• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low Viscosity?。粒酰簦铮恚幔簦椋恪。裕颍幔睿螅恚椋螅螅椋铮睢。疲欤酰椋洌蟆。鳎椋簦琛。牛睿瑁幔睿悖澹洹。疲颍椋悖簦椋铮睢。模酰颍幔猓椋欤椋簦?/h1>
    2009-03-11 06:49:50KenjiYatsunamiSamuelH.TersigniTANGHong-zhiLeeD.SaathoffChristopherS.Cleveland2MarkJones
    潤滑油 2009年1期
    關(guān)鍵詞:收稿標(biāo)識碼分類號

    Kenji Yatsunami?。樱幔恚酰澹臁。龋裕澹颍螅椋纾睿椤。裕粒危恰。龋铮睿纾瑁椤。蹋澹濉。模樱幔幔簦瑁铮妫妗。茫瑁颍椋螅簦铮穑瑁澹颉。樱茫欤澹觯澹欤幔睿洌病。停幔颍搿。剩铮睿澹?/p>

    Abstract:This study focused on the development of a new low viscosity automatic transmission fluid (ATF) with enhanced friction durability to meet the needs of new step type automatic transmissions. Recent high fuel prices encourage increased efficiency in the driveline, including the transmission. Reduction in fluid viscosity and wider use of slip control in torque converter clutches are two ways to practically improve fuel efficiency. Increased torque and more shifting is seen with a variety of new transmission hardware platforms, such as wet starting clutches, dual clutches and seven- or eight-speed ATs.This suggests the need for enhanced levels of friction durability from the ATF.The new challenge from this hardware for the ATF formulator lies in the need to simultaneously meet the wear, friction durability and torque capacity requirements at low viscosity in a cost-effective manner.

    This report introduced a new low viscosity fluid that represents a different commercial ATF formulation style.The new chemistry employs a low viscosity for increased fuel economy, while easily doubling the friction durability of current conventional ATFs and offering higher torque and better EP.

    Key words:six-speed ATF; low viscosity; friction durability

    中圖分類號:TE626.38 文獻(xiàn)標(biāo)識碼:A

    0 Introduction

    Automobile manufacturers obtain some corporate average vehicle fuel economy (CAFE) benefits by employing lower viscosity ATFs. Previous generations of ATFs had a 100 ℃ kinematic viscosity (Kv100 ℃) in the range of 7.0 to 8.0 cSt; the new generation of ATFs has a fresh oil Kv100 ℃ between 5.4 and 6.4 cSt[1]. Accordingly, low temperature (-40 ℃) and start-up viscosities (0 to 25 ℃) are also lower with the new ATFs. Lower viscosity (thinner) fluids reduce transmission churning (or spin) energy losses in the transmission, the extent to which depends on the test protocol, hardware platform and specifically the temperature range used to evaluate fuel economy benefits. In most testing, the magnitude of the fuel economy benefit is roughly equivalent to the precision of the test being used to measure it, so careful test operation, statistical design of experiments and numerical analysis of the results are necessary[2].

    Lower viscosity ATFs can be a challenge for the transmission hardware, especially with respect to pump losses and gear and bearing durability. Thinner fluids leak easier through pumps and seals. Likewise, a lower viscosity fluid usually means thinner protective films for clutches, bearings and gears, unless fluid design is specifically altered to compensate for the drop in kinematic viscosity[3]. Higher quality base oils may be needed for the lower viscosity fluids to ensure their robustness with respect to volatility, which affects oil volume within the transmission during operating life.

    Meanwhile, in addition to the ATF changes, most automakers have moved to new hardware, including additional gears (i.e., six-, seven- and eight-speeds), start-up devices and lighter transmissions, to further enhance fuel economy in their automatic transmissions (ATs). The additional shifting energy can affect the durability of the transmission, particularly in the clutch packs (friction plates) and the fluid. Along with more clutch applications, the new AT hardware designs typically offer smaller sumps that allow less fluid volume and less time in the sump for the ATF to release air and reduce foam. The combination of new hardware and less ATF requires an increased level of additive performance. Many ATFs on the Asian market contain additives designed well before the release of the new six-speed transmission hardware.

    Since many of these new transmission systems involve high-energy requirements, additive technology must be developed to meet the increasing energy requirements of these advanced systems.Additive packages for automatic transmission fluids are often formulated with several components, including, extreme pressure agents, anti-wear agents, anti-oxidants, corrosion inhibitors, metal deactivators, rust inhibitors, friction modifiers, dispersants, detergents, anti-foam agents and viscosity index improvers. However, not all additives interact predictably or favorably with one another. The friction properties are particularly important in clutches that need more friction to transfer torque but less friction in gears, bearings and seals.

