[摘要] 目的 采用兩樣本孟德爾隨機(jī)化方法探究乳腺癌與游離脂肪酸受體4(free fatty acid receptor 4,F(xiàn)FAR4)的因果關(guān)系。方法 采用全基因組關(guān)聯(lián)分析和表達(dá)數(shù)量性狀基因座(expression quantitative trait loci,eQTL)數(shù)據(jù),分別提取與乳腺癌和FFAR4密切相關(guān)的單核苷酸多態(tài)性位點(diǎn)。采用逆方差加權(quán)(inverse-variance weighted,IVW)、MR-Egger、加權(quán)中位數(shù)、簡(jiǎn)單模式和加權(quán)模式5種方法計(jì)算因果效應(yīng)值。采用Cochran Q檢驗(yàn)檢測(cè)異質(zhì)性,MR-Egger截距檢驗(yàn)和MR-PRESSO檢測(cè)水平多效性,留一法進(jìn)行敏感性分析以保證結(jié)果的穩(wěn)健性。此外采用貝葉斯共定位分析評(píng)估FFAR4表達(dá)是否與乳腺癌在給定基因組區(qū)域共享同一個(gè)因果遺傳變異。結(jié)果 本研究共納入12個(gè)與FFAR4表達(dá)水平密切相關(guān)的eQTL。IVW分析結(jié)果表明,F(xiàn)FAR4表達(dá)水平升高可增加總?cè)橄侔uminal A、Luminal B/HER2-陰性、HER2-增強(qiáng)亞型乳腺癌的發(fā)生風(fēng)險(xiǎn)。共定位分析結(jié)果顯示,F(xiàn)FAR4表達(dá)水平和總?cè)橄侔┕蚕硪蚬儺惖暮篁?yàn)概率為0.889。結(jié)論 FFAR4表達(dá)與乳腺癌間可能存在因果關(guān)系。
[關(guān)鍵詞] 游離脂肪酸受體4;乳腺癌;孟德爾隨機(jī)化;共定位分析
[中圖分類號(hào)] R181.2;R737.9" """"[文獻(xiàn)標(biāo)識(shí)碼] A """""[DOI] 10.3969/j.issn.1673–9701.2025.17.008
Mendelian randomization study on free fatty acid receptor 4 and breast cancer
CHEN Siyi, LI Hui, XU Qunying, XIA Jia, YE Yunli, LIU Ya
School of Public Health, Southwest Medical University, Luzhou 646000, Sichuan, China
[Abstract] Objective To explore the causal relationship between breast cancer and free fatty acid receptor 4 (FFAR4) by using two-sample Mendelian randomization. Methods By using Genome-wide Association Studies and expression quantitative trait locus (eQTL) data, single nucleotide polymorphism sites closely related to breast cancer and FFAR4 were extracted. Causal effect values were calculated by using five methods: inverse variance weighting (IVW), MR-Egger, weighted median, simple mode and weighted mode. Cochran Q tests were used to detect heterogeneity, MR-Egger intercept tests and MR-PRESSO tests were used to assess level multiplicity, and the hold-out method was employed for sensitivity analysis to ensure robustness of the results. Additionally, Bayesian co-location analysis was used to evaluate whether FFAR4 expression shares the same causal genetic variant with breast cancer in given genomic region. Results A total of 12 eQTLs closely related to FFAR4 expression levels were included in this study. The results of IVW analysis showed that increased FFAR4 expression levels increased the risk of overall breast cancer, Luminal A, Luminal B/HER2-negative, and HER2-enhanced subtypes of breast cancer. The co-location analysis showed that the posterior probability of FFAR4 expression level and total breast cancer shared causal variation was 0.889. Conclusion There may be a causal relationship between FFAR4 expression and breast cancer.
