• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    微波輔助加熱乙二醇法制備PtSn/CNT催化劑:pH值對其結(jié)構(gòu)和電氧化甲醇性能的影響

    2016-11-02 07:37:44黎海超陳水挾李啟漢劉風(fēng)雷
    新型炭材料 2016年3期
    關(guān)鍵詞:中山大學(xué)乙二醇碳納米管

    黎海超,陳水挾,2,李啟漢,劉風(fēng)雷

    (1.中山大學(xué) 化學(xué)與化學(xué)工程學(xué)院,聚合物復(fù)合材料與功能材料教育部重點實驗室,廣東 廣州510275;2.中山大學(xué) 材料科學(xué)研究所,廣東 廣州510275)

    ?

    微波輔助加熱乙二醇法制備PtSn/CNT催化劑:pH值對其結(jié)構(gòu)和電氧化甲醇性能的影響

    黎海超1,陳水挾1,2,李啟漢1,劉風(fēng)雷1

    (1.中山大學(xué) 化學(xué)與化學(xué)工程學(xué)院,聚合物復(fù)合材料與功能材料教育部重點實驗室,廣東 廣州510275;2.中山大學(xué) 材料科學(xué)研究所,廣東 廣州510275)

    采用微波輔助加熱乙二醇法制備了碳納米管(CNTs)負載的PtSn 雙組份催化劑。采用原子吸收光譜,X射線衍射儀和電子透射顯微鏡對產(chǎn)物進行了表征。結(jié)果表明,含金屬離子前驅(qū)體的乙二醇溶液的pH值對產(chǎn)物的金屬催化劑負載量、合金化程度和PtSn 粒子的形態(tài)有顯著的影響。在pH值為5時能得到組分配比為原始設(shè)計值的PtSn/CNT催化劑。在pH值2~7的范圍內(nèi)納米粒子的尺寸較小,隨著pH值的進一步提高,納米粒子直徑變大且發(fā)生團聚。電化學(xué)測試表明在pH值為5時得到的PtSn/CNT催化劑對甲醇電化學(xué)氧化具有最佳的催化作用。合適的金屬負載比例和良好的納米顆粒形狀和尺寸分布控制是得到優(yōu)異的催化性能的主要原因。

    微波輻照;碳納米管;PtSn催化劑;甲醇電化學(xué)氧化

    1 Introduction

    As the promising power sources for portable electronics,direct alcohol fuel cells (DAFCs) using methanol,ethanol,ethylene glycol (EG) and glycerol as fuels have drawn a great deal of attention owing to their high power density,low operation temperature,no corrosion problem and so on[1,2].As the anode catalysts for DAFCs,bimetallic Pt-based alloys,such as PtSn,PtRu,PtCo with modified Pt electronic properties and surface chemistry,have been of continuing interest owing to their higher activity as compared with Pt catalyst[3-12].Formation of electrocatalysts on carbon materials for DAFC applications is commonly realized by reductive deposition method.But this method based on wet impregnation and chemical reduction is usually time-consuming,while do not provide adequate control of particle shape,size and size distribution.Researchers have been devoted to find a simple,fast and efficient way to control the size of Pt catalysts.A colloid formation method based on microwave-assisted reduction of metal salts in polyol solution is mainly used to prepare metal particles with narrow size distribution and specific shape owing to its speediness and energy efficiency[13,14].

    PtSn catalyst for alcohol electrocatalytic oxidation has been extensively studied but few examinations investigated the pH influence on the PtSn catalyst.In this work,CNTs supported PtSn catalyst with a Pt/Sn atomic ratio of 3∶1 was prepared by intermittent microwave-assisted EG reduction method.PtSn/CNTs were synthesized at pH 2 to 12 in order to examine the influence of pH value.X-ray diffraction (XRD),transmission electron microscopy (TEM) and atomic absorption spectroscopy (AAS) were employed to characterize the structure and composition.The catalytic oxidation performance of this catalyst towards methanol was preliminary evaluated.

    2 Experimental

    2.1Materials

    All the chemical reagents employed in this study were of analytical grade.Chloroplatinic acid was purchased from ShenYang Jin Ke Chemical Factory,China.Stannous chloride dihydrate was supplied by Guanghua Chemical Factory,China.Mutiwalled carbon nanotubes (MWCNTs) with tube diameters of 40-60 nm were purchased from Shenzhen Nanotech Port Co.,Ltd.,in China.20 wt% Pt supported on Vulcan carbon black (Pt/C) catalyst was from Johnson Matthey Company and Nafion 5 wt% solution from Dupont.

    2.2Synthesis and characterization of the catalysts

    Oxidation treatment with concentrated HNO3and H2SO4was employed to purify the MWCNTs and introduce some oxygen-containing groups on the carbon surface.

    The 20 wt% PtSn/CNT with a Pt/Sn atomic ratio of 3∶1 was prepared by intermittent microwave-assisted EG reduction method.This catalyst was named as M-PtSn/CNT.The typical preparation procedure is as follows:1.12 mL of chloroplatinic acid in EG solution (3.7 mg Pt/mL EG) and 1.6 mg of stannous chloride dihydrate (SnCl2·2H2O) were quantitatively added into 40 mL of EG in a flask.20 mg of acid-treated MWCNTs were mixed with the solution of metallic precursors under ultrasonic treatment for 3 h.The synthesis solution pH was adjusted to 5 by adding 1.0 M NaOH EG solution.The microwave treatment was accomplished in a household microwave oven (Midea,PJ17C-M,2.45 GHz,700 W) for 3 times with 30 s irradiation on and 60 s irradiation off.The resulting suspension was filtered and the residue was washed thoroughly with deionized water.The solid product recovered as such was dried at 60 ℃ over night in a vacuum oven.As-prepared catalyst was denoted as PtSn/CNT.Four other such catalysts were prepared at the pH values of 2,7,9 and 12 to study the effect of pH value on the structure and electrocatalytic activity of PtSn/CNT catalysts.