    Another important performance requirement for an automatic transmission fluid is its ability to prevent noise, vibration, and harshness of shift (NVH) from occurring in a transmission.During operation, a vehicle experiences a combination of torsional and axial vibrations that can affect vehicle performance and occupant comfort when the magnitude of the vibrations exceeds a certain threshold.These vibrations and their effects are major contributors to NVH. Potential sources of NVH include engine firing pulses, valve motion, engine vibrations and tire-road interactions - any of which can induce self-excitation or forced vibrations in the vehicle.Vibrations from these sources are transferred through engine mounts, transmission bearings, drive shaft bearings, tires (via steering) and axle suspensions to the passenger compartment by way of the vehicle frame, steering wheel or brake pedal.

    For reasons discussed above, the optimum performance additive and fluid design for the new step-AT hardware may require a significant increase over existing commercial ATFs in four performance areas: 1) friction durability and higher torque capacity in the shifting clutches and the torque converter; 2) anti-foam and anti-aeration durability; 3) anti-wear and extreme pressure capacity at lower viscosity; and 4) anti-rust and anti-corrosion properties.There are significant oxidation and viscometric performance benefits that come to ATFs by employing higher quality base oils and lower finished ATF viscosities, so less advancement of additive technology may be needed in these two performance areas.EP, friction durability and corrosion performance all require ATF additives that migrate to (and adsorb onto) either a steel or paper surface.Usually a balance of surface-active components is required to achieve acceptable overall ATF performance; this need for balance usually limits significant performance breakthroughs[4].

    This paper reports investigations into a new six-speed ATF additive design using performance tests common to Asian automakers (original equipment manufacturers, OEMs). Each OEM has a set of ATF qualification tests which usually have additive appetites different from those of the tests of other OEMs. Yet there is enough regional similarity of test rigs and procedures (JASO, CEC, ASTM) to allow definition of a generic Asian six-speed ATF profile, which would be different both in test performance and additive design from either of the corresponding optimum European or North American six-speed ATFs. The paper introduces a new Asian step-ATF additive and offers supporting data from friction durability, torque capacity, EP, wear and rust testing, in

    support of corresponding performance claims.

    1 New Six-Speed ATF

    A new six-speed Asian additive system has been developed by this laboratory with critical performance features highlighted in this section. The finished ATF performance is shown below with the fluid code ATF-6. ATF-6 is formulated using conventional mineral oil only, with a 100 ℃ kinematic viscosity of 5.6 cSt and a -40 ℃ Brookfield viscosity of under 10,000 cP. Table 1 contains a limited viscometric and elemental profile of select Asian factory-fill ATFs, coded as ATF-A to ATF-D.

    1.1 EP and Wear Performance

    Figures 1(a, b) shows results from the 4-ball EP and 4-ball wear tests, which are standard industry procedures for the region[5-6]. In the case of EP, the benefit to ATF-6 over the comparison fluids is significant beyond a 95% confidence level. The benefit of ATF-6 in the wear test is measurable but less significant.Most importantly, in EP and wear, ATF-6 at a 5.6 cSt Kv100 ℃ is as good as, or better than, other commercial fluids formulated at 7.2 cSt.

    1.2 Torque Capacity Level and Durability

    The JASO M348 (2002) SAE#2 procedure using the NW-461E friction material evaluates torque capacity (μt) and shifting clutch friction durability over 5,000 cycles (43 hours), as part of the current JASO M315-2002 ATF specification.Figures 2(a, b) offer results on the torque capacity μt and shifting clutch (μ0/μD) durability of ATF-6 and ATF-D. While the ATF-D system suffers a continuing drop in torque capacity with test time (15% drop at 5,000 cycles), ATF-6 offers an equivalent level of torque but more stable torque capacity. (Minimum performance over the 5,000 test cycles is most relevant.)

    The ATF-6 style fluid also provides excellent durability in friction tests required in the USA by Ford and General Motors (DEXRONk). The ATF-6 style fluid was evaluated in the GM cycling test, GM plate friction test, GM band test and the Ford 30K fiction test; the results demonstrate excellent friction stability in these tests. Test results are shown in Figures 3, 4, 5 and 6.

    1.3 Low Speed Friction Durability

    The JASO M349-2001 Low Velocity Friction Apparatus (LVFA) test carefully measures friction in the low speed (0-300 rpm) regime, most relevant to shift start-up devices.The Coefficient of Friction (COF) level μ is measured as a function of relative speed (rpm, v), time (test hours), temperature (ATF sump) and plate friction measurement method (sweep or discrete-step mode).