[Key words] Free fatty acid receptor 4; Breast cancer; Mendelian randomization; Co-location analysis
游離脂肪酸受體4(free fatty acid receptor 4,F(xiàn)FAR4),又稱G蛋白偶聯(lián)受體120,分布于脂肪、肝臟、胃腸道、肺、心臟等多種組織中[1]。FFAR4是游離脂肪酸受體家族的一員,在體內(nèi)作為受體與中長鏈脂肪酸結(jié)合,如長鏈多不飽和脂肪酸omega-3 (ω-3)[2]。研究發(fā)現(xiàn)ω-3脂肪酸刺激FFAR4后,使其與β-arrestin2結(jié)合,發(fā)揮較強(qiáng)的抗炎作用[3]。此外,研究表明FFAR4是ω-3脂肪酸提高機(jī)體胰島素敏感性的關(guān)鍵分子[4–6]。因此,F(xiàn)FAR4被認(rèn)為是糖尿病治療或預(yù)防的一個(gè)有力靶點(diǎn)。迄今為止,研究人員已經(jīng)開發(fā)多種有效的FFAR4小分子激動(dòng)劑[7]。FFAR4可能在乳腺癌的發(fā)生發(fā)展中發(fā)揮作用,但研究結(jié)論尚不一致。有研究發(fā)現(xiàn)FFAR4[8–10]激活可促進(jìn)乳腺腫瘤細(xì)胞增殖、遷移和侵襲;也有研究觀察到FFAR4激活可發(fā)揮抑癌作用[11–12]。目前關(guān)于FFAR4表達(dá)水平與乳腺癌關(guān)系的人群研究相對(duì)較少。有研究發(fā)現(xiàn)FFAR4在人乳腺癌組織中的蛋白表達(dá)水平明顯高于鄰近正常組織[13]。由于FFAR4激動(dòng)劑具有較廣闊的應(yīng)用前景,評(píng)估FFAR4表達(dá)水平與乳腺癌發(fā)生風(fēng)險(xiǎn)的因果關(guān)系十分重要。
孟德爾隨機(jī)化(Mendelian"randomization,MR)利用與暴露相關(guān)的遺傳變異作為工具變量,評(píng)估暴露與疾病間的因果關(guān)系[14],有助于避免傳統(tǒng)流行病學(xué)研究方法中存在的混雜偏倚和反向因果關(guān)系問題[15]。全基因組關(guān)聯(lián)分析(Genome-wide Association Studies,GWAS)發(fā)現(xiàn)表達(dá)數(shù)量性狀基因座(expression quantitative trait loci,eQTL)有助于在非編碼區(qū)中尋找影響復(fù)雜性狀的候選基因[16]。eQTL中的順式eQTL(cis-eQTL)定位在調(diào)控基因所在的區(qū)域與目的基因表達(dá)間的關(guān)系較反式eQTL(trans-eQTL)更為密切[17-18]。因此,本研究使用cis-eQTL作為工具變量開展兩樣本MR分析,從遺傳水平估計(jì)FFAR4表達(dá)水平與乳腺癌發(fā)生間的因果關(guān)系。
1 "資料與方法
1.1 "數(shù)據(jù)來源
本研究使用的乳腺癌協(xié)會(huì)聯(lián)盟GWAS匯總數(shù)據(jù)庫,該數(shù)據(jù)庫包括總?cè)橄侔┖?種分子亞型(Luminal A、Luminal B/HER2-陽性、Luminal B/HER2-陰性、HER2-陽性、Triple-陰性)數(shù)據(jù)。FFAR4基因的cis-eQTL匯總數(shù)據(jù)來自于eQTLGen聯(lián)盟數(shù)據(jù)庫[19]。文中所用匯總數(shù)據(jù)均來源于公開的已獲得倫理批準(zhǔn)的公共數(shù)據(jù),本研究不需要單獨(dú)的倫理批準(zhǔn)。
1.2" 研究方法
