• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Consistency and Asymptotic Property of a Weighted Least Squares Method for Networked Control System s☆

    2014-07-17 09:10:10CongZhangHaoYe

    Cong Zhang,Hao Ye

    Tsinghua National Laboratory for Information Science and Technology,Depart mentof Automation,Tsinghua University,Beijing 100084,China

    Consistency and Asymptotic Property of a Weighted Least Squares Method for Networked Control System s☆

    Cong Zhang,Hao Ye*

    Tsinghua National Laboratory for Information Science and Technology,Depart mentof Automation,Tsinghua University,Beijing 100084,China

    A R T I c L E IN F o

    Article history:

    Received 27 December 2013

    Received in revised form 26 February 2014 Accepted 5March 2014

    Available on line 25 June 2014

    In this paper,we study the problems related to parameter estimation of a single-input and single-output networked control system,which contains possible network-induced delays and packet dropout in both of sensor-to-controller path and controller-to-actuator path.A weighted least squares(W LS)method is designed to estimate the parameters of plant,which could overcome the data uncertainty problem caused by delays and dropout.This WLS method is proved to be consistent and has a good asymptotic property.Simulation examples are given to validate the results.

    ?2014 Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    1.Introduction

    In a networked control system(NCS),there may exist random network-induced delays and packet dropout in the sensor-to controller(S-C)path and the controller-to-actuator(C-A)path due to the communication access constraints[1,2].Network-induced delays and packet dropout could cause data uncertainty problems and bring difficulties for system identification,control,or fault detection.

    Problems related to NCS identification have drawn more and more attentions in recent years.Particularly,Fei et al.[3]utilized a discard packet strategy,a cubic spline interpolation,and buffers to the actuator to overcome the data uncertainty problem in an NCS and proposed a recursive estimation method.Wang et al.[4]formulated an NCS in a continuous-time system with non-uniformly non-synchronized sampled data,and proposed a modified version of the simplified refined instrumental variable method to identify the parameter offline.Liu and Wang[5]extended the results[4]to the case with colored noise.Shi et al.[6]gave a recursive parameter estimator for closed-loop system with randomly missing output data.Shi and Fang[7]proposed a recursive method for open-loop system with randomly missing measurements of plant’s input and output.

    In our previous work[8],we have proved that the dataset of a single-input and single-output(SISO)NCS with delays and dropout in both of the S-C and C-A paths is informative under very weak conditions, but we did not design an identification method.The result[8]is useful to design a consistent parameter estimator for the NCS in this paper, since the setup of NCSs is the same and the in form ative dataset isa necessary condition for consistent parameter estimation.

    The results in Refs.[3-7]cannot be applied to the NCS in this paper due to the following four reasons:(1)the M sequence used as the controlsignal[3]cannot be generated by feedback controllers;(2)with the remote computers used in closed loop to generate control signals[4,5], and those computers’outputs are required to be independent of their inputs,which could not be achieved by feedback controllers;(3)an adaptive controller instead of a linear time-invariant(LTI)one was required[6];and(4)the problem in Ref.[7]was for open-loop setup.

    In this paper,we consider system identification of a SISONCS with a common setup,which includes an LTI plant,an LTI controller,and network transmissions in both the S-C and C-A paths that contain random delays and dropout.Motivated by Isaksson’s work[11],in which a modification idea for the standard least squares(LS)method was proposed to estimate the parameter of an open-loop system with randomly missing output data,we design a weighted least squares(WLS)method.This WLS method could overcome the data uncertainty problems caused by random delays and dropout.Based on our previous result[8],we prove that this WLS method is consistent,i.e.its parameter estimate converges to the“true”value[9],and has a good asymptotic property in the sense that the product of estimation error and square root of data length converges to a Gaussian distribution,which means that the estimation error decays with the reciprocal of the square root of data length[10].

    2.NCS Setup and Problem Statement

    Notation 1.Throughout the paper,“q”,“E”,and“Pr”rep resent“forward shift operator,i.e.q χk=χk+1”,“a symbol introduced by E χk= Ref.[10],where{χk}is a sequence of quasi-stationarysignal”,and“probability”,respectively.

    The SISONCS considered is shown in Fig.1,where the reference input is zero,and the network-induced delays and packet dropout may occur randomly in both of the S-C and C-A paths.We assume that the actuator and the sensor are clock d riven with a fixed sampling interval.

    2.1.Closed-loop model

    The LTI plant and the LTI controller are described by

    where yk∈R and uk∈R are the plant’s out put and input at time instant k,∈R and∈R are the controller’s input and out put at k,and ek∈R{}is a sequence of independent and identically distributed(i.i.d.)random signals with zero mean values,variances λ2,and bounded moments of order 4+δ with some δ>0[10],respectively.

    The structure of the plant in E q.(1)is assumed to be auto regressive exogenousof generality.

    The parameter to be estimated is

    The candidate parameter space used for estimation is denoted as DM

    Remark 1.According to Refs.[6]and[7],we assume that the polynomial orders of the ARX plant,naand nb,are known,since they can be determined by using the statistical F-test[12-14]or the Akaike in formation criterion[15].

    Fig.1.SISONCS.