    The number of test hours required for the slope of either the 40 ℃ or 80 ℃ μ-v curve to become negative, at the 50 rpm(0.3 m/s) and 150 rpm (0.9 m/s) speed point, is the standard JASO definition of fluid failure (friction durability lifetime).Note that JASO friction durability is defined in terms only of μ-v slope, not friction level, so fluids with steadily dropping low speed friction levels may falsely appear to be durable.(Significant reductions in torque capacity may challenge the safety factors of the transmission calibration.)Since field vehicle shudder investigations frequently find improper friction levels and/or slope in their “root cause” analysis, a more useful measure of friction system robustness is to inspect the entire μ-v curve as a function of test time and sump temperature.

    Figures 7(a,b) reports friction durability lifetimes as defined by the JASO M349 method for several ATFs of Table 1.Figure 7(a) shows the 40 ℃, 150 rpm (0.9 m/s) slope durability.Figure 7(b) shows data from 80 ℃ testing. Among the fluids listed in Figures 7(a,b), ATF-C is known by this laboratory to have the longest LVFA durability of any ATF in Table 1, at approximately 450 hours. As shown in Figures 7(a,b), ATF-6 easily reaches the 1000-hour durability mark, representing a two-fold increase over ATF-C, which is a 12-fold improvement over the industry reference fluid Toyota T-III.

    1.4 Low Speed Friction Robustness

    ATF-6 offers a friction coefficient that is uniquely stable with respect to temperature in the 40 ℃ to 120 ℃ range, which represents the range of sump temperatures experienced by the ATF in a variety of applications. Each of the Figures 8(a-c) contains the reference set of fluids, with friction profiles representing each combination of temperature (40 ℃, 80 ℃ and 120 ℃) and sliding speed (1, 50 and 150 rpm). The extreme condition of 1 rpm and 120 ℃ represents the boundary friction regime; ATF-6 is the most stable fluid under this condition.The other extreme condition of 150 rpm and 40 ℃ is closest to the thin film (or potentially the hydrodynamic) friction regime; again ATF-6 is the most stable fluid under this condition for over 1,000 test hours.

    Figures 9(a-c) exhibit LVFA (JASO M349) friction at 40 ℃, 80 ℃ and 120 ℃ and sliding speeds of 1, 50 and 150 rpm.Commercial fluids ATF-A, -B and -C show higher friction coefficient at 40 ℃ but lower friction at 120 ℃. Some of these μ1 differences in friction coefficient with temperature approach a level of 0.040 or 40% with ATF-A. In the case of ATF-6, the μ1 difference is less than 0.010 or 5% across the temperature range.Similar trends are also seen in friction at 50 rpm (μ50) and 150 rpm(μ150). The friction coefficient of ATF-6 is effectively independent of temperature and this robustness will allow new transmissions to operate more smoothly with less complex calibrations.

    Torque capacity of the fluid can be defined by the lowest friction level obtained during the LVFA test. Normally, the lowest friction can be seen in μ1 (friction coefficient at 1 rpm) at 120 ℃. As shown in Figure 8(a) and Figures 9(a-c), ATF-6 provides 9%~18% higher torque capacity as compared to the other commercial fluids. Similar phenomena were seen in the Ford 30,000 friction test, as shown in Figure 6.

    2 Conclusions

    In summary, this paper reports development of a mineral oil based, Asian focused ATF that offers over 1,000 hours of LVFA friction durability, twice the performance of any current commercial Asian ATF, with comparable torque capacity.Even at a low finished fluid viscosity, the additive system delivers anti-wear and EP performance well above other higher viscosity fluids in the region.This suggests that good EP performance can be achieved with friction-durable fluids.The fluid provides excellent friction properties, including durability and stability with respect to temperature.The fluid represents a qualitatively new level of durability which may enable new types of transmission hardware or calibrations.

    Acknowledgements

    The authors thank coworkers at Afton′s automatic transmission fluid research labs in Japan (Takuo Takano), England and the United States (Dave Strait, Kevin Strait, Dave Harer) for their help.

    References:

    [1] GMN 10060, General Motors DEXRONk-VI ATF Service-Fill Specification[S].

    [2] Box G,Hunter W,Hunter J.Statistics for Experimenters[M].New York:Wiley & Sons, 1975.

    [3] Harvey P Nixon, Harry Zantopulos. Observations of the Impact of Lubricant Additives on the Fatigue Life Performance of Tapered Roller Bearings[C]. SAE Paper 952124.