本研究選擇的工具變量遵循以下假設(shè):①與FFAR4表達(dá)水平密切相關(guān);②獨(dú)立于混雜因素;③僅通過FFAR4表達(dá)而非其他變量對(duì)結(jié)局產(chǎn)生影響。因此,本研究篩選與暴露強(qiáng)相關(guān)的單核苷酸多態(tài)性位點(diǎn)(single nucleotide polymorphisms,SNP),篩選標(biāo)準(zhǔn)為P lt; 5× 10?8。為避免由SNP間連鎖不平衡產(chǎn)生的偏倚,選擇相互獨(dú)立的 SNP 作為工具變量。工具變量會(huì)降低統(tǒng)計(jì)檢驗(yàn)的有效性因此本研究通過計(jì)算F統(tǒng)計(jì)量來評(píng)估SNP是否存在弱工具變量偏倚,并排除F值lt;10的SNP[20]使用逆方差加權(quán)(inverse- variance weighted,IVW)、MR-Egger、加權(quán)中位數(shù)(weighted median,WME)、簡(jiǎn)單模式(simple mode,SM)和加權(quán)模式(weighted mode,WM)5種方法計(jì)算因果效應(yīng)值,即每增加1個(gè)標(biāo)準(zhǔn)差(standard deviation,SD)暴露的比值比(odds ratio,OR)和95%置信區(qū)間(confidence interval,CI)。為評(píng)估FFAR4是否與乳腺癌在基因中心上下游1Mb區(qū)域以內(nèi)共享因果遺傳變異,本研究采用近似貝葉斯因子法,H4假設(shè)的后驗(yàn)概率gt;0.8表示FFAR4表達(dá)與乳腺癌存在共同遺傳變異驅(qū)動(dòng)位點(diǎn)[21]。
1.3 "統(tǒng)計(jì)學(xué)方法
本研究使用 R 4.3.1統(tǒng)計(jì)學(xué)軟件對(duì)數(shù)據(jù)進(jìn)行處理分析,進(jìn)行兩樣本MR分析,采用Cochran’s Q 檢驗(yàn)確定工具變量是否存在異質(zhì)性,若Plt;0.05,提示存在異質(zhì)性,此時(shí)應(yīng)選擇隨機(jī)效應(yīng)IVW模型計(jì)算因果效應(yīng)值,否則使用固定效應(yīng)IVW模型[22]。對(duì)MR-Egger回歸截距項(xiàng)進(jìn)行統(tǒng)計(jì)學(xué)檢驗(yàn),若Plt;0.05,提示工具變量存在水平多效性。此外,進(jìn)一步采用MR-PRESSO法檢驗(yàn)工具變量是否存在水平多效性,并識(shí)別工具變量中的離群值。若存在水平多效性(Plt;0.05),則去除離群值后重新計(jì)算暴露與結(jié)局的因果效應(yīng)[23]。采用留一法逐一排除各SNP,計(jì)算基于剩余 SNP 的效應(yīng)值,評(píng)估結(jié)果的穩(wěn)健性。Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。
2" 結(jié)果
2.1 "SNP篩選
經(jīng)篩選,本研究共納入12個(gè)與FFAR4表達(dá)強(qiáng)相關(guān)且不存在連鎖不平衡的SNP評(píng)估它們與乳腺癌間的關(guān)聯(lián),包括rs10882270、rs11187462、rs11187538、rs12413627、rs12778515、rs12782443、rs148513375、rs1609574、rs34535475、rs4919250、rs7917033、rs9419746。F統(tǒng)計(jì)量最小32.24,最大403.85。
2.2" MR分析
IVW分析結(jié)果表明,F(xiàn)FAR4表達(dá)水平升高可增加總?cè)橄侔?em>OR=1.140,95%CI:1.095~1.188)、Luminal A(OR=1.088,95%CI:1.032~1.148)、 Luminal B/HER2-陰性(OR=1.151,95%CI:1.040~ 1.273)、HER2-陽性(OR=1.346,95%CI:1.134~1.596)增強(qiáng)亞型乳腺癌發(fā)生風(fēng)險(xiǎn),5種方法得出的因果關(guān)系方向一致,見圖1。