    X-ray diffraction (XRD) patterns were obtained on a D8 ADVANCE (BRüCKNER Textile Technologies GmbH & Co.,KG) X-ray diffractometer using Cu Kαradiation (λ= 0.154 056 nm).The tube voltage was maintained at 40 kV and tube current at 40 mA.The 2θangles ranging from 20° to 70° were covered at a scan rate of 10(°)/min.Transmission electron microscopy (TEM) was performed on a JEOL JEM-2010HR operating at 200 kV.For the atomic absorption spectroscopy (AAS) analysis,PtSn/CNTs samples were immersed in aqua regia for 24 h to dissolve the PtSn particles.The undissolved CNTs were filtered by using a millipore membrane filter.The clear solution was then diluted to an appropriate concentration before the measurement.Zeta potential measurement was performed on a Zetaplus,Brookhaven Instruments Corp.Holtsville,NY.

    2.3Measurement of the electrochemical properties of the catalysts

    All electrochemical measurements were performed in a three-electrode electrochemical cell on an IM6ex electrochemical workstation (Zahner-Electrik,Germany) at room temperature.For the preparation of working electrodes,1 mg of catalyst and 0.5 mL of isopropyl aqueous solution (Visopropanol∶Vwater= 2∶1) were mixed ultrasonically.The well-mixed electrocatalyst ink (10 μL) was deposited onto the surface of a freshly polished glassy carbon disk (GC,3 mm in diameter and 0.070 65 cm2) and dried at 60 ℃ for 30 min.3 μL of Nafion solution was then sprayed on the PtSn/MWCNT catalyst surface to form a protective layer to avoid loss of catalyst during the test.A Pt foil and a saturated calomel electrode (SCE) were used as the counter and the reference electrodes,respectively.N2gas was purged for 30 min before the experiment.

    3 Results and discussion

    3.1Effect of pH value on metal loading of PtSn

    Metal catalyst loading is defined as the weight fraction of PtSn over the weights of the catalyst.The metal loading and compositions were analyzed by AAS (Table 1).It is found that the deposition efficiency and Pt/Sn weight ratio of the particles were sensitive to the pH values of EG solution.The initial composition based on precursors are 16.6 wt% and 3.4 wt% for Pt and Sn,respectively.Metal deposition efficiency could be over 95% for catalyst prepared at pH 5 and weight ratio of Pt/Sn of as-prepared catalyst was very close to the intended one.But catalysts prepared at pH 2,7 and 9 show deposition efficiencies of 60% to 90%,indicating that there were metals remained in the solution.And we found that metal loading on CNTs prepared at pH 12 is extremely low,only 1.6 wt% Pt and 0.15 wt% Sn.

    Table 1 Structure and compositions of PtSn/CNT and Pt/C catalysts.

    3.2Effect of pH value on structure of PtSn/CNT

    The X-ray diffraction patterns of PtSn/CNT electrocatalysts prepared in different pH values are shown in Fig.1.For the sake of comparison,the pattern of commercial Pt/C catalyst (Johnson Matthey,Pt:20 wt%) is also shown in the same figure.The peak at about 2θ= 25° was associated with C (200) plane.All the of the PtSn/CNTs catalysts,except the one prepared at the pH vuale of 12,showed peaks at approximate 2θ= 39°,45°,66° and 79°,which were the main characteristic peaks of crystalline Pt and Pt alloys.The absence of Pt diffraction peaks for the catalyst prepared at pH 12 (Fig.1f) may be attributed to a poor deposition efficiency.All these peaks shifted to lower 2θvalues for PtSn/CNTs electrocatalysts as compared with the commercial Pt/C catalyst,which is caused by the formation of an alloy due to incorporation of Sn atom into the Pt fcc structure,resulting in a lattice expansion[5].No distinct peaks of SnO2were detected possibly because the particles were amorphous or too small.It should be noted that as the pH value increased,the PtSn phase diffraction peaks shifted to high 2θangle,which revealed that the alloying degree of PtSn decreased.From literature data[21],a linear relationship of the lattice parameter and alloyed Sn atomic ratio xSnhas been proposed by the following equation.

    aPtSn=kxSn+aPt

    where aPt= 0.391 4 nm is the lattice parameter of Pt/C,aPtSnis the lattice parameter of PtSn,which can be evaluated according to the angular position of the Pt (220) peak,and k is a constant = 0.352.

    Table 1 clearly shows that alloyed Sn atomic ratio xSndecreased with the pH value.The average size of the catalysts was calculated from XRD data based on the broadening of the Pt (220) peak from the Scherrer equation[22].It was found that the PtSn/CNT catalysts had a crystallite size of around 3.6 nm.We could not obtain the information for the sample prepared at pH of 12 due to the absence of Pt diffraction peaks as lattice parameter,alloyed Sn atomic ratio and XRD mean particle size were calculated based on the AAS and XRD data.

    Fig.1 XRD patterns of (a) commercial Pt/C catalyst and PtSn/CNT prepared at different pH values: (b) 2,(c) 5,(d) 7,(e) 9 and (f) 12.