    2.2.Network transmission

    The maximal steps of possible delays in the S-C and C-A paths are assumed to be τsteps,respectively.Then ykandwith delays longer than τsteps will be d iscarded when they fi nally arrives.

    Remark 2.According to Refs.[1]and[2],it is common to assume that the delay sand dropout in network transmission satisfy Bernoulli distri-not available to the controller (or the actuator)at time instant k,multiple update mechanisms can be used by the controller(or the actuator)to

    If“l(fā)atest packet in the buffer”,or“previous step value”update mechanisms[1,2].In this paper,for the sake of generalization,we do not make any assumption on the update mechanisms adopted by the controller and the actuator.

    2.3.Recovery of dataset

    Due to the influences of delays and dropout in the S-C and C-A paths, the plant’s output may be received disorderly or lost on the controller side,and it is uncertain which packet sen t from the controller is used by the plant.These data uncertainty problems bring difficulties for parameter estimation.

    Fortunately,some techniques about NCS have been provided for data recovery on the controller side,such as the sequence numbering technique[4]and the smart sensor technology[6,16-19].By using the sequence numbers of the packets received by the controller,the disorderinstants at most;using the smart sensor technology(i.e.the actuator feedbacks the sequence number of plant’s input to controller by sending it to the sensor and further adding it to the packet transmitted by the sensor),we could verify the packet used by the plant.

    We make following assumption to recover the plant’s input and output data on the controller side.

    Assumption 1.The sequence numbering technique[4]and the smart sensor technology[6,16-19]are used for data recovery on the controller side.Except for the influence of dropout on the S-C path,all the other data uncertain ties caused by unreliable transmission can be recovered.side for parameter estimation at time instant L

    Com pared with the plant’s input and output dataset,{y1,u1,…,yL,is obviously incomplete lacking of dropped plant’s output data.

    2.4.Formulation

    We also have following assumption on the NCS.

    Assumption 2.

    (1)Delays and dropout occur independently of{ek};

    (2)The proportional term of the controller,denoted as f0,is nonzero, i.e.f0≠0;

    (3)The NCS is stable.

    Next,we will propose a WLS method that uses the datasetto estimate the parameter of NCS’s plant and then analyze its consistency and asymptotic property.

    3.AW LS Method for Parameter Estimation of NCS

    3.1.A parameter estimation idea for open-loop systems with randomly missing output data

    The parameter estimate of a standard LS method is given by[10]

    Isaksson[11]proposed to modify the standard LS method for parameter estimation of an open-loop system with randomly missing output data.With the idea,the parameter estimate is given by Eq.(4),but both of the summations in it are only calculated over those time instant k that none of ykand yk?na,…,yk?1in φkis missing.

    3.2.AWLS method for parameter estimation of NCS

    The joint dynamics consisting of the LTI controller in E q.(1),the delays in the S-C path,and the delay sand dropout in the C-A path can be regarded as a linear time-varying(LTV)controller,denoted asThen the NCS defined in Section 2 is equivalent to a closed-loop system consisting of an LTI plant,an LTV controller,and randomly missing output.Thus,an be regarded as the dataset of this closedloop system,and we can use a strategy similar to the one in Ref.[11] to estimate the plant’s parameter.In the following,a WLS method using the datasetand the parameter space DMis designed to estimate the parameter of NCS’s plant,referred as WLS1 for convenience.

    According to Ref.[10],the prediction error with parameter θi∈DMand datasetis defined as

    Motivated by the strategy in Ref.[11],we calculate the parameterestimate only with those prediction errorswithout any of yk?na,…,ykbeing dropped.We introduce a weighted factor αk,which is determined by the dropout state of…,ykjoin tly,

    Rem ark 3.The differences between WLS1 method and conventional WLS method[10]are as follows:

    (1)Conventional WLS method uses plant’s input and output datasetwhile WLS1 uses the incomplete dataset reconstructed on the controller side,

    (2)The weighted factor of WLS1method,αk,is a stochastic process determined by the join t state of the dropouts in the S-C path from time instant k?nato k,while that of conventional WLS method is a deterministic time sequence,which can be set by user before the identification experiment[10].

    Thus,in spite of the existing results of consistency and asymptotic property of conventional W LS method in Ref.[10]and other literature, we still need to reconsider these properties for WLS1 method.

    Remark 4.The differences between WLS1 method and the modification idea of standard LS method[11]are as follows:

    (1)Isaksson[11]considered an open-loop identification problem,

    while our problem belongs to closed-loop identification;

    (2)Isaksson[11]only gave an idea for modification of the standard LS method,while we give an actual W LS1 method and prove its consistency and asymptotic property.

    4.Consistency and Asymptotic Property of WLS1Method

    4.1.An equivalent form of WLS 1method

    In order to analyze the consistency and asymptotic property of LS1 method in Ljung’s identification framework[10],we propose an equivalent form of W LS1 method.According to Ref.[10],the prediction error with the parameter θi∈DMand the datasetis

    where the regression vector φkis defined in Eq.(5).According to Eq s.(3)Eqs.(9)and(10),we have the equivalent form of W LS1method

    We can use Eqs.(11)-(13)to analyze the consistency and asymptotic property of W LS1method in Ljung’s identification framework.4.2.Consistency of WLS1 method

    Because the closed-loop models of the NCS are LTV,and{ek}is the only excitation signal,ukand ykin Fig.1 can be written as the two convolutions of LTV filters and{ek},respectively

    where the time-varying coefficients∈R are determined by the models of plant and controller in Eq.(1)and transmission states in both paths from time instant k?j to k.

