久久久久久| 成人漫画全彩无遮挡| av黄色大香蕉| 久久精品久久久久久噜噜老黄 | 啦啦啦观看免费观看视频高清| 久久人人精品亚洲av| 18禁裸乳无遮挡免费网站照片| 中国美白少妇内射xxxbb| 丰满的人妻完整版| 非洲黑人性xxxx精品又粗又长| 三级男女做爰猛烈吃奶摸视频| 我要看日韩黄色一级片| 免费观看精品视频网站| 国产高清激情床上av| 非洲黑人性xxxx精品又粗又长| 欧美日韩综合久久久久久| 国产精品爽爽va在线观看网站| 午夜久久久久精精品| 2021天堂中文幕一二区在线观| 一本久久精品| 大香蕉久久网| 国产视频首页在线观看| 一级毛片aaaaaa免费看小| 3wmmmm亚洲av在线观看| 国产成人aa在线观看| 在线观看66精品国产| 乱人视频在线观看| 午夜视频国产福利| 免费电影在线观看免费观看| 亚洲美女搞黄在线观看| 国产av在哪里看| 久久午夜亚洲精品久久| 成年版毛片免费区| 69人妻影院| 成人午夜精彩视频在线观看| 国产真实伦视频高清在线观看| 欧美激情在线99| 欧美高清性xxxxhd video| 99久久九九国产精品国产免费| 色综合亚洲欧美另类图片| 99久久无色码亚洲精品果冻| 国产乱人偷精品视频| 国产极品精品免费视频能看的| 九九久久精品国产亚洲av麻豆| 成人午夜高清在线视频| 成年av动漫网址| 精品不卡国产一区二区三区| 久久久久久久久大av| 插阴视频在线观看视频| 大又大粗又爽又黄少妇毛片口| 神马国产精品三级电影在线观看| 91久久精品国产一区二区三区| 成人二区视频| 成人亚洲欧美一区二区av| 国产成年人精品一区二区| 日韩亚洲欧美综合| 国产精品99久久久久久久久| 国产精品免费一区二区三区在线| 麻豆成人午夜福利视频| 国产综合懂色| 卡戴珊不雅视频在线播放| a级毛色黄片| 两性午夜刺激爽爽歪歪视频在线观看| 美女大奶头视频| 久久6这里有精品| 又爽又黄a免费视频| 色哟哟哟哟哟哟| 舔av片在线| 欧美另类亚洲清纯唯美| 成人特级黄色片久久久久久久| 亚洲欧洲日产国产| 中出人妻视频一区二区| 国产精品一区二区在线观看99 | 一边摸一边抽搐一进一小说| 国内久久婷婷六月综合欲色啪| 婷婷精品国产亚洲av| 97超视频在线观看视频| 欧美xxxx性猛交bbbb| 国产精品乱码一区二三区的特点| 精品国产三级普通话版| 99久国产av精品国产电影| 看黄色毛片网站| 免费观看a级毛片全部| 欧美成人a在线观看| 国产成人精品一,二区 | 午夜激情福利司机影院| 亚洲最大成人中文| 97超视频在线观看视频| 免费在线观看成人毛片| 国产探花极品一区二区| 日韩欧美一区二区三区在线观看| 久久久久网色| 中文资源天堂在线| 九九久久精品国产亚洲av麻豆| 国产人妻一区二区三区在| 如何舔出高潮| 国产日韩欧美在线精品| 亚洲成人久久性| 久久精品综合一区二区三区| 最近2019中文字幕mv第一页| 看黄色毛片网站| 久久精品国产亚洲av香蕉五月| 99久国产av精品国产电影| 久久这里有精品视频免费| 99国产极品粉嫩在线观看| 久久久精品欧美日韩精品| 色综合站精品国产| 91精品国产九色| 国产精品国产高清国产av| 波多野结衣高清作品| 亚洲国产精品成人久久小说 | 久久精品91蜜桃| 国产成人福利小说| 欧美成人免费av一区二区三区| 变态另类成人亚洲欧美熟女| 国产精品一区二区三区四区久久| 国产精品一二三区在线看| 亚洲国产精品合色在线| 国产精品免费一区二区三区在线| 乱系列少妇在线播放| 不卡视频在线观看欧美| 99热网站在线观看| 久久精品国产99精品国产亚洲性色| 中文亚洲av片在线观看爽| 国产精品精品国产色婷婷| 级片在线观看| 国产乱人视频| 成人漫画全彩无遮挡| 高清毛片免费看| 久久久久久九九精品二区国产| 69人妻影院| 大又大粗又爽又黄少妇毛片口| 深夜a级毛片| 久久九九热精品免费| 