    3.3Effect of pH on morphology of PtSn/CNT

    Besides loading amount and composition,nanoparticle size,distribution and morphology are also vital to the electrochemical properties of the catalysts.Morphology of the CNT-supported PtSn catalysts observed by TEM was presented in Fig.2.The corresponding mean particle size of catalysts were also obtained by measuring over 100 particles from TEM and presented in Table 1.It can be seen that PtSn catalysts prepared at pH 5 and 7 showed the most satisfied distribution on CNTs,except for a slight particle agglomeration (Fig.2b and c).For the PtSn/CNT catalysts prepared at pH 2 and 9 (Fig.2a and d),nanoparticle agglomeration was easily observed.PtSn particles synthesized at pH 12 were rarely detected,and those located on the surface of the CNTs were large and agglomerated particles and as shown in the selected area (Fig.2e).A broader particle size distribution from 2.0 to 13.0 nm with a mean particle size of 7.6 nm was obtained.

    Fig.2 TEM images and corresponding particle size distribution histograms of PtSn/CNT prepared at different pH values:(a) 2; (b) 5; (c) 7; (d) 9 and (e) 12.

    3.4Insight into the reduction and deposition mechanism

    Fig.3 Zeta potential as a function of pH for acid-treated CNTs in EG solution.

    3.5Electrocatalytic properties

    The effect of pH values on the electrocatalytic activity of PtSn/CNT for methanol oxidation was examined by cyclic voltammetry and the result is presented in Fig.4.

    Fig.4 Catalytic activity of PtSn/CNT prepared at various pH values towards methanol electro-oxidation in 0.5 M H2SO4+ 1.0 M methanol with a sweep rate of 20 mV·s-1.

    The current values were normalized by the loading amount of Pt metal,taking account of the alcohol adsorption and dehydrogenation occurring on the Pt sites[29].Distinct changes in the peak currents for the catalysts prepared at different pH values were observed.The catalyst prepared at pH 5 showed the highest peak current density of 223 mA·mg-1Pt at 0.61 V.The mass activity decreased as the pH value increased.The peak currents were 191 and 153 mA·mg-1Pt for the catalysts prepared at pH 7 and 9,respectively.The catalyst prepared at pH 12 had nearly no activity.This result indicated that pH 5 is the optimum value for preparing the PtSn/CNT with a high electrocatalytic activity.

    4 Conclusions

    A microwave irradiation assisted EG reduction method was employed to prepare CNT-supported PtSn binary catalyst with high electrocatalytic activities for glycerol oxidation.It was found that pH value of the EG solution influenced significantly on the loading efficiency,compositions and morphology of as-prepared PtSn nanaparticles via influencing the adsorption condition of metallic precursors and stabilizing effect of glycolate.Desired catalyst with a composition close to the intended weight ratio of Pt to Sn of 16.6∶3.4 (wt/wt) was obtained by adjusting the pH value to about 5,near the IEP of the acid-treated CNTs.The PtSn nanoparticles displayed the most satisfying size distribution at pH 5 and 7.Overall the PtSn/CNT catalyst prepared at pH 5 exhibited the best catalytic activity for methanol electro-oxidation at room temperature mainly due to a high loading efficiency and adequate control of particle shape and size distribution.

    [1]Eileen Hao Yu,Xu Wang,Ulrike Krewer,et al.Direct oxidation alkaline fuel cells:from materials to systems[J].Energy Environ Sci,2012,5:5668-5680.

    [2]Kamarudin M Z F ,Kamarudin S K ,Masdar M S ,et al.Direct ethanol fuel cells[J].Int J Hydrogen Energ,2013,38(22):9438-9453.

    [3]Léger J M,Rousseau S,Coutanceau C,et al.How bimetallic electrocatalysts does work for reactions involved in fuel cells? Example of ethanol oxidation and comparison to methanol[J].Electrochim Acta,2005,50(25-26):5118-5125.

    [4]Antolini E.Catalysts for direct ethanol fuel cells[J].J Power Sources,2007,170(1):1-12.

    [5]Zheng L,Xiong L,Sun J,et al.Capping agent free synthesis of PtSn bimetallic nanoparticles with enhanced electrocatalytic activity and lifetime over methanol oxidation[J].Catal Commun,2008,9(5):624-629.

    [6]Seden Beyhan,Christophe Coutanceau.Promising anode candidates for direct ethanol fuel cell:Carbon supported PtSn-based trimetallic catalysts prepared by B?nnemann method[J].Int J Hydrogen Energ,2013,38(16):6830-6841.

    [7]Zhao S L,Yin H J,Du L,et al.Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells[J].J Mater Chem A,2014,2:3719-3724.

    [8]Yang C,Wang D,Hu X,et al.Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for methanol electrooxidation[J].J Alloys Compd,2008,448(1-2):109-115.

    [9]Hsieh C T,Chou Y W,Chen W Y.Fabrication and electrochemical activity of carbon nanotubes decorated with PtRu nanoparticles in acid solution[J].J Alloys Compd,2008,466(466):233-240.

    [10]Okaya K,Yano H,Uchida H,et al.Control of particle size of Pt and Pt alloy electrocatalysts supported on carbon black by the nanocapsule method[J].ACS Appl Mater Interfaces,2010,2(2):888-895.

    [11]Nitul Kakati,Jatindranath Maiti,Seok Hee Lee,et al.Anode catalysts for direct methanol fuel cells in acidic media:Do we have any alternative for Pt or Pt-Ru?[J].Chem Rev,2014,114 (24):12397-12429.