2.3" 敏感性分析
對(duì)所有檢驗(yàn)組,Cochran Q異質(zhì)性檢驗(yàn)Pgt;0.05,表明SNP間不存在異質(zhì)性,因此,在MR分析中采用固定效應(yīng)IVW模型進(jìn)行計(jì)算。MR-Egger截距檢驗(yàn)Pgt;0.05,提示工具變量不存在水平多效性。MR-PRESSO檢驗(yàn)顯示僅Luminal B/HER2-陽性的工具變量存在rs148513375和rs7917033兩個(gè)離群值(Plt;0.001),剔除離群值后水平多效性得到改善(P=0.076)。漏斗圖顯示SNP分布基本對(duì)稱,見圖2。留一法分析表明,F(xiàn)FAR4基因表達(dá)與總?cè)橄侔┘?種亞型間的因果關(guān)系并不歸因于某單一SNP,結(jié)果具有較好的穩(wěn)健性。
2.4" 共定位分析
FFAR4表達(dá)水平和總?cè)橄侔┰诮o定基因區(qū)域的共享因果變異后驗(yàn)概率為0.889,提示兩者很可能存在共同遺傳變異驅(qū)動(dòng)位點(diǎn)。本研究未發(fā)現(xiàn)FFAR4表達(dá)水平與各亞型乳腺癌間存在共同遺傳變異。
3 "討論
研究表明對(duì)不同的癌癥類型,F(xiàn)FAR發(fā)揮的作用可能不同。在前列腺癌、肺癌和卵巢癌中,F(xiàn)FAR4表達(dá)對(duì)腫瘤進(jìn)展的抑制作用[24–26]。然而,在胰腺癌中,研究發(fā)現(xiàn)FFAR4表達(dá)可提高癌細(xì)胞的運(yùn)動(dòng)活性[27]。另有研究在食管癌組織中觀察到FFAR4表達(dá)水平升高,且與腫瘤進(jìn)展呈正相關(guān)[28]。
本研究利用兩樣本MR探討遺傳預(yù)測(cè)的FFAR4水平與乳腺癌風(fēng)險(xiǎn)間關(guān)系。本研究結(jié)果顯示FFAR4基因預(yù)測(cè)表達(dá)水平與總?cè)橄侔uminal A、Luminal B/HER2-陰性、HER2-增強(qiáng)亞型發(fā)病風(fēng)險(xiǎn)間具有顯著的正向關(guān)聯(lián)。敏感性分析也提示因果效應(yīng)估計(jì)結(jié)果具有較高的穩(wěn)健性。共定位結(jié)果提示FFAR4與總?cè)橄侔╅g可能存在共同因果變異位點(diǎn)。因此,本研究證據(jù)提示FFAR4表達(dá)水平與乳腺癌間可能存在因果關(guān)聯(lián)。
作為ω-3脂肪酸的受體,F(xiàn)FAR4和ω-3脂肪酸的捆綁關(guān)系一直被關(guān)注。目前ω-3脂肪酸和乳腺癌發(fā)生風(fēng)險(xiǎn)的關(guān)系還存在爭(zhēng)議,多數(shù)研究更傾向于ω-3脂肪酸有抑制乳腺癌發(fā)生和進(jìn)展的作用[29–31]。研究表明FFAR4基因敲除的小鼠,ω-3脂肪酸仍可減少乳腺腫瘤的生長,提示ω-3脂肪酸獨(dú)立于FFAR4對(duì)乳腺癌發(fā)揮抑制作用[29-30]。有研究發(fā)現(xiàn)FFAR4蛋白水平在Luminal A、Luminal B/HER2-陽性、HER2–陽性和Triple陰性4種亞型的人乳腺癌組織中高度翻譯,并促進(jìn)乳腺癌細(xì)胞的生長,且這一過程并不由ω-3脂肪酸所介導(dǎo)[10]。另有研究顯示油酸可通過激活FFAR4促進(jìn)MCF-7(Luminal A)乳腺癌細(xì)胞的增殖[7]。有研究發(fā)現(xiàn)使用FFAR4選擇性抑制劑作用于MDA-MB-231(Triple 陰性)和MCF-7乳腺癌細(xì)胞,可部分抑制由油酸誘導(dǎo)的MDA-MB-231乳腺癌細(xì)胞的遷移作用,對(duì)MCF-7則是完全抑制[8]。研究表明FFAR4在乳腺癌組織和細(xì)胞系中的表達(dá)明顯高于正常乳腺組織和乳腺細(xì)胞,并可通過PI3K/Akt/NF-κB通路促進(jìn)乳腺癌的血管生成和轉(zhuǎn)移[9];這一機(jī)制與結(jié)腸癌中的發(fā)現(xiàn)類似[32]。以上基礎(chǔ)研究證據(jù)提示FFAR4可獨(dú)立于ω-3脂肪酸對(duì)乳腺癌發(fā)揮促進(jìn)作用,具體機(jī)制還有待進(jìn)一步研究。
