中圖分類號(hào):TS104.2 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-265X(2025)07-0048-06
負(fù)泊松比材料是近些年來出現(xiàn)的新型材料,即該類材料在受到拉伸時(shí)橫向膨脹,受到壓縮時(shí)橫向收縮[1]。負(fù)泊松比材料不僅具有幾何形變特性,還具有優(yōu)良的物理機(jī)械性能,如抗剪切性、抗壓痕性、斷裂韌性、減震、能量吸收性、良好的透濕透氣性以及表面貼合性等[2],這種反常規(guī)的物理性質(zhì)使得負(fù)泊松比材料展現(xiàn)出獨(dú)特的優(yōu)勢,被廣泛應(yīng)用于各個(gè)領(lǐng)域包括復(fù)合材料[3]、傳感器[4]、智能可穿戴織物[5等方面。在負(fù)泊松比材料中,負(fù)泊松比紗線以及負(fù)泊松比織物是一類非常重要的材料。
首先是負(fù)泊松比紗線的可操作性比較強(qiáng),改變紗線的結(jié)構(gòu)即可賦予紗線較好的負(fù)泊松比特性,另外負(fù)泊松比紗線和織物適用范圍廣,因此負(fù)泊松比紗線及織物的研究也受到越來越多的關(guān)注。例如,李思明等講述了具有形狀記憶功能的負(fù)泊松比材料的制備方式及應(yīng)用,分別對(duì)二維和三維負(fù)泊松比結(jié)構(gòu)與記憶材料的結(jié)合進(jìn)行歸納,分析各種結(jié)構(gòu)的作用機(jī)理。此外,一些學(xué)者還提出通過以加捻[7]螺旋纏繞結(jié)構(gòu)[8-11]為基礎(chǔ)來制備負(fù)泊松比紗線,研究了紗線在不同的包裹角度、直徑比和模量比等參數(shù)[12]及循環(huán)拉伸下[13-14]的負(fù)泊松比效應(yīng),結(jié)果表明該紗線結(jié)構(gòu)穩(wěn)定、實(shí)用性強(qiáng)且負(fù)泊松比效果明顯。負(fù)泊松比效應(yīng)隨芯紗與包纏紗的直徑比的增大而增加,隨著包裹角度的增加而減少。上述報(bào)道均有效地設(shè)計(jì)了具有負(fù)泊松比效應(yīng)的紗線,然而由于該類設(shè)計(jì)均采用芯紗和包纏紗組合的方式,因此該類負(fù)泊松比紗線均存在芯紗與包纏紗滑移的問題。該問題使得紗線結(jié)構(gòu)不穩(wěn)定,紗線的負(fù)泊松比效應(yīng)退化或消失。
為了解決該問題,一些學(xué)者利用圓形編織技術(shù)[15]、管狀編織工藝[16]、編織工藝[17]等制備負(fù)泊松比紗。研究發(fā)現(xiàn),編織結(jié)構(gòu)為避免包纏紗的打滑問題作出了貢獻(xiàn),為獲得理想的負(fù)泊松比提供了更多的設(shè)計(jì)可能性。此類編織方式起到了相互約束的作用,降低了紗線滑移的風(fēng)險(xiǎn),但編織結(jié)構(gòu)會(huì)束縛芯紗的變形。
為提升負(fù)泊松比紗線穩(wěn)定性問題,本文以氨綸為芯紗,滌綸長絲為包纏紗,擬制備一種具有螺旋纏繞結(jié)構(gòu)的復(fù)合紗線,并將聚二甲基硅氧烷橡膠溶液(PDMS)均勻地涂覆到紗線上,最終制備得到PDMS涂層紗線。測試和分析不同包纏結(jié)構(gòu)以及涂層對(duì)紗線負(fù)泊松比效應(yīng)及持久穩(wěn)定性的影響,為制備出更穩(wěn)定的負(fù)泊松比紡織品提供參考。
1實(shí)驗(yàn)
1. 1 實(shí)驗(yàn)材料