    4.3.Asymptotic property of estimation error of W LS1method

    Theorem 2.IfW LS1method is consistent,the distribution of the product of its estimation error and the square root of data lengthis asymptotically normal with mean values 0 and covariance matrix P0,i.e.

    where AsN(0,P0)denotes a asymptotic Gaussian distribution[10],and

    Proof.Please refer to Appendix A.2.

    Rem ark 7.According to Theorem 2,we know that the estimation error of W LS1method,converges toθ0very fast.We can conclude that W LS1 method has a good asymptotic property.

    Accord ing to Eqs.(9.18)and(9.19)in Ref.[10],the approximation of the asymptotic covariance matrix(i.e.P0)can be calculated from experiment data,i.e.

    5.Simulation

    5.1.Closed-loop model

    We assume that the orders of the ARX plant in Eq.(1)are na=2 and nb=2,{ek}is an independent and identically distributed Gaussian noise sequence with zero mean values and variance 0.01,and the parameter to be identified are specified as[1.4,0.45,1,0.7]T. The LTI controller in Eq.(1)is selected as

    5.2.Network transmission

    We assume that both the update mechanisms adopted by the controller and the actuator are the“l(fā)atest packet in the buffer”[1].Both the maximum steps of delays in the S-C and C-A paths are assumed to be three,i.e.==3.Accord ing to Notation 2 and Rem ark 2, the probability distributions of the Bernoulli processes∈{?1,0,1, 2,3}and∈{?1,0,1,2,3}are specified as=[0.02,0.8, 0.08,0.06,0.04]and=[0.01,0.82,0.09,0.05,0.03],?k,respectively.

    5.3.Estimates of parameter and noise variance

    Fig.3.Noise variance estimates and relative errors.(dotted line:λ2;solid line:

    Fig.4.Parameter estimates by conventional WLS method.

    Fig.5.Noise variance estimates by conventional WLS method.

    The estimates of plant’s parameter and noise’s variance are presented here.In order to show the consistency and the asymptotic property of WLS1 method clearly,we use itsstep delayed recursive form for parameter estimation and we calculate the estimate of noise’s variance according to Eq.(19).

    The simulation is run in Matlab environment,and the data lengthis selected as 1000,i.e.L=1000.The initial conditions for estimation of parameter and covariance matrix of error are selected as^θ0=[0.1,0.1,0.1,0.1]Tand P0=103?I4×4,where I4×4is a 4×4 identity matrix.

    For k=1,…,1000,Fig.2 gives the results ofand its relative errors,converge to their true values quickly,which validates the conclusions in Theorems 1 and 2 that WLS1 method is consistent and has a good asymptotic property.

    In order to show the superiority of WLS1 method,we also give the simulation results by using the conventional WLS method[10]. The forgetting factor of the conventional WLS method is selected as a constantλ=0.98[20],and initial conditions of its recursive form are the same as those in W LS1method,i.e.=0.1,0.1,0.1,0.1 [and P0=103?I4×4.Figs.4 and 5 give the parameter estimates and noise variance estimates by using the recursive form of the conventional W LS method,and both of these estimates do not converge to the true values and have large biases.Thus W LS1method is better than the conventional W LS method for estimating the parameter of the NCS’s plant.

    Table 1Parameter and noise variance estimates of W LS1 method at step 1000

    6.Conclusions

    In this paper,we consider the parameter estimation problems of a SISONCS with random delays and dropout in both of the S-C and C-A paths.Firstly,we propose a data recovery method to overcome the uncertain ties of plant’s input and output data,which are caused by delays in the S-C path,and delays and dropout in the C-A path.However,the reconstructed dataset still lacks the dropped plant’s output data.Secondly,we design a W LS method to estimate the plant’s parameter, which could use the reconstructed dataset.Finally,the designed W LS method is proved to be consistent and have a good asymptotic property in the sense that the estimation error decays with the reciprocal of the square root of data length.

    Some interesting,related problems still remain to be studied,e.g.extending the results here to multi variable case,or study new estimation method if the network techniques cannot be used to recover the plant’s data on the controller side.

    Appendix

    A.1.Proof of Theorem 1

    Before giving the p roof,we define

    The proof of Theorem 1 is through three steps.

    θi∈DM

    With Eqs.(2),(5),and(14),Eq.(11)becomes

    Because the NCS is stable according to Assumption 2(3)and?θi∈DMwith‖θi‖2being bounded,from Eq.(A3),it is easy to verify that there exists a nonnegative sequence{μm},such that

    Next,we use a derivation similar as Lemma 2B.1 and Theorem 2B.1 in Ref.[10]to prove the result of this step.Let L,t∈Z+and t≤L,then for θi∈DM,we denotes

    According to Eq.(A2),we have

    According to E qs.(8)and(A3),and Assumption 2(1),we knowWith Eq.(A4),Eq.(A5)turns to

    In the following,we will prove θ1≡θ2from Eq.(A11). Let m=1.According to Lemma 1 in Ref.[8]and Eq.(A9),

    According to Eq.(A12),we have

    Substituting Eq.(A13)in to Eq.(A11)for m=1 and according to f0≠0 from Assumption 2(2)and conditionsin Eq.(15),we have

    Fo r 2≤m≤na,it is assumed that=0

    holds for j=1,…,m?1.According to Lemma 1 in Ref.