本研究采用的工具變量cis-eQTL定位在FFAR4基因內(nèi)部區(qū)域或其鄰近區(qū)域?qū)虮磉_(dá)可能具有更直接的調(diào)控作用,因此研究結(jié)果較其他遺傳變異位點(diǎn)更具有生物學(xué)合理性[18]。在評(píng)估暴露與結(jié)局的因果效應(yīng)時(shí),IVW法是主要評(píng)估方法,其余4種作為敏感性分析。其中,WME法被認(rèn)為在50%以下的遺傳變異違背MR核心假設(shè)時(shí)仍能較準(zhǔn)確地估計(jì)因果關(guān)聯(lián)效應(yīng)[33]。MR-Egger法也可進(jìn)行因果關(guān)聯(lián)效應(yīng)估算,但統(tǒng)計(jì)效能有所降低[34]。WM法和SM法對(duì)因果效應(yīng)的檢測(cè)能力較其他方法更低[35]。本研究在總?cè)橄侔┖蛠喰偷姆治鲋?,各方法發(fā)現(xiàn)的因果效應(yīng)強(qiáng)度和方向基本一致,尤其在總?cè)橄侔┖蚅umina A型乳腺癌中更明顯,這提示研究結(jié)果具有較好的穩(wěn)定性。留一法進(jìn)一步說明研究結(jié)果受單個(gè)SNP影響較小,結(jié)果穩(wěn)健性較好。
本研究納入的暴露和結(jié)局樣本互不重疊,減小研究結(jié)果的Ⅰ型錯(cuò)誤概率[36]。暴露與結(jié)局?jǐn)?shù)據(jù)庫均為大規(guī)模GWAS數(shù)據(jù)庫,且cis-eQTL位點(diǎn)F值均較高,這減小研究結(jié)果的弱工具變量偏倚[37]。漏斗圖基本對(duì)稱,也提示本研究結(jié)果受偏倚干擾較小[38]。此外,貝葉斯共定位分析可控制因連鎖不平衡造成的遺傳混雜[23]。本研究采用共定位分析,發(fā)現(xiàn)FFAR4表達(dá)和總?cè)橄侔┰诮o定的基因組區(qū)域中很可能共享因果變異,提示FFAR4表達(dá)和乳腺癌的發(fā)生可能由同一遺傳變異驅(qū)動(dòng);這進(jìn)一步驗(yàn)證MR分析的結(jié)果,增強(qiáng)結(jié)果的可靠性。
本研究存在一定的局限性:①使用的數(shù)據(jù)絕大多數(shù)為歐洲樣本,結(jié)論是否適用于其他人群還有待驗(yàn)證。②由于目前缺乏FFAR4蛋白數(shù)量性狀基因座(protein quantitative trait loci,pQTL)報(bào)道,本研究采用的SNP為eQTL,其對(duì)FFAR4基因表達(dá)變異的解釋度可能較pQTL更低。綜上,本研究結(jié)果初步證明FFAR4表達(dá)與乳腺癌間可能存在因果關(guān)系。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1]"" KIMURA I, ICHIMURA A, OHUE-KITANO R, et al. Free fatty acid receptors in health and disease[J]. Physiol Rev, 2020, 100(1): 171–210.
[2]"" TEYANI R L, MONIRI N H. Biased agonism at free-fatty acid receptor-4 (FFA4/GPR120)[J]. Pharmacol Ther, 2025, 266: 108784.