芯紗為277.8Tex聚氨酯長絲(浙江省紹興市浩艇氨綸有限公司);包纏紗為14.76Tex滌綸長絲(浙江省金華市一線天線業(yè)青鳥企業(yè)店);PDMS溶液為美國道康寧DC184硅橡膠/SYLGARD184灌封膠/PDMS(A、B膠,天津松井商貿(mào)有限公司)。
1. 2 涂層負(fù)泊松比紗線的制備
采用277.8Tex的氨綸作為芯紗,14.76Tex滌綸長絲為包纏紗,利用十六錠編織機(jī)編織節(jié)距為 5mm 的復(fù)合紗線,其編織的喂人速度為 25r/min ,纏繞的速度為 24.85r/min 。首先將芯紗安置于編織機(jī)的中心孔中,包纏紗置于編織機(jī)上的空管位置,紗管轉(zhuǎn)動(dòng)的過程中帶動(dòng)包纏紗沿順時(shí)針方向或逆時(shí)針向退繞,最終包纏在芯紗表面形成螺旋纏繞復(fù)合紗。
根據(jù)上述步驟制備出由1根芯紗外包1根包纏紗的復(fù)合紗線,記為 Ycl/sl (Core1-Shell1),制備由1根芯紗外包2根包纏紗的復(fù)合紗線,記為 Υcl/s2 ,制備由4根芯紗外包1根包纏紗的復(fù)合紗線,記為Υc4/s1 ,制備由4根芯紗外包2根包纏紗的復(fù)合紗線,記為Yc4/s2。再將得到的復(fù)合紗線Yel/s1、Yel/s2、Yc4/sl,Yc4/s2 為基底,將PDMS硅橡膠中的 膠分按 10:1 的重量比均勻混合;將膠液滴加到復(fù)合紗線上,使其在重力作用下自然滑落,靜置 20min 消除氣泡;最后在 60°C 烘箱中干燥固化 30min ,得到涂層紗線,記為CYc1/s1 、CYc1/s2、CYc4/s1、CYc4/s2 0
1.3 掃描電鏡(SEM)測試
首先將制備好的紗線試樣用剪刀裁成 5mm ,再經(jīng)導(dǎo)電膠貼在電鏡臺(tái)上,將紗線貼附在導(dǎo)電膠上,對(duì)樣品噴金,再利用vltra55熱場發(fā)射掃描電鏡在 3kV 電壓條件下觀察樣品截面形貌。
1. 4 力學(xué)測試
使用YG026T-II電子織物強(qiáng)力機(jī)對(duì)所制備的各種紗線進(jìn)行測試。測試時(shí)紗線預(yù)加張力值為0,夾持距離為 50mm ,拉伸速度為 120mm/min 。每組樣品測試3次求平均值。
1.5 泊松比測試
利用步進(jìn)器對(duì)紗線拉伸,紗線夾持距離為 30mm ,拉伸速度為 0.3mm/s 。當(dāng)試樣被拉伸時(shí),通過USB顯微鏡實(shí)時(shí)記錄紗線結(jié)構(gòu)的變形行為。每個(gè)樣本重復(fù)3次,計(jì)算平均值并根據(jù)式(1)計(jì)算紗線的泊松比 u
u=-εx/εx
式中: εx 表示拉伸方向的應(yīng)變, εy 表示垂直于拉伸方向的應(yīng)變。
1.6 穩(wěn)定性能測試
將紗線伸長率設(shè)置為 10% ,然后利用步進(jìn)器對(duì)紗線循環(huán)拉伸100次,使用USB高清微焦電子顯微鏡記錄紗線形變,再根據(jù)上述計(jì)算方法計(jì)算紗線循環(huán)拉伸 1、20、50、80、100 次時(shí)的負(fù)泊松比值。
1. 7 親/疏水性能測試
將紗線固定在載玻片表面,使用微量注射器將水滴滴到紗線的表面,使用顯微鏡拍攝液滴與紗線表面接觸的狀態(tài),通過Photoshop處理圖片,測量照片中的接觸角角度。
2 結(jié)果與分析
2.1 掃描電鏡(SEM)分析