    [8],and using a derivation similar to Eq s.(A12)-(A14),

    Therefore,we can recursively

    According to Eq s.(11),(A1),(A2),and(A3),we know that for any θi∈DM,

    According to Eq.(A15),we know that θ0∈Dc.Then,?θj∈Dc, we have

    Applying Step(2)to Eq.(A16),we have θj≡θ0,which implies that Dc={θ0}.Therefore,according to Step(1),we have“^θW1L→θ0,w.p.1,as L→∞”.

    A.2.Proof of Theorem 2

    According to Eq.(12),we have

    Then,we prove Theorem 2 by the following two steps. (1)The asymptotic distribution of

    According to Eqs.(5)and(14),we know that

    According to Eq.(A21),and because the NCS is stale,we know that there exists a nonnegative sequence{ξm},such that

    Define

    where M≥na.It is assumed that

    (2)The asymptotic distribution of

    According to Eq.(13),we know that

    Expanding this equation into Taylor series around θ0,we have

    where ηLbelongs to a neighborhood of θ0with radius

    Then we have

    According to Eq.(A18),we know thatis continuous at?θi∈DMand according to Theorem 1,we know that“ηL→θ0, w.p.1,as L→∞”.Then,we have

    Moreover,using a derivation similar to Section A1(1),we have

    According to Eqs.(A33)and(A34),we have

    where

    [1]J.P.Hespanha,P.Naghshtabrizi,Y.G.Xu,A survey of recent results in networked control systems,Proc.IEEE 95(2007)138-162.

    [2]W.Zhang,M.S.Branicky,S.M.Phillips,Stability of networked control systems,IEEE Control Syst.Mag.21(2001)84-89.

    [3]M.R.Fei,D.J.Du,K.Li,A fastmodel identification method for networked control system,Appl.Math.Com put.205(2008)658-667.

    [4]J.D.Wang,W.X.Zheng,T.W.Chen,Identification of linear dynamic systems operating in a networked environment,Automatica 45(2009)2763-2772.

    [5]X.N.Liu,J.D.Wang,Linear system identification subject to colored noises in a networked environment,Proceedings of the 8th World Congress on Intelligent Control and Automation,Jinan,China,2010,pp.1222-1227.

    [6]Y.Shi,H.Fang,M.Yan,Kalman filter-based adaptive control for networked systems with unknown parameters and randomly missing outputs,Int.J.Robust Non linear Control19(2009)1976-1992.

    [7]Y.Shi,H.Z.Fang,Kalman filter-based identification for systems with randomly missing measurements in a network environment,Int.J.Control83(2010)538-551.

    [8]C.Zhang,H.Ye,The in formative enough property of the dataset in a networked control system,Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference,Orlando,FL,USA,2011,pp.222-228.

    [9]A.S.Bazanella,M.Gevers,L.Miskovic,Closed-loop identification of MIMO System s:A new look at iden ti fi ability and experiment design,Eur.J.Control3(2010)228-239.

    [10]L.Ljung,System Identification—Theory for the User,2 nd edition PTR Prentice Hall, Upper Saddle River,N.J.,1999

    [11]A.J.Isaksson,Identification of ARX-models subject to missing data,IEEE Trans. Autom.Control38(1993)813-819.

    [12]I.Gustavsson,Comparison of different methods for identification of industrial processes,Automatica 8(1972)127-142.

    [13]S.S.Kuo,Numerical Methods and Computers,Addison-Wesley,Ann Arbor,MI,1965.

    [14]H.Unbehauen,B.G?hring,Tests for determining model order in parameter estimation,Automatica 10(3)(1974)233-244.

    [15]H.Akaike,A new look at the statistical model identification,IEEE Trans.Autom.Control 19(1974)716-723.

    [16]Y.Shi,B.Yu,Output feedback stabilization of networked control systems with random delays modeled by Markov chains,IEEE Trans.Autom.Control 54(2009) 1668-1674.

    [17]D.Hristu-Varsakelis,W.S.Levine,Handbook of Networked and Em bedded Control System s,Birkhauser,Cam bridge,MA,2005.

    [18]J.Nilsson,Real-time control systems with delays,(Ph.D.Thesis)Lund Institute of Technology,Lund,Sweden,1998.

    [19]P.Tang,C.de Silva,Compensation for transmission delays in an Ethernet-based control network using variable-horizon predictive control,IEEE Trans.Control Sys t. Technol.4(2006)707-718.

    [20]C.Z.Fang,D.Y.Xiao,Process Identification,Tsinghua Press,Beijing,1998.(in Chinese).

    ☆Supported by the National Natural Science Foundation of China(61290324).

    *Corresponding author.

    E-mailaddress:haoye@tsinghua.edu.cn(H.Ye).