    [4] A G Papay. Automatic Transmission Fluids DEXRONk II and Beyond[A]. Proceedings of 43rd STLE Annual Meeting[C]. Cleveland Ohio, USA: 1988.

    [5] ASTM D2783, Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Fluids[S],1995.

    [6] ASTM D4172, Standard Test Method for Wear Preventive Characteristics of Lubricating Fluid[S],1994.

    收稿日期:2008-08-19。

    作者簡介:Kenji Yatsunami, male, graduated in chemical engineering of Tokyo Institute of Technology in 1968.He started his carrier of lubricant additive formulation development at Mitsubishi Monsanto Chemical and is responsible to ATF formulation development at Afton Chemical Tsukuba Laboratory in Japan. He is the author of several technical papers and Patents.

    猜你喜歡
    收稿標(biāo)識碼分類號
    Standardized Manipulations of Heat-sensitive Moxibustion Therapy Specialty Committee of Heat-sensitive Moxibustion of WFCMS
    A Study on the Change and Developmentof English Vocabulary
    Perspectives on China′s General Medicine Education,Training,Development and Challenges
    Translation on Deixis in English and Chinese
    Process Mineralogy of a Low Grade Ag-Pb-Zn-CaF2 Sulphide Ore and Its Implications for Mineral Processing
    Study on the Degradation and Synergistic/antagonistic Antioxidizing Mechanism of Phenolic/aminic Antioxidants and Their Combinations
    潤滑油(2014年3期)2014-11-07 14:30:02
    A Comparative Study of HER2 Detection in Gastroscopic and Surgical Specimens of Gastric Carcinoma
    The law of exercise applies on individual behavior change development
    Significance of 18F—FDG PET / CT imaging in the evaluation of the efficacy of lymphoma
    Phase selection rules for complex multi-component alloys with equiatomic or close-to-equiatomic compositions
    自然雜志(2013年2期)2013-08-21 09:34:56