圖1是涂層紗線 CYc1/s2 的掃描電鏡圖。從圖1(a)中可以看出,純氨綸紗線是由多根單絲組成的,其中氨綸紗線內(nèi)部有中空孔隙。圖1(b)是經(jīng)過PDMS涂層后的紗線表面電鏡圖,從中可以看出涂層紗線表面光滑,有些微的雜質(zhì)顆粒。圖1(c)是經(jīng)過PDMS涂層后的紗線截面電鏡圖,可以看出中間具有中空孔隙的是氨綸芯紗,芯紗外圍包裹兩根導(dǎo)電包纏紗,芯紗與包纏紗中間部分由PDMS填充。以上可以得出,紗線經(jīng)過涂層處理后,芯紗與包纏紗更好地貼合在一起形成一個(gè)整體。
2.2 力學(xué)性能分析
制備的8種紗線的拉伸性能如圖2所示。由圖2可見, Υcl/s2 紗線的強(qiáng)力(19.99N)要優(yōu)于 Ycl/s1 紗線的強(qiáng)力(10.95N), Yc4/s2 紗線的強(qiáng)力(20.38 N)要優(yōu)于 ΔYc4/s1 紗線的強(qiáng)力(13.78N)。同時(shí)這4種紗線的伸長率也具有相同的規(guī)律,這主要在于當(dāng)芯紗根數(shù)固定時(shí),紗線的強(qiáng)力與包纏紗根數(shù)成正比,包纏紗根數(shù)越多,紗線中能承受拉伸的纖維越多,紗線的強(qiáng)力就越大,伸長率也越大。由圖2還可以看出,涂層系列紗線的強(qiáng)力和伸長率優(yōu)于未涂層系列紗線,主要是因?yàn)橥繉蛹喚€外包裹了一層均勻且具有彈性的膜,紗線受力拉伸時(shí)外圍包覆的膜可以起到一個(gè)保護(hù)作用,因此紗線在膜的包裹下強(qiáng)力和伸長率增加。
圖1紗線掃描電鏡圖Fig.1SEM images of yarns
圖2紗線的強(qiáng)力與應(yīng)變關(guān)系曲線
Fig.2Strength-strain relationship curves of yarns
2.3 泊松比性能分析
以 CYcl/s2 紗線為例,分析其在拉伸狀態(tài)下的形貌,結(jié)果如圖3所示。圖3中,在紗線未拉伸時(shí),包纏紗均勻地纏繞在芯紗外,紗線總體直徑較小。當(dāng)紗線受到拉伸時(shí),由于包纏紗的剛度較大、伸長小,而芯紗的彈性伸長大,因此包纏紗逐漸伸直,芯紗則呈彎曲狀態(tài)取代包纏紗的位置。在芯紗和包纏紗位置互換的過程中,紗線橫向膨脹形成負(fù)泊松比效應(yīng)。
圖3 CYcl/s2 紗線在拉伸狀態(tài)下的形貌 Fig.3Morphology of CYcl/s2 yarns under tensile state
8種紗線的泊松比值與紗線應(yīng)變的關(guān)系如圖4所示。圖4(a)和4(b)中的曲線整體呈先下降再上升趨勢,圖4(a)在應(yīng)變?yōu)?15% 時(shí)產(chǎn)生轉(zhuǎn)折,圖4(b)在應(yīng)變?yōu)?30% 時(shí)產(chǎn)生轉(zhuǎn)折,且兩者整體均為負(fù)值。曲線下降表明這8種紗線在受力拉伸時(shí)均能產(chǎn)生形變,輪廓直徑一直在增大,產(chǎn)生負(fù)泊松比效應(yīng),到轉(zhuǎn)折點(diǎn)時(shí)產(chǎn)生最優(yōu)負(fù)泊松比效應(yīng)。曲線上升則是紗線的直徑變化逐漸變小,但比值均為負(fù)值,表明紗線的輪廓直徑仍大于初始值,即表明紗線在拉伸應(yīng)變中持續(xù)保持負(fù)泊松比效應(yīng)。