    Networked control system Network-induced delay Packet d ropou t

    Weighted least squares Consistency

    Asymptotic property

    色94色欧美一区二区| 一级,二级,三级黄色视频| 操出白浆在线播放| 高清av免费在线| 99国产精品99久久久久| 欧美 日韩 精品 国产| 久久国产精品男人的天堂亚洲| 看免费成人av毛片| 亚洲一区二区三区欧美精品| 伦理电影免费视频| 国产视频一区二区在线看| 亚洲第一av免费看| 国产福利在线免费观看视频| 久久久久视频综合| 在现免费观看毛片| 国产精品香港三级国产av潘金莲 | 亚洲色图综合在线观看| 午夜视频精品福利| 国产欧美日韩精品亚洲av| 色精品久久人妻99蜜桃| 国产男人的电影天堂91| 亚洲欧美中文字幕日韩二区| 男女无遮挡免费网站观看| 久久人妻熟女aⅴ| 菩萨蛮人人尽说江南好唐韦庄| 看免费av毛片| 中文字幕亚洲精品专区| videosex国产| 国产一区二区在线观看av| 久久青草综合色| 九色亚洲精品在线播放| 狠狠精品人妻久久久久久综合| 亚洲成人免费电影在线观看 | 欧美日本中文国产一区发布| 亚洲国产日韩一区二区| 亚洲av日韩精品久久久久久密 | 成人手机av| 欧美精品一区二区免费开放| 七月丁香在线播放| 国产激情久久老熟女| 日韩中文字幕视频在线看片| 搡老乐熟女国产| 丁香六月欧美| 婷婷色综合www| 国产黄色视频一区二区在线观看| 老司机在亚洲福利影院| 国语对白做爰xxxⅹ性视频网站| 亚洲自偷自拍图片 自拍| 日韩 亚洲 欧美在线| 蜜桃国产av成人99| 国产亚洲av片在线观看秒播厂| 两个人免费观看高清视频| 高清视频免费观看一区二区| 欧美日韩综合久久久久久| 亚洲欧洲日产国产| 亚洲 欧美一区二区三区| 欧美日韩精品网址| 久久久久久久大尺度免费视频| av天堂在线播放| 十八禁网站网址无遮挡| 亚洲色图 男人天堂 中文字幕| 亚洲情色 制服丝袜| 麻豆乱淫一区二区| 久久鲁丝午夜福利片| 波多野结衣一区麻豆| 国产一区二区 视频在线| 亚洲精品成人av观看孕妇| 国产av一区二区精品久久| 精品福利永久在线观看| 久久人人爽av亚洲精品天堂| 美女视频免费永久观看网站| 午夜福利免费观看在线| 七月丁香在线播放| 777久久人妻少妇嫩草av网站| 青春草视频在线免费观看| 男女之事视频高清在线观看 | 黑人欧美特级aaaaaa片| 久久精品国产综合久久久| 亚洲一区中文字幕在线| 久久久精品区二区三区| 亚洲欧美一区二区三区国产| 精品少妇内射三级| 高清欧美精品videossex| 青春草亚洲视频在线观看| 国产97色在线日韩免费| 国产成人91sexporn| av一本久久久久| 色播在线永久视频| 亚洲精品一卡2卡三卡4卡5卡 | 好男人视频免费观看在线| 狂野欧美激情性bbbbbb| 日韩制服丝袜自拍偷拍| 成年动漫av网址| 国产免费现黄频在线看| 又大又爽又粗| 黑人欧美特级aaaaaa片| 精品亚洲乱码少妇综合久久| 中文字幕另类日韩欧美亚洲嫩草| 中文欧美无线码| 91成人精品电影| 美女午夜性视频免费| 亚洲中文av在线| 大型av网站在线播放| 国产成人影院久久av| 亚洲av欧美aⅴ国产| 水蜜桃什么品种好| 亚洲国产精品成人久久小说| 久久久精品区二区三区| 国产亚洲精品第一综合不卡| 九草在线视频观看| 色精品久久人妻99蜜桃| e午夜精品久久久久久久| 中文字幕最新亚洲高清| 老司机深夜福利视频在线观看 | 老司机亚洲免费影院| 老司机在亚洲福利影院| 免费在线观看影片大全网站 | 只有这里有精品99| 极品人妻少妇av视频| www.精华液| av国产精品久久久久影院| www日本在线高清视频| 老汉色∧v一级毛片| tube8黄色片| 美女高潮到喷水免费观看| 一级片免费观看大全| 午夜av观看不卡| 久久久久国产一级毛片高清牌| 国产一区二区 视频在线| 午夜福利影视在线免费观看| 国产高清视频在线播放一区 | 黄色视频不卡| 欧美精品一区二区免费开放| 中国国产av一级| 国产黄色视频一区二区在线观看| 国产日韩欧美在线精品| 色网站视频免费| 国产一区二区三区av在线| 成人三级做爰电影| 久久国产亚洲av麻豆专区| 国产精品久久久久久精品古装| 国产成人系列免费观看| 欧美日本中文国产一区发布| 免费观看a级毛片全部| 搡老乐熟女国产| 午夜激情av网站| 欧美精品高潮呻吟av久久| 