    少妇 在线观看| 午夜福利网站1000一区二区三区| 国产成人精品一,二区| 亚洲国产毛片av蜜桃av| av在线老鸭窝| 十八禁高潮呻吟视频| 97在线人人人人妻| 蜜桃国产av成人99| 丰满饥渴人妻一区二区三| 热re99久久国产66热| 一级片'在线观看视频| 国产极品粉嫩免费观看在线 | 美女脱内裤让男人舔精品视频| 大香蕉久久网| 久久精品人人爽人人爽视色| 夜夜爽夜夜爽视频| 啦啦啦啦在线视频资源| 啦啦啦视频在线资源免费观看| 欧美精品人与动牲交sv欧美| 国产高清三级在线| 国产亚洲一区二区精品| 2021少妇久久久久久久久久久| 色视频在线一区二区三区| 亚洲精品色激情综合| 观看av在线不卡| 国产精品国产三级专区第一集| 久热这里只有精品99| 韩国av在线不卡| av卡一久久| 成人影院久久| 桃花免费在线播放| 国产一区二区在线观看日韩| 久久热精品热| 男女啪啪激烈高潮av片| 日本黄大片高清| 国产一区有黄有色的免费视频| 少妇熟女欧美另类| 9色porny在线观看| 爱豆传媒免费全集在线观看| 国产av码专区亚洲av| 99国产综合亚洲精品| 女性生殖器流出的白浆| 日本-黄色视频高清免费观看| 91午夜精品亚洲一区二区三区| 熟女电影av网| 亚洲国产精品一区二区三区在线| 国产精品久久久久久久电影| 色94色欧美一区二区| 日韩熟女老妇一区二区性免费视频| 国产熟女欧美一区二区| 亚洲av国产av综合av卡| 亚洲美女视频黄频| 高清av免费在线| 国产精品熟女久久久久浪| 丝袜喷水一区| 成人毛片a级毛片在线播放| 亚洲av福利一区| 一区二区三区乱码不卡18| 亚洲图色成人| 大话2 男鬼变身卡| 有码 亚洲区| 最近2019中文字幕mv第一页| 欧美激情 高清一区二区三区| 一区二区三区精品91| 久久午夜综合久久蜜桃| 丝袜在线中文字幕| 久久女婷五月综合色啪小说| 精品久久久久久电影网| 2021少妇久久久久久久久久久| 在线观看一区二区三区激情| 久久免费观看电影| 在线观看美女被高潮喷水网站| 国产一级毛片在线| 老司机影院毛片| 99热网站在线观看| 免费日韩欧美在线观看| 日韩在线高清观看一区二区三区| 国产一区二区三区av在线| 亚洲精品久久午夜乱码| 精品99又大又爽又粗少妇毛片| 岛国毛片在线播放| 亚洲欧美成人综合另类久久久| 卡戴珊不雅视频在线播放| 成年av动漫网址| 国产精品一区二区在线观看99| 亚洲av成人精品一二三区| 嫩草影院入口| 男人添女人高潮全过程视频| 日韩av不卡免费在线播放| 久久久久人妻精品一区果冻| 日本黄色片子视频| 性高湖久久久久久久久免费观看| av又黄又爽大尺度在线免费看| 精品一区二区三区视频在线| 亚洲,欧美,日韩| 一区在线观看完整版| 91精品国产国语对白视频| av黄色大香蕉| 伊人亚洲综合成人网| 欧美国产精品一级二级三级| 18禁动态无遮挡网站| 久久女婷五月综合色啪小说| 大码成人一级视频| 韩国av在线不卡| 亚洲在久久综合| 最黄视频免费看| 精品少妇内射三级| 久久久久久久亚洲中文字幕| 国产极品天堂在线| 少妇猛男粗大的猛烈进出视频| 涩涩av久久男人的天堂| 日本-黄色视频高清免费观看| 久久久国产一区二区| 少妇人妻精品综合一区二区| 国产毛片在线视频| 草草在线视频免费看| 性色avwww在线观看| 又黄又爽又刺激的免费视频.| 91久久精品电影网| 黄色毛片三级朝国网站| 狂野欧美白嫩少妇大欣赏| 久久国产精品男人的天堂亚洲 | 亚洲美女视频黄频| 美女福利国产在线| 国产爽快片一区二区三区| 欧美激情国产日韩精品一区| 欧美日韩成人在线一区二区| 国产精品一区二区在线不卡| 国产精品熟女久久久久浪| 国产一级毛片在线| 成年女人在线观看亚洲视频| 欧美变态另类bdsm刘玥| 亚洲一级一片aⅴ在线观看| 丝袜喷水一区| 亚洲国产精品一区三区| 日韩欧美精品免费久久| 女的被弄到高潮叫床怎么办| 亚洲美女搞黄在线观看| 成人综合一区亚洲| 国产探花极品一区二区| 狠狠婷婷综合久久久久久88av| 免费播放大片免费观看视频在线观看| 在线观看国产h片| 日韩亚洲欧美综合| 精品99又大又爽又粗少妇毛片| av专区在线播放| 蜜臀久久99精品久久宅男| 日日爽夜夜爽网站| 国产精品麻豆人妻色哟哟久久| 国产精品 国内视频| 日韩成人av中文字幕在线观看| 亚洲精品国产av蜜桃| 国产熟女欧美一区二区| 国产成人av激情在线播放 | 