紗線 Ycl/s1?Ycl/s2?CYcl/s1?CYcl/s2 的負(fù)泊松比值分別為 -2.190Ω-2.259,-2.207Ω-2.416 ,可以看出Ycl/sl、CYcl/sl 紗線的負(fù)泊松比效應(yīng)均小于 Ycl/s2 )CYc1/s2 ,且 CYc1/s2 的負(fù)泊松比效應(yīng)最大,這主要是因?yàn)?Υcl/s2 和 CYc1/s2 外部纏繞的包纏紗根數(shù)多,紗線受力拉伸時(shí),紗線更容易發(fā)生形變,進(jìn)而產(chǎn)生較大的負(fù)泊松比效應(yīng)。紗線 Ycl/sl 與 CYcl/sl 、 Υcl/s2 與CYcl/s2 兩紗線的負(fù)泊松比值接近,但始終是涂層紗線 CYc1/s1 ! CYc1/s2 的負(fù)泊松比效應(yīng)優(yōu)于未涂層紗線Ycl/sl,Ycl/s2 ,該結(jié)果表明涂層有利于負(fù)泊松比紗線的負(fù)泊松比性能提升。這可能在于涂層后紗線表面被包裹了一層膜,使得芯紗和包纏紗更好地貼合在一起,降低了包纏紗與芯紗的貼合不緊密而發(fā)生負(fù)泊松比效應(yīng)退化。
圖4紗線泊松比應(yīng)變曲線
紗線 Ye4/s1?Yc4/s2?CYc4/s1?CYc4/s2 的最大負(fù)泊松比值分別為 -0.34?-0.404?-0.182?-0.215 ,可以看出紗線 Yc4/sl,CYc4/sl 的負(fù)泊松比效應(yīng)均小于 Yc4/s2 、CYc4/s2 ,且 Yc4/s2 的負(fù)泊松比效應(yīng)最大。這也是因?yàn)棣?sub>c4/s2,CYc4/s2 的包纏紗根數(shù)多,紗線受力拉伸時(shí),紗線相對(duì)于 Ye4/s1,CYc4/s1 更容易發(fā)生形變。涂層紗線CYc4/s1、CYc4/s2 的負(fù)泊松比效應(yīng)低于 Yc4/s1,Yc4/s2 ,主要是因?yàn)楫?dāng)芯紗根數(shù)增多時(shí),紗線強(qiáng)力增加,紗線更不容易被拉伸變形,而且紗線 CYc4/s1、CYc4/s2 表面覆蓋一層膜,使得紗線在受到拉力時(shí)發(fā)生形變的難度更大。圖4(a)中紗線的負(fù)泊松比效應(yīng)比圖4(b)所示的紗線要優(yōu),這主要是因?yàn)楫?dāng)紗線的根數(shù)增加時(shí),芯紗的整體模量也隨之提高,從而增強(qiáng)了紗線的強(qiáng)力,導(dǎo)致紗線在形變時(shí)所需的力增加。另外當(dāng)芯紗與包纏紗直徑比過大,會(huì)導(dǎo)致包纏紗不易取代芯紗的位置,負(fù)泊松比效應(yīng)減小。
圖4結(jié)果顯示,當(dāng)芯紗根數(shù)一定時(shí),包纏紗的根數(shù)越多,紗線的強(qiáng)力與伸長率就越大,負(fù)泊松比效應(yīng)越明顯;當(dāng)包纏紗根數(shù)一定時(shí),芯紗根數(shù)越多,紗線的強(qiáng)力和伸長率就越大,負(fù)泊松比效應(yīng)越明顯;但當(dāng)芯紗與包纏紗的直徑比過大時(shí),涂層紗線的負(fù)泊松比效應(yīng)越小。
2.4穩(wěn)定性能分析
為探究涂層負(fù)泊松比紗結(jié)構(gòu)的穩(wěn)定性,本文測試了紗線 Ycl/s2,CYcl/s2 在固定伸長率為 15% 的循環(huán)拉伸下的負(fù)泊松比效應(yīng)。循環(huán)拉伸次數(shù)為100次,分別計(jì)算紗線在循環(huán)拉伸 1、20、50、80、100 次的泊松比值,實(shí)驗(yàn)結(jié)果如圖5所示。在伸長率為 15% 的循環(huán)拉伸載荷作用下,涂層紗線 CYc1/s2 的負(fù)泊松比效應(yīng)依然優(yōu)于未涂層紗線Yel/s2。