中文字幕制服av| 日韩欧美精品v在线| 99热这里只有是精品在线观看| 国产三级中文精品| 国产中年淑女户外野战色| 日韩av不卡免费在线播放| 久久久久网色| 久久精品人妻少妇| 国产中年淑女户外野战色| 91午夜精品亚洲一区二区三区| 国产淫片久久久久久久久| 麻豆久久精品国产亚洲av| 久久午夜亚洲精品久久| 欧美精品一区二区大全| 国产真实乱freesex| 我的老师免费观看完整版| 亚洲最大成人手机在线| 人妻夜夜爽99麻豆av| 久久九九热精品免费| 免费观看在线日韩| 日韩亚洲欧美综合| 日韩一本色道免费dvd| 能在线免费观看的黄片| 日韩精品青青久久久久久| 中文字幕精品亚洲无线码一区| 国产精品综合久久久久久久免费| 午夜激情欧美在线| 国产精品无大码| 免费看日本二区| 精华霜和精华液先用哪个| 国产v大片淫在线免费观看| 国产一区二区三区av在线 | 久久精品国产清高在天天线| 久久久精品大字幕| 成年女人永久免费观看视频| 欧美日本视频| 国产高清有码在线观看视频| 亚洲最大成人中文| 欧美xxxx黑人xx丫x性爽| 人体艺术视频欧美日本| 久久午夜亚洲精品久久| 天天躁夜夜躁狠狠久久av| 午夜激情福利司机影院| 精品人妻视频免费看| 久久久国产成人精品二区| 亚洲精品日韩av片在线观看| 亚洲国产精品久久男人天堂| 免费不卡的大黄色大毛片视频在线观看 | 婷婷色综合大香蕉| 国产一区二区三区av在线 | 久久精品国产99精品国产亚洲性色| 欧美最新免费一区二区三区| 狂野欧美激情性xxxx在线观看| 观看免费一级毛片| 精品人妻视频免费看| 国产淫片久久久久久久久| av福利片在线观看| 亚洲四区av| 成人毛片a级毛片在线播放| 成人性生交大片免费视频hd| 久久99精品国语久久久| 欧美成人精品欧美一级黄| 国产不卡一卡二| 直男gayav资源| 亚洲一级一片aⅴ在线观看| 天堂网av新在线| 男女边吃奶边做爰视频| 国产伦在线观看视频一区| 综合色丁香网| 夫妻性生交免费视频一级片| 精品欧美国产一区二区三| 日韩欧美 国产精品| 在线免费观看不下载黄p国产| 国产三级在线视频| 亚洲久久久久久中文字幕| 亚洲av男天堂| 精品国内亚洲2022精品成人| 激情 狠狠 欧美| 两性午夜刺激爽爽歪歪视频在线观看| 久久午夜福利片| 国产精品久久久久久久电影| 一进一出抽搐动态| 国产探花在线观看一区二区| 成人漫画全彩无遮挡| 久久久久国产网址| 最后的刺客免费高清国语| 亚洲中文字幕一区二区三区有码在线看| 好男人在线观看高清免费视频| 精品人妻偷拍中文字幕| 国产一级毛片在线| 国产精品一及| 波多野结衣巨乳人妻| 欧美一区二区亚洲| 夫妻性生交免费视频一级片| 色综合亚洲欧美另类图片| 精品久久久久久久久久久久久| 99热只有精品国产| 欧美变态另类bdsm刘玥| 一夜夜www| 国语自产精品视频在线第100页| 久久久久九九精品影院| 男女啪啪激烈高潮av片| 女的被弄到高潮叫床怎么办| 高清日韩中文字幕在线| 午夜视频国产福利| 成人午夜高清在线视频| 午夜福利在线观看免费完整高清在 | 国产探花极品一区二区| 插阴视频在线观看视频| 91午夜精品亚洲一区二区三区| 亚洲一区高清亚洲精品| 日韩欧美一区二区三区在线观看| 免费人成在线观看视频色| av在线天堂中文字幕| 国产精品.