    [12]Neto A O,Watanabe A Y,Brandalise M,et al.Preparation and characterization of Pt-Rare Earth/C electrocatalysts using an alcohol reduction process for methanol electro-oxidation[J].J Alloys Compd,2009,476(1-2):288-291.

    [13]Yin S,Shen P K,Song S,et al.Functionalization of carbon nanotubes by an effective intermittent microwave heating-assisted HF/H2O2treatment for electrocatalyst support of fuel cells[J].Electrochimica Acta,2009,54(27):6954-6958.

    [14]Chen W,Jie Z,Lee J Y,et al.Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation[J].Mater Chem Phys,2005,91(1):124-129.

    [15]Ahmadi T S,Wang Z L,Green T C,et al.Shape-controlled synthesis of colloidal Platinum nanoparticles[J].Science,1996,272(5270):1924-1926.

    [16]Christina B,Chantal P,Martin C,et al.Size-selected synthesis of PtRu nano-catalysts:Reaction and size control mechanism[J].J Am Chem Soc,2004,126(25):8028-8037.

    [17]Li X,Chen W X,Zhao J,et al.Microwave polyol synthesis of Pt/CNTs catalysts:Effects of pH on particle size and electrocatalytic activity for methanol electrooxidization[J].Carbon,2005,43(10):2168-2174.

    [18]Dong H,Wang D,Sun G,et al.Assembly of metal nanoparticles on electrospun nylon 6 nanofibers by control of interfacial hydrogen-bonding interactions[J].Chem Mater,2008,20(21):6627-6632.

    [19]Xu Y,Xie X,Guo J,et al.Effects of annealing treatment and pH on preparation of citrate-stabilized PtRu/C catalyst[J].J Power Sources,2006,162(1):132-140.

    [20]Jeng K T,Chien C C,Hsu N Y,et al.Performance of direct methanol fuel cell using carbon nanotube-supported Pt-Ru anode catalyst with controlled composition[J].J Power Sources,2006,160(1):97-104.

    [21]Li H,Sun G,Lei C,et al.Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation[J].Electrochimica Acta,2007,52(24):6622-6629.

    [22]Hui X H,Shui X C,Yuan C.Platinum nanoparticles supported on activated carbon fiber as catalyst for methanol oxidation[J].J Power Sources,2008,175(175):166-174.

    [23]Rodríguez-Reinoso F.The role of carbon materials in heterogeneous catalysis[J].Carbon,1998,36(3):159-175.

    [24]Radovic L R,Rodriguez-Reinoso F.In Chemistry and Physics of Carbon[M].Thrower P A,E Marcel Dekker Inc,New York,1996,25:243-360.

    [25]Yu R Q,Chen L W,Liu Q P,et al.Platinum deposition on carbon nanotubes via chemical modification[J].Chem Mater,1998,10(3):718-722.

    [26]Leon C A L Y,Solar J M,Calemma V,et al.Evidence for the protonation of basal plane sites on carbon[J].Carbon,1992,30(5):797-811.

    [27]Du H Y,Wang C H,Hsu H C,et al.Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation[J].Diamond Relat Mater,2008,17(4-5):535-541.

    [28]Jiang L,Lian G.Modified carbon nanotubes:An effective way to selective attachment of gold nanoparticles[J].Carbon,2003,41(15):2923-2929.

    [29]Neto A O,Dias R R,Tusi M M,et al.Electro-oxidation of methanol and ethanol using PtRu/C,PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process[J].J Power Sources,2007,166(1):87-91.

    Effect of the pH of the preparation medium on the microstructure and electrocatalytic activity of carbon nanotubes decorated with PtSn nanoparticles for use in methanol oxidation

    LI Hai-chao1,CHEN Shui-xia1,2,LI Qi-han1,LIU Feng-lei1

    (1.PCFM Lab,School of Chemistry and Chemical Engineering,Sun Yat-Sen University,Guangzhou510275,China;2.Materials Science Institute,Sun Yat-Sen University,Guangzhou510275,China)

    Carbon nanotubes (CNTs) decorated with PtSn nanoparticles (PtSn/CNT) were prepared by the microwave-assisted ethylene glycol reduction method and characterized by atomic adsorption spectroscopy,X-ray diffraction and transmission electron microscopy.Results indicated that the loading efficiency of the metal catalyst,and the degree of alloying and morphology of the PtSn nanoparticles were significantly affected by the solution pH value of the metallic ions in the ethylene glycol.The required composition of the PtSn/CNT catalysts could be obtained by adjusting the pH value to about 5,which is almost the isoelectric point of the acid-treated CNTs.The size of the PtSn nanoparticles decreased with the pH value in the range 2 to 7,but they became large and agglomerated when the pH value was greater than 7.Electrocatalytic activity tests indicated that the PtSn-CNTs prepared at pH 5 had the best catalytic performance towards methanol oxidation.The improvement in catalytic activity was mainly attributed to a high loading efficiency and control of particle shape and size distribution.

    Microwave irradiation; Carbon nanotubes; PtSn catalyst; Methanol electro-oxidation.

    date:2016-05-07;Revised date:2016-06-05

    National Natural Science Foundation of China (50373053); Science and Technology Project of Guangdong Province (2012B091000080).

    CHEN Shui-xia.E-mail:cescsx@mail.sysu.edu.cn

    1007-8827(2016)03-0293-08

    TB333

    A

    國家自然科學(xué)基金(50373053);廣東省科技計劃項目(2012B091000080).

    陳水挾,教授.E-mail:cescsx@mail.sysu.edu.cn

    English edition available online ScienceDirect (http:www.sciencedirect.comsciencejournal18725805 ).