视频中文字幕在线观看| 亚洲第一av免费看| 日本午夜av视频| 最近手机中文字幕大全| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产亚洲精品久久久com| 99久久中文字幕三级久久日本| 在线观看免费日韩欧美大片 | 99久久精品国产国产毛片| 欧美亚洲日本最大视频资源| 国产毛片在线视频| 中文字幕人妻丝袜制服| 九九久久精品国产亚洲av麻豆| 日韩成人av中文字幕在线观看| 99热这里只有是精品在线观看| 日本91视频免费播放| 久久av网站| 国产白丝娇喘喷水9色精品| 日本欧美国产在线视频| 特大巨黑吊av在线直播| 日韩成人伦理影院| 热99久久久久精品小说推荐| 黄色一级大片看看| av又黄又爽大尺度在线免费看| 三级国产精品片| 国产白丝娇喘喷水9色精品| 午夜激情久久久久久久| 99热这里只有是精品在线观看| 人人妻人人澡人人爽人人夜夜| 一边亲一边摸免费视频| 亚洲av在线观看美女高潮| 高清黄色对白视频在线免费看| 青春草亚洲视频在线观看| 自线自在国产av| 三级国产精品欧美在线观看| 嫩草影院入口| 久久av网站| 菩萨蛮人人尽说江南好唐韦庄| 熟女人妻精品中文字幕| 国产av码专区亚洲av| 成人影院久久| 久久国产精品男人的天堂亚洲 | 我的女老师完整版在线观看| 亚洲av综合色区一区| 你懂的网址亚洲精品在线观看| 搡老乐熟女国产| 丝瓜视频免费看黄片| 亚洲av欧美aⅴ国产| 人人妻人人添人人爽欧美一区卜| 日韩欧美一区视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 狂野欧美白嫩少妇大欣赏| 久久久国产精品麻豆| 亚洲一级一片aⅴ在线观看| 亚洲精品国产av成人精品| 国产在线一区二区三区精| 黄色配什么色好看| 人妻夜夜爽99麻豆av| 久久婷婷青草| 人妻夜夜爽99麻豆av| 亚洲国产欧美在线一区| 国语对白做爰xxxⅹ性视频网站| 国产亚洲精品第一综合不卡 | 欧美三级亚洲精品| 2018国产大陆天天弄谢| 性色av一级| 国产一区二区三区综合在线观看 | 九色成人免费人妻av| 韩国高清视频一区二区三区| 女性生殖器流出的白浆| 精品久久蜜臀av无| 久久久久精品性色| 色5月婷婷丁香| 3wmmmm亚洲av在线观看| 久久午夜福利片| 久久婷婷青草| 亚洲精品日韩av片在线观看| 国产成人免费无遮挡视频| av线在线观看网站| 我的老师免费观看完整版| 国产高清国产精品国产三级| 欧美丝袜亚洲另类| 亚洲中文av在线| 国产欧美日韩综合在线一区二区| 久久 成人 亚洲| 亚洲人成网站在线播| 国产在线视频一区二区| 精品国产乱码久久久久久小说| 综合色丁香网| 久热久热在线精品观看| 少妇高潮的动态图| 国产精品无大码| 毛片一级片免费看久久久久| 日韩视频在线欧美| 91午夜精品亚洲一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 国产片特级美女逼逼视频| 午夜视频国产福利| 在线观看免费日韩欧美大片 | 久久女婷五月综合色啪小说| 在线观看三级黄色| 欧美精品亚洲一区二区| 国产欧美亚洲国产| 成人国语在线视频| 最近2019中文字幕mv第一页| kizo精华| 免费播放大片免费观看视频在线观看| 在现免费观看毛片| 少妇被粗大的猛进出69影院 | 永久免费av网站大全| 欧美国产精品一级二级三级| 免费黄色在线免费观看| 99国产精品免费福利视频| 日本色播在线视频| 亚洲高清免费不卡视频| 亚洲国产精品国产精品| 欧美精品一区二区大全| 亚洲精品国产色婷婷电影| 51国产日韩欧美| 91精品一卡2卡3卡4卡| 69精品国产乱码久久久| 国产免费视频播放在线视频| 伊人久久国产一区二区| 国产白丝娇喘喷水9色精品| 久久久久久久久大av| 日本欧美国产在线视频| 欧美激情国产日韩精品一区| 亚洲国产av影院在线观看| 丰满迷人的少妇在线观看| 在线观看www视频免费| 欧美日本中文国产一区发布| 极品人妻少妇av视频| 久久午夜福利片| 一个人免费看片子| 成年美女黄网站色视频大全免费 | 欧美xxxx性猛交bbbb| 青春草视频在线免费观看| 母亲3免费完整高清在线观看 | 狠狠精品人妻久久久久久综合| 国产白丝娇喘喷水9色精品| 精品一区二区免费观看| 老司机影院成人| 午夜视频国产福利| 亚洲av国产av综合av卡| 啦啦啦中文免费视频观看日本| 