本文制備的Yel/s2、 在第一次拉伸和第100 次循環(huán)拉伸的負(fù)泊松比值相近,紗線整體的負(fù)泊松比值波動(dòng)范圍小,并且Ycl/s2,CYcl/s2 紗線在循環(huán)拉伸100次后,其負(fù)泊松比效應(yīng)仍然優(yōu)于Liu等[18]設(shè)計(jì)的負(fù)泊松比紗線,這表明Ycl/s2,CYcl/s2 紗線具有良好的負(fù)泊松比效應(yīng)穩(wěn)定性,而且涂層對(duì)于紗線的負(fù)泊松比效應(yīng)提升明顯
Fig.4Poisson' s ratio-strain curves of yarns
圖5紗線 Υcl/s2 和 CYcl/s2 泊松比循環(huán)次數(shù)與泊松比值之間的關(guān)系曲線
Fig.5Relationship curves between Poisson's ratio value and cycle number for Ycl/s2 and CYcl/s2 yarns
2.5 親/疏水性能分析
經(jīng)過涂層處理后,CYc1/s1、CYe1/s2、CYc4/s1、CYc4/s2的接觸角如圖6所示。由圖6可見,當(dāng)水滴分別滴到4種紗線表面后,水滴均以 3/4 圓的形態(tài)停留在紗線表面。統(tǒng)計(jì)結(jié)果顯示CYcl/s1、CYcl/s2、CYc4/s1CYc4/s2 的接觸角分別為: 114.62°,118.96°,112.25°. 112.27° ,即4種紗線的接觸角均在 112°~119° 之間,這說明紗線具有良好的疏水性。在實(shí)驗(yàn)過程中還可以觀測到水滴會(huì)隨著紗線的傾斜而流動(dòng),這表明本文制備的涂層負(fù)泊松比紗線具有良好的疏水性能,具有抵抗汗?jié)n等其它外來污染源的潛力。
圖6涂層紗線的水接觸角
Fig. 6Water contact angles of coated yarns
3結(jié)論
本文利用16錠編織機(jī)編織得到了具有負(fù)泊松比效應(yīng)的復(fù)合紗線,又結(jié)合一步涂層工藝提高了負(fù)泊松比紗線的穩(wěn)定性。得到的主要結(jié)論如下:
a)在受力拉伸時(shí),復(fù)合紗線的芯紗和包纏紗能夠發(fā)生位置轉(zhuǎn)換,紗線的直徑變大,形成負(fù)泊松比效應(yīng)。
b)在設(shè)定的范圍內(nèi),當(dāng)芯紗根數(shù)一定時(shí),包纏紗的根數(shù)越多,紗線的強(qiáng)力與伸長率就越大,負(fù)泊松比效應(yīng)越明顯;當(dāng)包纏紗根數(shù)一定時(shí),芯紗根數(shù)越多,紗線的強(qiáng)力和伸長率就越大,負(fù)泊松比效應(yīng)越明顯;但當(dāng)芯紗與包纏紗的直徑比過大時(shí),紗線的負(fù)泊松比效應(yīng)越小。
c)在受力拉伸時(shí),紗線表面的涂層可以起到一定的保護(hù)作用,不僅可以增加紗線的強(qiáng)力,還可以增加紗線的伸長率及產(chǎn)生較大的負(fù)泊松比效應(yīng)
d)經(jīng)過涂層處理的紗線經(jīng)過100次循環(huán)拉伸測試后紗線負(fù)泊松比性能仍保持穩(wěn)定,
然而,本文采用的涂層工藝在均勻涂覆方面不夠成熟,仍有待提高,因此在未來的研究中仍需對(duì)紗線更均勻、有效的涂層工藝進(jìn)行優(yōu)化
參考文獻(xiàn):
Science,1987,235(4792):1038-1040.