    10.1016/S1872-5805(16)60014-8

    猜你喜歡
    中山大學(xué)乙二醇碳納米管
    新型裝配式CO2直冷和乙二醇載冷冰場的對比研究
    冰雪運動(2021年2期)2021-08-14 01:54:20
    我國最大海洋綜合科考實習(xí)船“中山大學(xué)號”下水
    軍事文摘(2020年22期)2021-01-04 02:16:46
    中山大學(xué)歷史地理信息系統(tǒng)(SYSU-HGIS)實驗室簡介
    乙二醇:需求端內(nèi)憂外患 疫情期亂了節(jié)奏
    廣州化工(2020年5期)2020-04-01 01:24:58
    一擊止“痛”!450余水產(chǎn)人聚焦第九屆中山大學(xué)水產(chǎn)飼料技術(shù)創(chuàng)新大會,教你從百億到百年
    努力把乙二醇項目建成行業(yè)示范工程——寫在中鹽紅四方公司二期30萬噸/年乙二醇項目建成投產(chǎn)之際
    碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
    中山大學(xué)點滴回憶
    廣州文博(2016年0期)2016-02-27 12:49:15
    聚賴氨酸/多壁碳納米管修飾電極測定大米中的鉛
    拓撲缺陷對Armchair型小管徑多壁碳納米管輸運性質(zhì)的影響
    一级av片app| 少妇人妻精品综合一区二区| 亚洲最大成人手机在线| 在现免费观看毛片| 久久久色成人| 国产精品一区www在线观看| 成年人午夜在线观看视频| 少妇人妻精品综合一区二区| 特大巨黑吊av在线直播| 国产日韩欧美亚洲二区| 国产大屁股一区二区在线视频| tube8黄色片| 亚洲av中文字字幕乱码综合| 国产伦在线观看视频一区| 亚洲欧美日韩东京热| 白带黄色成豆腐渣| 精品国产露脸久久av麻豆| 亚洲欧美精品自产自拍| 国产爱豆传媒在线观看| 国产极品天堂在线| 亚洲欧美成人综合另类久久久| 精品一区二区免费观看| 啦啦啦在线观看免费高清www| 在线观看国产h片| 日日摸夜夜添夜夜爱| 国产免费一区二区三区四区乱码| 中文乱码字字幕精品一区二区三区| 韩国av在线不卡| 中文字幕制服av| 亚洲人成网站高清观看| 看黄色毛片网站| 成人高潮视频无遮挡免费网站| 波野结衣二区三区在线| 亚洲欧美成人综合另类久久久| 久久久久久久久大av| 国产亚洲91精品色在线| 久久久精品94久久精品| av在线播放精品| 亚洲四区av| 国产视频内射| 97在线人人人人妻| 日韩欧美一区视频在线观看 | 麻豆国产97在线/欧美| 久久人人爽av亚洲精品天堂 | 狂野欧美激情性bbbbbb| 美女视频免费永久观看网站| 又爽又黄a免费视频| 日韩欧美一区视频在线观看 | 男插女下体视频免费在线播放| 亚洲国产精品成人综合色| 国语对白做爰xxxⅹ性视频网站| 亚洲精品第二区| 欧美极品一区二区三区四区| 亚洲天堂国产精品一区在线| kizo精华| 亚洲成色77777| 22中文网久久字幕| 亚洲精品成人久久久久久| 精品久久久久久电影网| 亚洲国产欧美人成| 国产成人免费无遮挡视频| 色婷婷久久久亚洲欧美| 嘟嘟电影网在线观看| 最近最新中文字幕大全电影3| 中文资源天堂在线| 国产有黄有色有爽视频| 午夜日本视频在线| 国产精品av视频在线免费观看| 亚洲内射少妇av| 一二三四中文在线观看免费高清| 精品一区二区三区视频在线| 晚上一个人看的免费电影| 中文字幕久久专区| 特级一级黄色大片| 人妻夜夜爽99麻豆av| 国产一区二区在线观看日韩| 日韩av免费高清视频| 国产黄片视频在线免费观看| 国产亚洲av嫩草精品影院| 麻豆乱淫一区二区| 新久久久久国产一级毛片| 在线播放无遮挡| 网址你懂的国产日韩在线| 久久精品国产自在天天线| 夫妻午夜视频| 女人十人毛片免费观看3o分钟| 在现免费观看毛片| 国产精品蜜桃在线观看| 大又大粗又爽又黄少妇毛片口| 国产成人精品福利久久| 亚洲精品自拍成人| 丰满人妻一区二区三区视频av| 噜噜噜噜噜久久久久久91| 亚洲色图综合在线观看| 亚洲成人久久爱视频| av在线app专区| 久久久精品免费免费高清| 国产白丝娇喘喷水9色精品| 亚洲真实伦在线观看| 精品久久久久久电影网| 亚洲av电影在线观看一区二区三区 | 亚洲高清免费不卡视频| 少妇熟女欧美另类| 国产日韩欧美亚洲二区| 精品少妇黑人巨大在线播放| 国产免费福利视频在线观看| www.