三上悠亚av全集在线观看| 亚洲经典国产精华液单| 亚洲av男天堂| 欧美 亚洲 国产 日韩一| 日韩视频在线欧美| 国产精品 国内视频| 亚洲内射少妇av| 男人爽女人下面视频在线观看| 国产高清三级在线| 制服丝袜香蕉在线| 国产男人的电影天堂91| 天堂俺去俺来也www色官网| 欧美精品人与动牲交sv欧美| 下体分泌物呈黄色| 伊人亚洲综合成人网| 亚洲av免费高清在线观看| 亚洲人成77777在线视频| 观看美女的网站| 午夜免费男女啪啪视频观看| 男女高潮啪啪啪动态图| 日韩欧美一区视频在线观看| 一级毛片电影观看| 男女无遮挡免费网站观看| 免费不卡的大黄色大毛片视频在线观看| 黑人巨大精品欧美一区二区蜜桃 | 欧美性感艳星| 国产成人一区二区在线| 亚洲av电影在线观看一区二区三区| 一区二区日韩欧美中文字幕 | 观看美女的网站| 亚洲精品一二三| a级毛片免费高清观看在线播放| 精品视频人人做人人爽| 日本猛色少妇xxxxx猛交久久| 在线观看一区二区三区激情| 亚洲综合色网址| 国产色爽女视频免费观看| 美女国产视频在线观看| 精品亚洲成a人片在线观看| 国产欧美日韩综合在线一区二区| 蜜桃久久精品国产亚洲av| 欧美人与性动交α欧美精品济南到 | 91aial.com中文字幕在线观看| 亚洲欧美一区二区三区国产| 久久热精品热| 在线免费观看不下载黄p国产| 91久久精品电影网| 欧美xxxx性猛交bbbb| 久久久久久久久久久久大奶| 久久久久精品性色| 男女边摸边吃奶| 熟女人妻精品中文字幕| 午夜日本视频在线| 97精品久久久久久久久久精品| 美女大奶头黄色视频| 久久久久精品性色| 视频在线观看一区二区三区| 青春草国产在线视频| 国产精品国产三级专区第一集| 免费黄色在线免费观看| 久久久午夜欧美精品| 99热6这里只有精品| 亚洲精品视频女| 午夜激情av网站| 伊人亚洲综合成人网| a 毛片基地| 伊人亚洲综合成人网| 丝袜脚勾引网站| 两个人的视频大全免费| 亚洲欧美中文字幕日韩二区| 午夜日本视频在线| 另类精品久久| 3wmmmm亚洲av在线观看| 乱人伦中国视频| 国产国语露脸激情在线看| 飞空精品影院首页| 日韩精品有码人妻一区| 日日啪夜夜爽| 大码成人一级视频| 日韩欧美一区视频在线观看| 青春草亚洲视频在线观看| 久久亚洲国产成人精品v| 亚洲国产精品一区三区| 免费看光身美女| 天美传媒精品一区二区| 国产白丝娇喘喷水9色精品| 毛片一级片免费看久久久久| 九草在线视频观看| av一本久久久久| 国产亚洲精品第一综合不卡 | 人成视频在线观看免费观看| 黑人猛操日本美女一级片| 亚洲不卡免费看| 男女边摸边吃奶| 成人无遮挡网站| 国产又色又爽无遮挡免| 日本wwww免费看| 97精品久久久久久久久久精品| 男女啪啪激烈高潮av片| 王馨瑶露胸无遮挡在线观看| 成人午夜精彩视频在线观看| 亚洲国产精品专区欧美| 女人久久www免费人成看片| 精品一区二区三卡| 亚洲成人av在线免费| 日本av免费视频播放| 在线播放无遮挡| 午夜福利,免费看| 人妻夜夜爽99麻豆av| 亚洲一级一片aⅴ在线观看| 亚洲国产最新在线播放| 亚洲少妇的诱惑av| 大陆偷拍与自拍| 黑人高潮一二区| 国产精品久久久久成人av| 久久久久久人妻| 大香蕉久久网| 免费播放大片免费观看视频在线观看| 18禁在线播放成人免费| h视频一区二区三区| 国产成人精品无人区| 国产精品免费大片| 少妇人妻精品综合一区二区| 午夜免费观看性视频| 婷婷色麻豆天堂久久| 啦啦啦中文免费视频观看日本| 亚洲精品中文字幕在线视频| 看免费成人av毛片| 亚洲美女视频黄频| 精品国产国语对白av| 国产高清三级在线| 天天操日日干夜夜撸| 国产片内射在线| 建设人人有责人人尽责人人享有的| 国产伦理片在线播放av一区| 男人操女人黄网站| 午夜福利视频精品| 丁香六月天网| 在线看a的网站| 精品一区在线观看国产| 国产69精品久久久久777片| 日本黄大片高清| 男女国产视频网站| 国产视频内射| 大香蕉久久网| 各种免费的搞黄视频| 午夜激情福利司机影院| 伊人久久精品亚洲午夜| 搡女人真爽免费视频火全软件| 一级毛片我不卡| 久久这里有精品视频免费| 亚洲精品,欧美精品| 日日摸夜夜添夜夜爱| 97在线人人人人妻| 人妻夜夜爽99麻豆av| 丰满迷人的少妇在线观看| 中文字幕制服av| 97在线人人人人妻| 精品酒店卫生间| 