91精品三级在线观看| 欧美精品一区二区大全| 欧美日韩视频精品一区| 七月丁香在线播放| 国产成人av激情在线播放| 曰老女人黄片| 国产在线一区二区三区精| 宅男免费午夜| 日韩熟女老妇一区二区性免费视频| 日韩av在线免费看完整版不卡| 国产精品国产三级专区第一集| 日韩制服骚丝袜av| 多毛熟女@视频| 啦啦啦中文免费视频观看日本| 欧美日韩精品网址| 在线观看人妻少妇| 成在线人永久免费视频| 99久久人妻综合| 欧美97在线视频| 国产av精品麻豆| 国产欧美日韩综合在线一区二区| 9色porny在线观看| 又紧又爽又黄一区二区| 免费看不卡的av| 日韩av在线免费看完整版不卡| 黑人猛操日本美女一级片| 亚洲精品日本国产第一区| 一个人免费看片子| 美女脱内裤让男人舔精品视频| 成人国产av品久久久| 国产一卡二卡三卡精品| 亚洲七黄色美女视频| 国产激情久久老熟女| 精品国产超薄肉色丝袜足j| 五月开心婷婷网| 国产一区亚洲一区在线观看| 悠悠久久av| 99国产综合亚洲精品| www.精华液| 欧美 日韩 精品 国产| 国产伦人伦偷精品视频| 亚洲精品久久午夜乱码| 一区二区日韩欧美中文字幕| 精品一区二区三区四区五区乱码 | 色网站视频免费| √禁漫天堂资源中文www| 啦啦啦啦在线视频资源| 国产成人精品久久二区二区91| 国产视频首页在线观看| 国产一区有黄有色的免费视频| 十八禁人妻一区二区| 久久 成人 亚洲| 日韩电影二区| 免费不卡黄色视频| 亚洲精品在线美女| 欧美精品人与动牲交sv欧美| 大片免费播放器 马上看| 日韩电影二区| 美女高潮到喷水免费观看| 性色av乱码一区二区三区2| 亚洲一区二区三区欧美精品| 18禁黄网站禁片午夜丰满| 菩萨蛮人人尽说江南好唐韦庄| 亚洲 欧美一区二区三区| 国语对白做爰xxxⅹ性视频网站| 最近手机中文字幕大全| 国产精品免费视频内射| 蜜桃国产av成人99| 亚洲第一av免费看| 欧美激情极品国产一区二区三区| 肉色欧美久久久久久久蜜桃| 一区在线观看完整版| 我的亚洲天堂| 超碰97精品在线观看| 欧美黄色片欧美黄色片| 这个男人来自地球电影免费观看| 国产精品欧美亚洲77777| 亚洲欧美中文字幕日韩二区| 精品视频人人做人人爽| 国产成人精品无人区| 国产一区亚洲一区在线观看| 久久精品亚洲熟妇少妇任你| 无遮挡黄片免费观看| 男女免费视频国产| 最新在线观看一区二区三区 | 免费少妇av软件| 久久九九热精品免费| 老司机深夜福利视频在线观看 | 香蕉国产在线看| 国产精品熟女久久久久浪| 捣出白浆h1v1| 美女扒开内裤让男人捅视频| 久久久久久久国产电影| 嫁个100分男人电影在线观看 | 这个男人来自地球电影免费观看| av不卡在线播放| 亚洲成av片中文字幕在线观看| 女人精品久久久久毛片| 超碰97精品在线观看| 99国产精品一区二区蜜桃av | 欧美xxⅹ黑人| 久久青草综合色| 男人添女人高潮全过程视频| 日本一区二区免费在线视频| 亚洲精品在线美女| 亚洲激情五月婷婷啪啪| 女人爽到高潮嗷嗷叫在线视频| 亚洲图色成人| 人人妻人人澡人人爽人人夜夜| 国产麻豆69| 咕卡用的链子| 亚洲国产成人一精品久久久| 欧美老熟妇乱子伦牲交| 久久人妻熟女aⅴ| 亚洲av男天堂| 久久99热这里只频精品6学生| 黄色 视频免费看| 九草在线视频观看| 又大又黄又爽视频免费| 午夜91福利影院| 国产成人系列免费观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲综合色网址| 亚洲精品一卡2卡三卡4卡5卡 | 午夜精品国产一区二区电影| 90打野战视频偷拍视频| 99久久精品国产亚洲精品| 又黄又粗又硬又大视频| 国产真人三级小视频在线观看| 老鸭窝网址在线观看| 国产精品一区二区免费欧美 | 国产成人系列免费观看| 人成视频在线观看免费观看| 色视频在线一区二区三区| 人人妻,人人澡人人爽秒播 | 国产男人的电影天堂91| 一边摸一边做爽爽视频免费| 国产在线视频一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇猛男粗大的猛烈进出视频| 国产深夜福利视频在线观看| 性色av乱码一区二区三区2| 欧美中文综合在线视频| 日韩中文字幕欧美一区二区 | av国产精品久久久久影院| 激情五月婷婷亚洲| 久久久久网色| kizo精华| 波多野结衣一区麻豆| av电影中文网址| 久久国产精品男人的天堂亚洲| 一区在线观看完整版| 亚洲欧美一区二区三区国产| 