色视频.com| 亚洲av免费在线观看| 午夜福利视频精品| 建设人人有责人人尽责人人享有的 | 一级二级三级毛片免费看| 五月天丁香电影| 久久久久久久国产电影| 国产综合懂色| 岛国毛片在线播放| 街头女战士在线观看网站| av又黄又爽大尺度在线免费看| 色视频在线一区二区三区| 在线免费十八禁| 特大巨黑吊av在线直播| 国产伦精品一区二区三区四那| 亚洲成人av在线免费| 汤姆久久久久久久影院中文字幕| 日韩大片免费观看网站| 色视频在线一区二区三区| 精品人妻熟女av久视频| 国产精品久久久久久精品古装| 精品久久久噜噜| 亚洲av二区三区四区| 欧美亚洲 丝袜 人妻 在线| 一本色道久久久久久精品综合| 视频中文字幕在线观看| 精品人妻熟女av久视频| 国产亚洲av片在线观看秒播厂| 午夜免费男女啪啪视频观看| 亚洲经典国产精华液单| 国产一区二区三区av在线| 亚洲欧洲日产国产| 欧美xxxx黑人xx丫x性爽| 国产一级毛片在线| 午夜视频国产福利| 人体艺术视频欧美日本| 99热国产这里只有精品6| 男女国产视频网站| 免费观看的影片在线观看| 极品教师在线视频| 欧美高清成人免费视频www| 亚洲第一区二区三区不卡| eeuss影院久久| 一级毛片电影观看| 热99国产精品久久久久久7| 国产爽快片一区二区三区| av在线亚洲专区| 纵有疾风起免费观看全集完整版| 26uuu在线亚洲综合色| 超碰av人人做人人爽久久| 狂野欧美白嫩少妇大欣赏| av在线老鸭窝| 亚洲成色77777| 亚洲精品成人久久久久久| 噜噜噜噜噜久久久久久91| 亚洲国产色片| 男女那种视频在线观看| 大香蕉久久网| 中文欧美无线码| 午夜视频国产福利| 成年版毛片免费区| 91aial.com中文字幕在线观看| 有码 亚洲区| 亚洲国产色片| 男女那种视频在线观看| 伦理电影大哥的女人| 亚洲av国产av综合av卡| 又粗又硬又长又爽又黄的视频| 能在线免费看毛片的网站| 美女视频免费永久观看网站| 国产精品不卡视频一区二区| 国产永久视频网站| 在线观看三级黄色| 婷婷色综合www| 亚洲人成网站在线播| 国产精品人妻久久久久久| 日韩人妻高清精品专区| 一级毛片 在线播放| 大片免费播放器 马上看| 成年免费大片在线观看| 亚洲欧美成人精品一区二区| 午夜福利在线观看免费完整高清在| 日韩不卡一区二区三区视频在线| 视频中文字幕在线观看| 又爽又黄无遮挡网站| 尾随美女入室| 成人毛片60女人毛片免费| 最近最新中文字幕免费大全7| 卡戴珊不雅视频在线播放| 中文字幕亚洲精品专区| 99久久精品热视频| 欧美成人一区二区免费高清观看| 蜜桃久久精品国产亚洲av| 国产成人一区二区在线| 午夜福利在线在线| 成人特级av手机在线观看| 欧美xxxx性猛交bbbb| 欧美97在线视频| 肉色欧美久久久久久久蜜桃 | 又大又黄又爽视频免费| 国产免费视频播放在线视频| 中文字幕制服av| 欧美激情久久久久久爽电影| 3wmmmm亚洲av在线观看| 校园人妻丝袜中文字幕| 亚洲精品中文字幕在线视频 | 美女xxoo啪啪120秒动态图| 五月天丁香电影| 免费人成在线观看视频色| 国产午夜福利久久久久久| 高清日韩中文字幕在线| 亚洲综合精品二区| 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| 免费电影在线观看免费观看| 精品久久久久久久末码| 国产乱人偷精品视频| 99精国产麻豆久久婷婷| 精品一区二区免费观看| 久久午夜福利片| 伊人久久国产一区二区| 国产av码专区亚洲av| 中国三级夫妇交换| 亚洲av免费高清在线观看| av在线老鸭窝| 人妻夜夜爽99麻豆av| 免费观看无遮挡的男女| 欧美成人精品欧美一级黄| 99久久九九国产精品国产免费| 最新中文字幕久久久久| 欧美成人a在线观看| 丝瓜视频免费看黄片| 插逼视频在线观看| 精品午夜福利在线看| 在现免费观看毛片| 久久这里有精品视频免费| 成人毛片a级毛片在线播放| 亚洲av福利一区| 男人爽女人下面视频在线观看| 欧美潮喷喷水| 欧美精品人与动牲交sv欧美| 日韩av免费高清视频| 免费黄色在线免费观看| 免费看不卡的av| 国产精品福利在线免费观看| 一区二区三区四区激情视频| 国产91av在线免费观看| 国产黄片美女视频| 国产成人免费观看mmmm| 亚洲四区av| 国产伦精品一区二区三区四那| 亚洲精品自拍成人| 美女xxoo啪啪120秒动态图| 嘟嘟电影网在线观看| 三级经典国产精品| 亚洲av.av天堂| 国产精品久久久久久精品电影小说 | 国产视频内射| 欧美人与善性xxx| 少妇被粗大猛烈的视频| 王馨瑶露胸无遮挡在线观看| av在线老鸭窝| 午夜福利网站1000一区二区三区| 一级毛片电影观看| 欧美3d第一页| 九草在线视频观看| 国产成人91sexporn| 男人爽女人下面视频在线观看| 午夜免费男女啪啪视频观看| 久久国产乱子免费精品| 午夜福利视频精品| 国产一区有黄有色的免费视频| 1000部很黄的大片| 欧美性猛交╳xxx乱大交人| 国产精品久久久久久精品古装| 看十八女毛片水多多多| 