最近最新中文字幕免费大全7| a 毛片基地| 91精品三级在线观看| 亚洲国产av新网站| 五月天丁香电影| 国产毛片在线视频| 色婷婷av一区二区三区视频| 男人爽女人下面视频在线观看| 91精品一卡2卡3卡4卡| av福利片在线| 男人爽女人下面视频在线观看| 在线精品无人区一区二区三| 草草在线视频免费看| a级毛片黄视频| 国产在线视频一区二区| 久久久久久久久大av| 亚洲人与动物交配视频| 日韩,欧美,国产一区二区三区| 成人国语在线视频| 韩国av在线不卡| 色94色欧美一区二区| 免费av中文字幕在线| 18禁动态无遮挡网站| 亚洲欧美一区二区三区黑人 | 成人亚洲精品一区在线观看| 亚洲综合色网址| 国产精品久久久久久精品古装| 欧美日韩一区二区视频在线观看视频在线| 男女边吃奶边做爰视频| 国产爽快片一区二区三区| 午夜福利网站1000一区二区三区| 久久人人爽av亚洲精品天堂| 亚洲少妇的诱惑av| 欧美亚洲 丝袜 人妻 在线| 精品少妇内射三级| 80岁老熟妇乱子伦牲交| 草草在线视频免费看| 少妇人妻精品综合一区二区| 国产高清不卡午夜福利| 狂野欧美激情性xxxx在线观看| 九九爱精品视频在线观看| 母亲3免费完整高清在线观看 | 热re99久久精品国产66热6| 九九在线视频观看精品| 成人18禁高潮啪啪吃奶动态图 | av有码第一页| 少妇的逼好多水| 国产爽快片一区二区三区| 日韩人妻高清精品专区| 精品国产国语对白av| 久久亚洲国产成人精品v| 18禁裸乳无遮挡动漫免费视频| 亚洲成人一二三区av| 国产有黄有色有爽视频| 色视频在线一区二区三区| 欧美精品高潮呻吟av久久| av福利片在线| 一级黄片播放器| 国产成人精品在线电影| 欧美少妇被猛烈插入视频| 亚洲精品一区蜜桃| 国产黄色免费在线视频| av电影中文网址| 亚洲在久久综合| 午夜久久久在线观看| 亚洲av在线观看美女高潮| 汤姆久久久久久久影院中文字幕| 一本大道久久a久久精品| 精品久久久噜噜| 少妇人妻 视频| 在线观看www视频免费| 满18在线观看网站| 嫩草影院入口| 久久久久久久久久成人| 大片电影免费在线观看免费| 久久久久久人妻| 国产午夜精品久久久久久一区二区三区| 一本大道久久a久久精品| 精品酒店卫生间| 人人妻人人添人人爽欧美一区卜| 久热这里只有精品99| 中文精品一卡2卡3卡4更新| 内地一区二区视频在线| 免费人妻精品一区二区三区视频| av不卡在线播放| 免费高清在线观看日韩| 久久人人爽av亚洲精品天堂| 人妻 亚洲 视频| 久久久久视频综合| 亚洲精品国产av蜜桃| 欧美日韩成人在线一区二区| 人妻少妇偷人精品九色| 免费观看av网站的网址| 丝袜美足系列| 岛国毛片在线播放| 天堂8中文在线网| 赤兔流量卡办理| 777米奇影视久久| 国产亚洲av片在线观看秒播厂| 日韩中字成人| 欧美丝袜亚洲另类| 亚洲精品乱码久久久久久按摩| 欧美 亚洲 国产 日韩一| 久久久国产精品麻豆| 观看美女的网站| 国产精品不卡视频一区二区| 啦啦啦在线观看免费高清www| 亚洲av在线观看美女高潮| 久久精品国产自在天天线| 成人二区视频| 黄片无遮挡物在线观看| 最近的中文字幕免费完整| 日本黄大片高清| 亚洲综合精品二区| 久久精品人人爽人人爽视色| 久久精品久久精品一区二区三区| 色5月婷婷丁香| 国产日韩一区二区三区精品不卡 | 国产有黄有色有爽视频| 好男人视频免费观看在线| 大香蕉久久网| 中文字幕av电影在线播放| 亚洲国产日韩一区二区| 欧美日韩视频高清一区二区三区二| 在线播放无遮挡| 久久久久人妻精品一区果冻| 国产又色又爽无遮挡免| 免费av中文字幕在线| 一区二区日韩欧美中文字幕 | 狠狠婷婷综合久久久久久88av| 天天躁夜夜躁狠狠久久av| a级毛片黄视频| 亚洲精品aⅴ在线观看| 熟女人妻精品中文字幕| 成年美女黄网站色视频大全免费 | 精品酒店卫生间| 91精品伊人久久大香线蕉| 色94色欧美一区二区| 午夜福利视频精品| 国产白丝娇喘喷水9色精品| 少妇猛男粗大的猛烈进出视频| 国产成人精品福利久久| 日日爽夜夜爽网站| 精品酒店卫生间| av卡一久久| 国产成人精品在线电影| 精品国产国语对白av| 精品国产一区二区三区久久久樱花| 能在线免费看毛片的网站| 精品国产露脸久久av麻豆| 一本久久精品| 在线看a的网站| 欧美日韩av久久| 天天躁夜夜躁狠狠久久av| 少妇 在线观看| 日本与韩国留学比较| 欧美丝袜亚洲另类|