[2]楊瑞華,華昱竹.負(fù)泊松比結(jié)構(gòu)紡織材料的研究進(jìn)展[J].現(xiàn)代 紡織技術(shù),2025,33(4):1-12. YANG R H,HUA Y Z. Research progress of negative Poisson's ratio structural textile materials[J].Advanced Textile Technology, 2025,33(4) :1-12.
[3]PAIS V,SILVA P,BESSA J,et al. Low-velocity impact response of auxetic seamless knits combined with non-newtonian fluids[J]. Polymers,2022,14(10):2065.
[4] TAHERKHANI B, KADKHODAPOUR J, ANARAKI A P. Highly sensitive,stretchable,piezoresistive auxetic sensor based on graphite powders sandwiched between silicon rubber layers[J].Polymer Bulletin,2023,80(4):3745-3760.
[5] NIU L, WANG J, WANG K,et al. High-speed sirospun conductive yarn forstretchable embeddedknitted circuit and self-powered wearable device[J]. Advanced Fiber Materials,2023,5(1): 154- 167.
[6]李思明,胡雨潔,方鎂淇,等.具有形狀記憶功能的負(fù)泊松比 結(jié)構(gòu)材料的研究進(jìn)展[J].服裝學(xué)報(bào),2020,5(4):290-299. LI S M,HU Y J,F(xiàn)ANG MQ,et al.Research progress of negative Poisson's ratio structures and materials with memory function[J]. Journal of Clothing Research,2020,5(4): 290-299.
[7]AKGUN M,EREN R, SUVARI F,et al. Effect of different yarn combinations on auxetic properties of plied yarns[J]. AUTEX Research Journal,2023,23(1) : 77-88.
[8] MILLER W,HOOK PB, SMITHC W, et al. The manufacture and characterisation of a novel,low modulus,negative Poisson'sratio composite[J]. Composites Science and Technology,,2009, 69(5): 651-655.
[9] SLOAN M R,WRIGHT JR,EVANS K E. The helical auxetic yarn-a novel structure for compositesand textiles; geometry, manufacture and mechanical properties[J]. Mechanics of Materials, 2011,43(9): 476-486.
[10]LOLAKI A, ZARREBINI M, MOSTOFINEJAD D,et al. Intensification of auxetic effect in high stiffness auxetic yarns with potential application as the reinforcing element of composite[J]. Journal of Industrial Textiles,2022,51(S3): 5169-5185.
[11] LIU S,DU Z, XIE K,etal.A novel interlaced-helical wrapping yarn with negative Poisson’s ratio[J]. Fibers and Polymers, 2018,19(11): 2411-2417.
[12]ULLAH T,AHMAD S,NAWAB Y. Development of helical auxetic yarn with negative Poisson‘sratio by combinations of different materials and wrapping angle[J]. Journal of Industrial Textiles,2022,51(S2):2181-2196.
[13]李軼助,李昕炫,劉賽,等.循環(huán)拉伸載荷對(duì)負(fù)泊松比紗力學(xué) 性能的影響[J].浙江理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,47 (3): 308-312. LI Y Z,LI X X,LIU S,et al. The influence of cyclic tensile load on mechanical properties of yarns with negative Poisson' s ratio[J]. Journal of Zhejiang Sci-Tech University,2022,47(3):308-312.
[14]劉賽,陳浩宇,田偉,等.導(dǎo)電負(fù)泊松比紗的制備和性能[J]. 浙江理工大學(xué)學(xué)報(bào)(自然科學(xué)),2023,49(4):415-419. LIU S,CHEN HY,TIAN W,et al.Preparation and property of conductive yarns with negative Poisson’s ratio[J].Journal of Zhejiang Sci-Tech University,2023,49(4):415-419.