[3]"" OH D Y, TALUKDAR S, BAE E J, et al. GPR120 is "an omega-3 fatty acid receptor mediating potent anti- inflammatory and insulin-sensitizing effects[J]. Cell, 2010, 142(5): 687–698.
[4]"" ICHIMURA A, HIRASAWA A, POULAIN-GODEFROY O, et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human[J]. Nature, 2012, 483(7389): 350–354.
[5]"" OH D Y, WALENTA E, AKIYAMA T E, et al. A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice[J]. Nat Med, 2014, 20(8): 942–947.
[6]"" HIRASAWA A, TSUMAYA K, AWAJI T, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120[J]. Nat Med, 2005, 11(1): 90–94.
[7]"" SOTO-GUZMAN A, ROBLEDO T, LOPEZ-PEREZ M, et al. Oleic acid induces ERK1/2 activation and AP-1 DNA binding activity through a mechanism involving Src kinase and EGFR transactivation in breast cancer cells[J]. Mol Cell Endocrinol, 2008, 294(1-2): 81–91.
[8]"" MARCIAL-MEDINA C, ORDO?EZ-MORENO A, GONZALEZ-REYES C, et al. Oleic acid induces migration through a FFAR1/4, EGFR and AKT-dependent pathway in breast cancer cells[J]. Endocr Connect, 2019, 8(3): 252–265.
[9]" ZHANG M, QIU S. Activation of GPR120 promotes the metastasis of breast cancer through the PI3K/Akt/NF-κB signaling pathway[J]. Anticancer Drugs, 2019, 30(3): 260–270.
[10] ZHU S, JIANG X, JIANG S, et al. GPR120 is not required for ω-3 PUFAs-induced cell growth inhibition and apoptosis in breast cancer cells[J]. Cell Biol Int, 2018, 42(2): 180–186.
[11] CHUNG H, LEE Y S, MAYORAL R, et al. Omega-3 fatty acids reduce obesity-induced tumor progression independent of GPR120 in a mouse model of postmenopausal breast cancer[J]. Oncogene, 2015, 34(27): 3504–3513.
[12] HOPKINS M M, ZHANG Z, LIU Z, et al. Eicosopentaneoic acid and other free fatty acid receptor agonists inhibit lysophosphatidic acid- and epidermal growth factor- induced proliferation of human breast cancer cells[J]. J Clin Med, 2016, 5(2): 73.
[13] 郭文靜, 伍春梅, 居琦, 等. 游離脂肪酸受體FFAR4/ GPR120在乳腺癌組織中的表達(dá)及其臨床意義[J]. 疑難病雜志, 2019, 18(9): 919–922.
[14] BIRNEY E. Mendelian randomization[J]. Cold Spring Harb Perspect Med, 2022, 12(4): 99.
[15] FERENCE B A, HOLMES M V, SMITH G D. Using Mendelian randomization to improve the design of randomized trials[J]. Cold Spring Harb Perspect Med, 2021, 11(7): 88.
[16] ZHANG Y, WANG M, LI Z, et al. An overview of detecting gene-trait associations by integrating GWAS summary statistics and eQTLs[J]. Sci China Life Sci, 2024, 67(6): 1133–1154.
[17] ZHENG J, HABERLAND V, BAIRD D, et al. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases[J]. Nat Genet, 2020, 52(10): 1122–1131.
[18] SWERDLOW D I, KUCHENBAECKER K B, SHAH S, et al. Selecting instruments for Mendelian randomization in the wake of genome-wide association studies[J]. Int J Epidemiol, 2016, 45(5): 1600–1616.
[19] V?SA U, CLARINGBOULD A, WESTRA H J, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression[J]. Nat Genet, 2021, 53(9): 1300–1310.
[20] PAPADIMITRIOU N, DIMOU N, TSILIDIS K K, et al. Physical activity and risks of breast and colorectal cancer: A Mendelian randomisation analysis[J]. Nat Commun, 2020, 11(1): 597.
[21] GIAMBARTOLOMEI C, VUKCEVIC D, SCHADT E E, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics[J]. PLoS Genet, 2014, 10(5): e1004383.