国产av精品麻豆| 久久99热这里只频精品6学生| 日韩欧美一区视频在线观看| 亚洲精品乱久久久久久| 乱人伦中国视频| 欧美精品一区二区免费开放| 国产日韩欧美视频二区| 一级片免费观看大全| 国语对白做爰xxxⅹ性视频网站| 熟女av电影| 国产精品秋霞免费鲁丝片| 欧美 亚洲 国产 日韩一| 日韩电影二区| 中国美女看黄片| 国产高清videossex| 一本大道久久a久久精品| 丝袜在线中文字幕| 久久国产精品大桥未久av| 婷婷丁香在线五月| 狂野欧美激情性bbbbbb| 一本一本久久a久久精品综合妖精| 色精品久久人妻99蜜桃| 男女国产视频网站| 亚洲国产欧美日韩在线播放| h视频一区二区三区| 天堂中文最新版在线下载| 精品国产一区二区久久| 一级毛片我不卡| 欧美成人午夜精品| 1024香蕉在线观看| 国产熟女午夜一区二区三区| 人人澡人人妻人| 韩国精品一区二区三区| 亚洲欧美一区二区三区黑人| 亚洲欧洲精品一区二区精品久久久| 亚洲av综合色区一区| 精品久久久久久久毛片微露脸 | 黄频高清免费视频| av天堂久久9| 久久久久久久国产电影| 亚洲七黄色美女视频| 国产一区二区 视频在线| 乱人伦中国视频| 日韩人妻精品一区2区三区| 亚洲欧美清纯卡通| 香蕉丝袜av| 热re99久久国产66热| 国产在线免费精品| 精品高清国产在线一区| 人人妻人人澡人人爽人人夜夜| 高清不卡的av网站| 啦啦啦 在线观看视频| 国产精品一区二区免费欧美 | 欧美日韩成人在线一区二区| 久久久精品区二区三区| 欧美日韩视频精品一区| 久久久久久久大尺度免费视频| 午夜av观看不卡| 亚洲三区欧美一区| 制服诱惑二区| 久久久久久人人人人人| 一区在线观看完整版| 超碰97精品在线观看| 成人手机av| 韩国高清视频一区二区三区| 后天国语完整版免费观看| 国产亚洲一区二区精品| 两性夫妻黄色片| 久久久精品区二区三区| 麻豆国产av国片精品| 妹子高潮喷水视频| 亚洲五月婷婷丁香| 久久久久久免费高清国产稀缺| 亚洲人成电影观看| 国产亚洲一区二区精品| 男人操女人黄网站| 国产爽快片一区二区三区| 婷婷色综合大香蕉| 嫩草影视91久久| 在线观看免费午夜福利视频| 成年av动漫网址| 精品熟女少妇八av免费久了| 99久久人妻综合| 国产一区二区在线观看av| av线在线观看网站| 久久久久久亚洲精品国产蜜桃av| 在线观看人妻少妇| 大片电影免费在线观看免费| h视频一区二区三区| 国产成人啪精品午夜网站| 亚洲国产看品久久| 久久久久精品国产欧美久久久 | 国产免费现黄频在线看| 精品久久久精品久久久| 久久人妻熟女aⅴ| 国产精品熟女久久久久浪| 亚洲国产精品一区二区三区在线| 午夜激情av网站| 色精品久久人妻99蜜桃| 在线观看www视频免费| 两性夫妻黄色片| 丝袜在线中文字幕| 久久这里只有精品19| 新久久久久国产一级毛片| 99久久精品国产亚洲精品| 91成人精品电影| 狂野欧美激情性xxxx| 国产成人系列免费观看| 一边亲一边摸免费视频| 国产一卡二卡三卡精品| 人人澡人人妻人| 日韩,欧美,国产一区二区三区| 丁香六月欧美| 欧美日韩亚洲综合一区二区三区_| 高清欧美精品videossex| 最近最新中文字幕大全免费视频 | 成年人黄色毛片网站| 丝袜在线中文字幕| 18禁黄网站禁片午夜丰满| 精品亚洲乱码少妇综合久久| 777米奇影视久久| 久久精品aⅴ一区二区三区四区| 亚洲国产中文字幕在线视频| 国产伦理片在线播放av一区| 久久 成人 亚洲| 国产男女超爽视频在线观看| 中文字幕精品免费在线观看视频| 99国产精品一区二区蜜桃av | 婷婷色综合大香蕉| 97在线人人人人妻| xxx大片免费视频| 亚洲国产看品久久| 久久影院123| 久久精品国产亚洲av涩爱| 啦啦啦视频在线资源免费观看| 老司机影院毛片| 欧美 亚洲 国产 日韩一| 欧美精品一区二区大全| 国产精品一二三区在线看| 欧美成狂野欧美在线观看| 欧美成人精品欧美一级黄| 日本wwww免费看| 少妇精品久久久久久久| 男女国产视频网站| 亚洲国产日韩一区二区| 国语对白做爰xxxⅹ性视频网站| 男女免费视频国产| 国产亚洲av高清不卡| 后天国语完整版免费观看| 伊人久久大香线蕉亚洲五| 操美女的视频在线观看| 青春草视频在线免费观看| 搡老乐熟女国产| 国产一区二区三区综合在线观看| 王馨瑶露胸无遮挡在线观看| 欧美在线一区亚洲| 啦啦啦啦在线视频资源| 国产麻豆69| 国产又爽黄色视频| 欧美精品av麻豆av| 日韩,欧美,国产一区二区三区| 