久久久| 亚洲va在线va天堂va国产| 1000部很黄的大片| 国产单亲对白刺激| 99久久中文字幕三级久久日本| 成人欧美大片| 69人妻影院| 插逼视频在线观看| 非洲黑人性xxxx精品又粗又长| www日本黄色视频网| 国产 一区 欧美 日韩| 国产精品日韩av在线免费观看| 国产伦理片在线播放av一区 | 欧美+日韩+精品| 中国美女看黄片| 悠悠久久av| 女人被狂操c到高潮| 色综合亚洲欧美另类图片| 亚洲丝袜综合中文字幕| 69人妻影院| 亚洲国产高清在线一区二区三| 久久精品夜色国产| 最新中文字幕久久久久| 精品久久久噜噜| 一级二级三级毛片免费看| 国语自产精品视频在线第100页| 男人和女人高潮做爰伦理| 人人妻人人澡欧美一区二区| 尤物成人国产欧美一区二区三区| 成人特级av手机在线观看| 九草在线视频观看| 精品一区二区三区视频在线| 哪个播放器可以免费观看大片| 最近最新中文字幕大全电影3| 欧美性猛交黑人性爽| 伦理电影大哥的女人| 午夜精品在线福利| 亚洲自拍偷在线| 国产综合懂色| 99九九线精品视频在线观看视频| 国产老妇女一区| 国产精品美女特级片免费视频播放器| av免费观看日本| 观看免费一级毛片| 欧美一区二区亚洲| 你懂的网址亚洲精品在线观看 | 尾随美女入室| 亚洲va在线va天堂va国产| 2022亚洲国产成人精品| 精品久久久久久久久久久久久| 久久久精品94久久精品| 色综合色国产| 可以在线观看的亚洲视频| 久久精品国产自在天天线| 中文字幕久久专区| 国产精品精品国产色婷婷| 在线a可以看的网站| 中文字幕精品亚洲无线码一区| 热99在线观看视频| 亚洲av中文字字幕乱码综合| 国产精品久久久久久av不卡| 日韩一本色道免费dvd| 成年av动漫网址| 亚洲欧洲日产国产| 亚洲av二区三区四区| 欧美xxxx性猛交bbbb| 国产高清激情床上av| 国产激情偷乱视频一区二区| 毛片一级片免费看久久久久| 亚洲激情五月婷婷啪啪| 九九爱精品视频在线观看| 亚洲欧洲日产国产| 人人妻人人澡人人爽人人夜夜 | 亚洲精品国产成人久久av| 国产精品1区2区在线观看.| 三级毛片av免费| 日韩制服骚丝袜av| 在线播放无遮挡| 99riav亚洲国产免费| 国产极品天堂在线| 午夜久久久久精精品| 中国国产av一级| 国产精品久久久久久久电影| 久久久国产成人精品二区| av又黄又爽大尺度在线免费看 | 日本-黄色视频高清免费观看| 久久久国产成人精品二区| 国产精品一区二区三区四区久久| 看免费成人av毛片| 成人性生交大片免费视频hd| 国产精品av视频在线免费观看| 久久久久久久久中文| 美女内射精品一级片tv| 国产极品天堂在线| 又黄又爽又刺激的免费视频.| 一个人免费在线观看电影| 亚洲一区二区三区色噜噜| 特大巨黑吊av在线直播| 九色成人免费人妻av| 看十八女毛片水多多多| 中文字幕精品亚洲无线码一区| 99热网站在线观看| 国产精品99久久久久久久久| 国产片特级美女逼逼视频| 久久精品久久久久久噜噜老黄 | 人人妻人人澡欧美一区二区| 国产在线精品亚洲第一网站| 国产高清有码在线观看视频| 精品人妻偷拍中文字幕| av黄色大香蕉| 一个人免费在线观看电影| 99久久久亚洲精品蜜臀av| 99热这里只有精品一区| 91久久精品国产一区二区三区| 亚洲人成网站在线播放欧美日韩| 久久精品国产99精品国产亚洲性色| 国产成人精品婷婷| 国语自产精品视频在线第100页| 韩国av在线不卡| 深夜精品福利| 国产精品.久久久| 久久久久性生活片| 精品午夜福利在线看| 国产精品国产高清国产av| 在线免费观看不下载黄p国产| 美女黄网站色视频| 一个人看视频在线观看www免费| 久久久久网色| 九九久久精品国产亚洲av麻豆| 国产午夜精品论理片| av女优亚洲男人天堂| 草草在线视频免费看| 欧美日韩国产亚洲二区| 久久久色成人| 久久精品国产亚洲av香蕉五月| 久久久久免费精品人妻一区二区| 午夜福利视频1000在线观看| 少妇丰满av| 尾随美女入室| 国产淫片久久久久久久久| 日韩欧美一区二区三区在线观看| 久久久久久久久久成人| 在线免费十八禁| 久久精品国产清高在天天线| 天天一区二区日本电影三级| 在线免费观看不下载黄p国产| 黑人高潮一二区| 三级经典国产精品| 亚洲一区高清亚洲精品| 精品久久国产蜜桃| 国产老妇女一区| 三级毛片av免费| 男女下面进入的视频免费午夜| 精品久久久久久久久久免费视频| 97在线视频观看|