我的女老师完整版在线观看| 国产人妻一区二区三区在| 18+在线观看网站| 久久精品国产自在天天线| 性色avwww在线观看| 精品视频人人做人人爽| 欧美亚洲 丝袜 人妻 在线| 欧美激情在线99| 国产亚洲av片在线观看秒播厂| 欧美精品人与动牲交sv欧美| 国产精品女同一区二区软件| 亚洲精品456在线播放app| 全区人妻精品视频| 久久久久久国产a免费观看| 成人二区视频| 一个人看的www免费观看视频| 黑人高潮一二区| 少妇 在线观看| 国产伦在线观看视频一区| 亚洲国产av新网站| 男人爽女人下面视频在线观看| 91狼人影院| 国产精品av视频在线免费观看| 色婷婷久久久亚洲欧美| 人妻一区二区av| 九九久久精品国产亚洲av麻豆| 国产精品熟女久久久久浪| av在线亚洲专区| 99热网站在线观看| 简卡轻食公司| 国产成人精品福利久久| 2018国产大陆天天弄谢| 亚洲精品中文字幕在线视频 | 一二三四中文在线观看免费高清| 久久久久久久亚洲中文字幕| 亚洲精品乱码久久久久久按摩| 国产高清有码在线观看视频| 男女那种视频在线观看| 日本与韩国留学比较| 一级毛片我不卡| 日韩在线高清观看一区二区三区| 免费播放大片免费观看视频在线观看| 99久久精品国产国产毛片| 国产毛片在线视频| 精品国产露脸久久av麻豆| www.色视频.com| 最近的中文字幕免费完整| 成人高潮视频无遮挡免费网站| 一本色道久久久久久精品综合| 少妇 在线观看| .国产精品久久| 高清av免费在线| 欧美 日韩 精品 国产| 欧美日韩一区二区视频在线观看视频在线 | 一级a做视频免费观看| 一级av片app| 三级国产精品欧美在线观看| 视频中文字幕在线观看| 丝袜喷水一区| 亚洲精品亚洲一区二区| 少妇猛男粗大的猛烈进出视频 | 国产成人福利小说| 久久久久久久国产电影| 亚洲av欧美aⅴ国产| 国产成人免费无遮挡视频| 欧美一级a爱片免费观看看| 欧美日韩在线观看h| 亚洲精品国产av成人精品| 在线播放无遮挡| 中国三级夫妇交换| 蜜桃亚洲精品一区二区三区| 在线天堂最新版资源| 国产高清国产精品国产三级 | 国产免费又黄又爽又色| av国产免费在线观看| 国产老妇伦熟女老妇高清| 一个人看视频在线观看www免费| 亚洲美女视频黄频| 麻豆乱淫一区二区| 波野结衣二区三区在线| 一边亲一边摸免费视频| 免费看日本二区| 久久久久久久久久人人人人人人| 亚洲天堂av无毛| 欧美成人一区二区免费高清观看| 国产又色又爽无遮挡免| 乱码一卡2卡4卡精品| 大话2 男鬼变身卡| 99久久精品热视频| 在线免费观看不下载黄p国产| 日韩成人伦理影院| 一区二区三区精品91| 在线观看美女被高潮喷水网站| 又爽又黄无遮挡网站| 在线看a的网站| 噜噜噜噜噜久久久久久91| 在线免费十八禁| 黄色日韩在线| av又黄又爽大尺度在线免费看| 国产69精品久久久久777片| 岛国毛片在线播放| 亚洲av.av天堂| 韩国av在线不卡| 不卡视频在线观看欧美| 久久99热这里只有精品18| 日韩一区二区三区影片| 99久久九九国产精品国产免费| 色哟哟·www| 国产乱来视频区| 欧美日本视频| 2022亚洲国产成人精品| 日本av手机在线免费观看| 国产在线一区二区三区精| 自拍偷自拍亚洲精品老妇| 最近中文字幕高清免费大全6| 国产精品一二三区在线看| 国产熟女欧美一区二区| 精品久久久久久久久av| 久久精品国产亚洲网站| 国产av码专区亚洲av| 一级毛片电影观看| 亚洲天堂国产精品一区在线| 男的添女的下面高潮视频| 黄色怎么调成土黄色| 国产欧美日韩精品一区二区| 午夜日本视频在线| 免费观看性生交大片5| 欧美潮喷喷水| 亚洲欧美日韩无卡精品| 国产成人免费无遮挡视频| 97超碰精品成人国产| 九九久久精品国产亚洲av麻豆| 韩国高清视频一区二区三区| .国产精品久久| 欧美国产精品一级二级三级 | 日本午夜av视频| 少妇人妻精品综合一区二区| 久久精品国产亚洲av涩爱| 欧美日韩视频精品一区| 99久国产av精品国产电影| 亚洲精品一二三| 国产av不卡久久| 免费在线观看成人毛片| 国产精品一区二区三区四区免费观看| 日韩av免费高清视频| 久热久热在线精品观看| 国产熟女欧美一区二区| 免费观看无遮挡的男女| 黄色欧美视频在线观看| www.