[15] JIANG N,HU H. Auxetic yarn made with circular braiding technology[J].Physica StatusSolidi(b),2019,256(1):1800168.
[16]CHEN Y,JIANG N,HU H. Mechanical modeling of an auxetic tubular braided structure:Experimental and numerical analyses [J].International Journal of Mechanical Sciences,2O19,160: 182-191.
[17]劉倬然.編織拉脹紗線結(jié)構(gòu)成形與表征[D].上海:東華大 學(xué),2022. LIUZ R. Forming and characterization of woven stretched yarn structure[D]. Shanghai:Donghua University,2022.
[18]LIUS,CHEN H,LIY,et al.Design,manufacture,and characterization of auxetic yarns with multiple core/wrap structure bybraidingmethod[J].Materials,2022,15(18):6300.
Preparation and performance characterization of coated yarns with negative Poisson' s ratio
WU Mengmeng ,HE Guangyun°,YU Zhicai?,WU Meiqin°,LIU Sai ?u (204 (a.College of Textile Science and Engineering;b. School of Fashion Design amp; Engineering, Zhejiang Sci-Tech University,Hangzhou 31OO18,China)
Abstract: Negative Poissn's ratio materials,emerging as a novel class in recent years,exhibit a unique behavior where they expand laterally when stretched and contract laterally when compressed. These materials not only possess geometric deformation characteristics,but also demonstrate excellnt shearresistance, indentation resistance,fracture toughness,shock absorption, energy absorption,moisture and air permeability,as well as surface conformability. These unconventional physical properties endow negative Poisson' s ratio materials with distinct advantages,leading to their widespread application across various fields,including composites,sensors, and smart wearable devices.Among negative Poisson's ratio materials,negative Poisson's ratio yarns and fabrics constitute a significant category.First of all,negative Poisson'sratio yarns boast strong maneuverability,allowing the yarn to exhibit good negative Poison's ratio properties through structural modifications. Secondly,these yarns and fabrics have a broad range of applications.By introducing this characteristic into yarns and designing their structure, auxetic effects can be achieved in textile materials.
In order to produce negative Poisson’ s ratio yarns with excellent and stable negative Poisson's ratio characteristics,this studyused spandex as the core yarn and polyester filament as the wrapping yarn to prepare the composite yarn on a 16-spindle kniting machine. The wrapping yarn was spirally wrapped around the core yarn, imparting excellent negative Poisson's ratio characteristics to the composite yarn. The 10:1 ratio of polydimethylsiloxane (PDMS)rubber solution was used as the coating material. The PDMS solution was dripped onto the yarn and alowed to naturally flow down along the yarn under gravity,ensuring uniform coating.The yarn was then left to stand for 2O minutes to eliminate any bubbles. Finaly,the yarn was dried and cured in an oven at 60°C for 30 minutes,resulting in aPDMS-coated negative Poisson'sratio yarn with a significant negative Poisson'sratio effect and structural stability.
The article described the preparation of a durable and stable coated negative Poisson'sratio yarn through a one-step coating process,and further investigated the mechanical properties,negative Poisson'sratio performance, stability,and hydrophilic/hydrophobic properties of the yarn before and after coating using comparative analysis.It was found that the CYcl/s2 yarn had a strength of 14.45N and an elongation of 88.14% ,while the CYc4/s2 yarn had a strength of 24. 29 N and an elongation of 108.2% . The CYcl/s2 yarn exhibited a maximum negative Poisson' s ratio effct of -2.416,which remained stable after 10O cycles of tensile testing.Additionally,the water contact angle of the coated yarn was greater than 100° . Therefore,when the coated yarn is stretched under force,the external wrapped film provides a certain degree of protection,not only increasing the yarn's strength butalso its elongation. This results in yarns with excellnt and stable negative Poisson's ratio characteristics,providing reference for the preparation of more stable negative Poisson' s ratio textiles.
Keywords: negative Poisson' s ratio yarns; coating; auxetic effect; hydrophobicity; braiding