[22] ZUBER V, GRINBERG N F, GILL D, et al. Combining evidence from Mendelian randomization and colocalization: Review and comparison of approaches[J]. Am J Hum Genet, 2022, 109(5): 767–782.
[23] VERBANCK M, CHEN C Y, NEALE B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(5): 693–698.
[24] LIU Z, HOPKINS M M, ZHANG Z, et al. Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells[J]. J Pharmacol Exp Ther, 2015, 352(2): 380–394.
[25] KITA T, KADOCHI Y, TAKAHASHI K, et al. Diverse effects of G-protein-coupled free fatty acid receptors on the regulation of cellular functions in lung cancer cells[J]. Exp Cell Res, 2016, 342(2): 193–199.
[26] HOPKINS M M, MEIER K E. Free fatty acid receptor (FFAR) agonists inhibit proliferation of human ovarian cancer cells[J]. Prostaglandins Leukot Essent Fatty Acids, 2017, 122: 24–29.
[27] FUKUSHIMA K, YAMASAKI E, ISHII S, et al. Different roles of GPR120 and GPR40 in the acquisition of malignant properties in pancreatic cancer cells[J]. Biochem Biophys Res Commun, 2015, 465(3): 512–515.
[28] CUI Z, LI D, LIU J, et al. G?protein?coupled receptor 120 regulates the development and progression of human esophageal cancer[J]. Oncol Rep, 2018, 40(2): 1147–1155.
[29] FABIAN C J, KIMLER B F, HURSTING S D. Omega-3 fatty acids for breast cancer prevention and survivorship[J]. Breast Cancer Res, 2015, 17(1): 62.
[30] HANSON S, THORPE G, WINSTANLEY L, et al. Omega-3, omega-6 and total dietary polyunsaturated fat on cancer incidence: Systematic review and Meta-analysis of randomised trials[J]. Br J Cancer, 2020, 122(8): 1260–1270.
[31] LEE K H, SEONG H J, KIM G, et al. Consumption of fish and ω-3 fatty acids and cancer risk: An umbrella review of Meta-analyses of observational studies[J]. Adv Nutr, 2020, 11(5): 1134–1149.
[32] WU Q, WANG H, ZHAO X, et al. Identification of G-protein-coupled receptor 120 as a tumor-promoting receptor that induces angiogenesis and migration in human colorectal carcinoma[J]. Oncogene, 2013, 32(49): 5541–5550.
[33] BOWDEN J, DAVEY SMITH G, HAYCOCK P C, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator[J]. Genet Epidemiol, 2016, 40(4): 304–314.
[34] BOWDEN J, DEL GRECO M F, MINELLI C, et al. Assessing the suitability of summary data for two- sample Mendelian randomization analyses using MR- Egger regression: The role of the I2 statistic[J]. Int J Epidemiol, 2016, 45(6): 1961–1974.
[35] HARTWIG F P, DAVEY SMITH G, BOWDEN J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption[J]. Int J Epidemiol, 2017, 46(6): 1985–1998.
[36] BURGESS S, DAVIES N M, THOMPSON S G. Bias due to participant overlap in two-sample Mendelian randomization[J]. Genet Epidemiol, 2016, 40(7): 597–608.
[37] 王玉琢, 沈洪兵. 孟德爾隨機(jī)化研究應(yīng)用于因果推斷的影響因素及其結(jié)果解讀面臨的挑戰(zhàn)[J]. 中華流行病學(xué)雜志, 2020, 41(8): 1231–1236.
[38] BOWDEN J, DAVEY SMITH G, BURGESS S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression[J]. Int J Epidemiol, 2015, 44(2): 512–525.
(收稿日期:2025–02–11)
(修回日期:2025–05–09)
基金項(xiàng)目:西南醫(yī)科大學(xué)校級(jí)基金項(xiàng)目(2017-ZRQN-059);四川省瀘州市科技計(jì)劃項(xiàng)目(2022-SYF-64)
通信作者:劉婭,電子信箱:liuya_12@163.com