亚洲国产欧美网| 亚洲第一青青草原| 制服人妻中文乱码| 亚洲中文av在线| 高清欧美精品videossex| 欧美精品人与动牲交sv欧美| 亚洲精品中文字幕在线视频| 操美女的视频在线观看| 国产主播在线观看一区二区 | 大陆偷拍与自拍| 欧美国产精品va在线观看不卡| 中国美女看黄片| 久久国产精品影院| 久久天躁狠狠躁夜夜2o2o | 亚洲国产精品一区二区三区在线| 王馨瑶露胸无遮挡在线观看| 久久精品人人爽人人爽视色| 在线观看免费高清a一片| 一二三四社区在线视频社区8| 久久影院123| 国产不卡av网站在线观看| 亚洲国产中文字幕在线视频| 亚洲第一av免费看| 狂野欧美激情性xxxx| 亚洲图色成人| 亚洲熟女精品中文字幕| 亚洲精品一卡2卡三卡4卡5卡 | 男人添女人高潮全过程视频| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产区一区二| 母亲3免费完整高清在线观看| 女性被躁到高潮视频| 国产av精品麻豆| 91精品国产国语对白视频| 亚洲av美国av| 国产视频首页在线观看| 国产成人系列免费观看| 极品人妻少妇av视频| 国产欧美日韩一区二区三区在线| 麻豆av在线久日| 五月天丁香电影| 日本a在线网址| 91精品国产国语对白视频| 午夜影院在线不卡| 十八禁人妻一区二区| 日韩 亚洲 欧美在线| 久久人妻熟女aⅴ| 一区二区三区乱码不卡18| 亚洲成av片中文字幕在线观看| 精品一区二区三区四区五区乱码 | 老鸭窝网址在线观看| 在线 av 中文字幕| 亚洲黑人精品在线| 欧美日韩黄片免| 色婷婷av一区二区三区视频| 欧美黑人精品巨大| 免费一级毛片在线播放高清视频 | 国产精品九九99| 老司机亚洲免费影院| 中文欧美无线码| videos熟女内射| 国产人伦9x9x在线观看| 女人久久www免费人成看片| 色婷婷久久久亚洲欧美| 亚洲天堂av无毛| 亚洲av成人不卡在线观看播放网 | 亚洲午夜精品一区,二区,三区| 国产一区二区三区av在线| 在线观看人妻少妇| 丰满迷人的少妇在线观看| 久久女婷五月综合色啪小说| 一级a爱视频在线免费观看| 最黄视频免费看| 日韩视频在线欧美| 亚洲精品久久午夜乱码| 亚洲七黄色美女视频| 欧美亚洲日本最大视频资源| 欧美黄色淫秽网站| 国产成人一区二区在线| 国产精品久久久久成人av| 久久性视频一级片| tube8黄色片| 久久久久久久久免费视频了| 久久中文字幕一级| 激情视频va一区二区三区| 成人国产av品久久久| 欧美精品av麻豆av| 久久av网站| 日日夜夜操网爽| 五月开心婷婷网| 男男h啪啪无遮挡| 性高湖久久久久久久久免费观看| 免费在线观看日本一区| 国产欧美日韩精品亚洲av| 久久热在线av| 亚洲成人国产一区在线观看 | 国产一区有黄有色的免费视频| 亚洲av成人精品一二三区| 中文字幕制服av| 亚洲欧洲国产日韩| 丝瓜视频免费看黄片| 国产成人91sexporn| 乱人伦中国视频| 一级毛片 在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕色久视频| 精品一区二区三卡| 久久久精品94久久精品| 久久av网站| 丁香六月欧美| 久久中文字幕一级| 丝袜脚勾引网站| 久久99精品国语久久久| 少妇粗大呻吟视频| 精品久久久久久电影网| 国产亚洲av片在线观看秒播厂| 一级片'在线观看视频| 人妻 亚洲 视频| 精品一区二区三区av网在线观看 | 侵犯人妻中文字幕一二三四区| 久久久精品国产亚洲av高清涩受| 亚洲视频免费观看视频| 夜夜骑夜夜射夜夜干| 中文欧美无线码| 国产真人三级小视频在线观看| 中文字幕av电影在线播放| av网站免费在线观看视频| 久久精品国产a三级三级三级| 久久久久精品国产欧美久久久 | 亚洲精品自拍成人| videos熟女内射| 午夜免费鲁丝| 欧美精品人与动牲交sv欧美| 亚洲av在线观看美女高潮| 久久热在线av| 国产福利在线免费观看视频| www.自偷自拍.com| 亚洲欧洲精品一区二区精品久久久| 香蕉丝袜av| 欧美日韩亚洲高清精品| 久久久精品94久久精品| 一级毛片黄色毛片免费观看视频| 亚洲av综合色区一区| 午夜激情久久久久久久| 女性生殖器流出的白浆| 午夜两性在线视频| 国产精品人妻久久久影院| 在线天堂中文资源库| 午夜激情av网站| 国产97色在线日韩免费| 欧美日本中文国产一区发布| 狂野欧美激情性bbbbbb| 一本色道久久久久久精品综合| 国产欧美日韩精品亚洲av|