色视频.com| 国产精品99久久99久久久不卡 | 搡老乐熟女国产| 欧美 日韩 精品 国产| 日日啪夜夜撸| 丰满少妇做爰视频| 国产成人精品福利久久| 一边亲一边摸免费视频| 91精品国产九色| 亚洲av国产av综合av卡| 女人十人毛片免费观看3o分钟| 赤兔流量卡办理| 少妇丰满av| 久久久色成人| 欧美区成人在线视频| 91久久精品国产一区二区三区| 丝瓜视频免费看黄片| 成人国产麻豆网| 美女视频免费永久观看网站| 亚洲色图av天堂| 一级片'在线观看视频| 久久久久久久国产电影| 色网站视频免费| 国产黄a三级三级三级人| videos熟女内射| 91aial.com中文字幕在线观看| 麻豆成人午夜福利视频| 久久精品国产亚洲av涩爱| 日韩大片免费观看网站| 直男gayav资源| 婷婷色麻豆天堂久久| 国产淫片久久久久久久久| 看免费成人av毛片| 成人国产av品久久久| 少妇猛男粗大的猛烈进出视频 | 国产精品一区二区性色av| 亚洲精品国产色婷婷电影| av专区在线播放| 国产精品久久久久久精品电影| 欧美成人精品欧美一级黄| 你懂的网址亚洲精品在线观看| 少妇裸体淫交视频免费看高清| 中国美白少妇内射xxxbb| 久久久久久久久大av| 成人亚洲精品一区在线观看 | 久久久精品免费免费高清| 3wmmmm亚洲av在线观看| 亚洲欧美日韩另类电影网站 | 久久久久久久久久久丰满| 亚洲激情五月婷婷啪啪| 黄色视频在线播放观看不卡| 国产探花极品一区二区| 国产一区亚洲一区在线观看| 老师上课跳d突然被开到最大视频| 少妇人妻一区二区三区视频| 秋霞在线观看毛片| 日本黄大片高清| 日本av手机在线免费观看| 伦精品一区二区三区| 有码 亚洲区| 联通29元200g的流量卡| 26uuu在线亚洲综合色| 成年免费大片在线观看| 精品熟女少妇av免费看| 91在线精品国自产拍蜜月| 亚洲在久久综合| 国产一区二区亚洲精品在线观看| 可以在线观看毛片的网站| 国产伦精品一区二区三区视频9| 春色校园在线视频观看| 女人久久www免费人成看片| 99九九线精品视频在线观看视频| 成人午夜精彩视频在线观看| 99久久中文字幕三级久久日本| 三级国产精品片| 亚洲av中文av极速乱| 精品久久久精品久久久| 99久久九九国产精品国产免费| 少妇的逼好多水| 极品少妇高潮喷水抽搐| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产亚洲网站| 黄色日韩在线| 成人无遮挡网站| 免费大片黄手机在线观看| 国产高清有码在线观看视频| 看黄色毛片网站| 亚洲最大成人av| 如何舔出高潮| 成人毛片a级毛片在线播放| 好男人在线观看高清免费视频| 国产欧美亚洲国产| 噜噜噜噜噜久久久久久91| 亚洲精品456在线播放app| 最近中文字幕2019免费版| 青青草视频在线视频观看| 国产伦精品一区二区三区四那| 精品久久久久久久久av| 乱码一卡2卡4卡精品| 久久99蜜桃精品久久| 日韩亚洲欧美综合| 一个人看的www免费观看视频| 欧美zozozo另类| 亚洲精华国产精华液的使用体验| 国产精品秋霞免费鲁丝片| 中文字幕制服av| 午夜福利在线在线| 国产片特级美女逼逼视频| 在线看a的网站| 性色avwww在线观看| 欧美日韩一区二区视频在线观看视频在线 | 少妇丰满av| 国产精品一区www在线观看| www.av在线官网国产| 少妇猛男粗大的猛烈进出视频 | 夫妻午夜视频| 丝瓜视频免费看黄片| 菩萨蛮人人尽说江南好唐韦庄| a级毛色黄片| 中文字幕av成人在线电影| 乱系列少妇在线播放| 在线天堂最新版资源| 毛片女人毛片| av福利片在线观看| 综合色av麻豆| 亚洲人成网站在线观看播放| 亚洲精品国产色婷婷电影| www.av在线官网国产| 嫩草影院新地址| 欧美区成人在线视频| 插阴视频在线观看视频| 1000部很黄的大片| 久久综合国产亚洲精品| 内射极品少妇av片p| videossex国产| 亚洲av中文字字幕乱码综合| 久久影院123| kizo精华| 亚洲精品久久午夜乱码| 小蜜桃在线观看免费完整版高清| 国产精品人妻久久久影院| 熟女人妻精品中文字幕| 久久久亚洲精品成人影院| 2021少妇久久久久久久久久久| 亚洲经典国产精华液单| 精品少妇久久久久久888优播| 看十八女毛片水多多多| 啦啦啦中文免费视频观看日本| 国产黄片美女视频| 69人妻影院| av在线亚洲专区| 在线观看免费高清a一片| 免费大片黄手机在线观看| 国产美女午夜福利| 日本午夜av视频| 波多野结衣巨乳人妻| 久久精品久久精品一区二区三区| 精品人妻偷拍中文字幕| 秋霞在线观看毛片| av又黄又爽大尺度在线免费看| 97超碰精品成人国产| 日本欧美国产在线视频| 亚洲精品久久久久久婷婷小说| 国产成人精品一,二区| av一本久久久久| 国产探花极品一区二区| 18禁裸乳无遮挡免费网站照片| 日本午夜av视频| 精品人妻一区二区三区麻豆| 听说在线观看完整版免费高清| 岛国毛片在线播放| 最后的刺客免费高清国语| 97人妻精品一区二区三区麻豆| 直男gayav资源| 色哟哟·www| 亚洲国产日韩一区二区| 男插女下体视频免费在线播放| 亚洲av中文av极速乱| 亚洲在线观看片| 嫩草影院精品99| 成人毛片60女人毛片免费| 久久99热6这里只有精品| 国产成人福利小说| 精品少妇黑人巨大在线播放|