有這樣一道數(shù)學(xué)習(xí)題:
如圖1,已知五邊形ABCDE中,AB//ED,∠A =∠B = 90°,如何確定一條直線將這個五邊形ABCDE分成面積相等的兩部分?滿足條件的直線有多少條?
這是講完“旋轉(zhuǎn)”一章后布置的一道難度較高的習(xí)題,如果讓學(xué)生獨(dú)立完成很困難.為了分散難點(diǎn),筆者在課堂教學(xué)過程中設(shè)計了幾個有一定梯度的問題,層層點(diǎn)撥.
問題1:如圖2 ,已知☉O,如何作一條直線L把☉O的面積等分?為什么?
學(xué)生很容易回答,過圓心O的任一條直線都能把☉O的面積等分,因?yàn)楱慜是軸對稱圖形,經(jīng)過圓心的任一條直線都是它的對稱軸,同時☉O也是以圓心為對稱中心的中心對稱圖形.
問題2:如圖3,已知平行四形ABCD,如何作一條直線L把平行四邊形ABCD的面積等分?為什么?
學(xué)生也不難得出答案:經(jīng)過平行四邊形ABCD對角線交點(diǎn)O作一條直線L就能把平行四邊形ABCD面積等分,因?yàn)槠叫兴倪呅问且詫蔷€交點(diǎn)為對稱中心的中心對稱圖形.
問題3:如圖4,已知梯形ABCD,AB//CD,如何作一條直線L把它的面積兩等分?為什么?
經(jīng)過學(xué)生討論,得出結(jié)論,過梯形中位線EF的中點(diǎn)O作直線L與上、下底相交,這樣得到的兩個四邊形面積相等,因?yàn)樘菪危ㄌ厥馇闆r形是平行四邊形)的面積等于中位線的長乘以高;或過梯形上下底中點(diǎn)的直線L分得兩個梯形面積相等,因?yàn)樘菪蚊娣e等于上下底和與高的積的一半,如圖5.
問題4:如圖6,五邊形ABCDE是張大爺承包的一塊土地的示意圖,圖中折線CDE是承包土地與開墾荒地的分界小路.張大爺想過E點(diǎn)修一條直路,直路修好后,要保持左邊的土地面積與承包時的一樣多,右邊的土地面積與開墾的荒地面積一樣多.請你用有關(guān)的幾何知識,按張大爺?shù)囊笤O(shè)計出修路方案并說明理由.(不計分界小路與直路的占地面積.)
師生共同分析:如圖6,設(shè)線段EF為要修的直路,依題意知S△CEF=S△CED,則DF//EC,因此直路EF可以這樣來確定:連結(jié)EC,作DF//EC交CM于F,連結(jié)EF,則線段EF為要修的直路.
問題5:如圖7,一財主有一塊平行四邊形的土地,地里有一個圓形池塘。財主立下遺囑:要把這塊土地平分給他的兩個兒子,中間的池塘也平分,但不知怎么做,你能想個辦法嗎?
分析:這道題實(shí)際上是兩中心對稱圖形的組合圖形,要將其面積等分,只要找到一條直線,使其既等分平行四邊形的面積,又等分圓的面積即可.
有了以上問題1、2的鋪墊,學(xué)生會很快找到方法:連結(jié)平行四邊形的兩條對角線,其交點(diǎn)A就是平行四邊形的中心,找出圓的圓心B,過A、B作一條直線,這條直線就將地與池塘的面積平分了.
現(xiàn)回到一開始提出的問題,要確定一條直線,必須確定兩個點(diǎn).如何確定這兩個點(diǎn)呢?學(xué)生討論后回答,把這個五邊形ABCDE分解為一個矩形和一個直角梯形(兩種分解法),于是就有下面兩個答案:1.矩形AGDE、GDCB;2.矩形ABCF對角線的交點(diǎn)與梯形CFED中位線中點(diǎn)的連線(如圖8).
除了以上這兩條直線外還有其他滿足條件的直線嗎?問題4給了我們“等積可以替換”的啟示:取已經(jīng)得到的能夠等分面積的線段MN的中點(diǎn)P,過P點(diǎn),有無數(shù)條(并非所有)直線都能滿足條件(如圖9).
解題后教師讓學(xué)生總結(jié)解題體會:①不規(guī)則圖形的面積計算可轉(zhuǎn)化為規(guī)則圖形面積的和或差,類似的,不規(guī)則圖形面積的等分問題可分割為規(guī)則圖形面積的等分問題;②要解決一個比較復(fù)雜的問題必須先會解最基本的最簡單的問題,這些最基本、最簡單問題解決了,較難的問題也就迎刃而解了,可見基礎(chǔ)知識和基本技能的掌握何等重要.至此,學(xué)生在教師一步步有梯度的設(shè)問中興趣盎然,拾級而上,水到渠成地解決了復(fù)雜問題,同時也提高了分析問題、解決問題的能力,體驗(yàn)著成長的快樂.少數(shù)學(xué)生還意猶未盡,反復(fù)嘗試著將不規(guī)則圖形的面積計算轉(zhuǎn)化為規(guī)則圖形的面積計算之差的具體方法.
這是筆者一節(jié)課中自感精彩的一個片段,事后寫下這樣的教學(xué)后記:
①數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識經(jīng)驗(yàn)基礎(chǔ)上.教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機(jī)會,幫助他們在自主探索和合作交流過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗(yàn).學(xué)生是學(xué)習(xí)的主人,隱藏著巨大的潛能和創(chuàng)造力,教師必須當(dāng)好學(xué)生數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者.
②一些重要的數(shù)學(xué)概念與數(shù)學(xué)思想方法的教學(xué),教師應(yīng)根據(jù)學(xué)生的心理特征、知識背景和所學(xué)知識的特點(diǎn),采用設(shè)臺階登高樓或螺旋上升的方式進(jìn)行.起點(diǎn)要低,步子要小,活動要多.要由淺入深,由易到難,要多采用啟發(fā)式和討論式教學(xué),要展示思維過程,優(yōu)化思維品質(zhì),授之以漁,要讓學(xué)生跳一跳能摘到樹上的桃子,建立進(jìn)一步學(xué)習(xí)的信心,體驗(yàn)成長的快樂.切忌使學(xué)生感到高不可攀,望而生畏.無論是新授課還是習(xí)題課都是如此.
(作者單位:江蘇省如東縣兵房鎮(zhèn)鞏王初級中學(xué))