摘""要:天然橡膠是重要的工業(yè)原料,廣泛應(yīng)用于生產(chǎn)生活中。在橡膠樹(shù)(Hevea"brasiliensis)的產(chǎn)膠細(xì)胞乳管中,順式異戊烯基轉(zhuǎn)移酶(cis-prenyltransferase,CPT)是催化天然橡膠合成的關(guān)鍵組分。已報(bào)道的HbCPT7和HbCPT8在膠乳中特異表達(dá),并且在酵母和煙草中的HblMYB19和HblMYB44能夠顯著促進(jìn)HbCPT8的表達(dá)。然而,調(diào)控HbCPT7膠乳特異表達(dá)的轉(zhuǎn)錄因子尚不清楚。本研究發(fā)現(xiàn)HbCPT7的啟動(dòng)子區(qū)具有多個(gè)MYB和MYC轉(zhuǎn)錄因子結(jié)合的順式作用元件,通過(guò)生物信息學(xué)分析,在橡膠樹(shù)全基因組水平上鑒定到226個(gè)HbMYBs和19個(gè)HbMYCs轉(zhuǎn)錄因子,其中HbMYB1、HbMYB2、HbMYC1、HbMYC2、HbMYC3、HbMYC4和HbMYC5在膠乳中高表達(dá)。本研究成功克隆了HbMYB1、HbMYB2、HbMYC1、HbMYC4和HbMYC5,并通過(guò)酵母單雜交實(shí)驗(yàn)證實(shí)HbMYC5能夠結(jié)合HbCPT7起始密碼子上游1~1000"bp和1501~1971"bp的啟動(dòng)子區(qū)域。本研究為解析HbCPT7調(diào)控天然橡膠合成的分子機(jī)制提供新的線索。
關(guān)鍵詞:橡膠樹(shù);HbCPT7;HbMYC;HbMYB中圖分類號(hào):S794.1""""""文獻(xiàn)標(biāo)志碼:A
Identification"of"MYB"and"MYC"Transcription"Factors"Regulating"the"Latex-specific"Expression"of"HbCPT7"in"Hevea"brasiliensis
ZHOU"Miaomiao1,2,"LUO"Xiaomei1,"YANG"Yiqing1,"LIU"Kaiye1,2,"ZHANG"Shengmin1,2,"QI"Jiyan1,2,"TANG"Chaorong1,2,"CAO"Jie1,2*
1."School"of"Tropical"Agriculture"and"Forestry"(Agriculture"and"Rural"College,"Rural"Revitalization"College),"Hainan"University"/"Natural"Rubber"Provincial"and"Ministerial"Collaborative"Innovation"Center,"Haikou,"Hainan"570028,"China;"2."School"of"Breeding"and"Multiplication"(Sanya"Institute"of"Breeding"and"Multiplication),"Hainan"University,"Sanya,"Hainan"572025,"China
Abstract:"Natural"rubber"is"a"key"and"widely"used"industrial"raw"material,"which"is"mainly"produced"from"Hevea"brasiliensis."Cis-prenyltransferase"(CPT)"is"an"important"component"of"natural"rubber"biosynthesis"in"laticiferous"cells."It"has"been"reported"that"HbCPT7"and"HbCPT8"are"specifically"and"highly"expressed"in"latex,"which"is"the"cytoplasm"of"laticifers,"and"HblMYB19"and"HblMYB44"can"significantly"promote"the"expression"of"HbCPT8"in"tobacco"and"yeast."However,"the"transcription"factors"that"regulate"the"specific"expression"of"HbCPT7"in"latex"are"still"not"clear."Here,"we"found"there"are"several"MYB-"and"MYC-binding"sites"located"in"promoter"region"of"HbCPT7."We"totally"identified"226"HbMYBs"and"19"HbMYCs"in"Hevea"by"using"a"genome-wide"scanning"approach."The"transcriptome"data"showed"that"HbMYB1,"HbMYB2,"HbMYC1,"HbMYC2,"HbMYC3,"HbMYC4"and"HbMYC5"were"highly"expressed"in"latex."HbMYB1,"HbMYB2,"HbMYC1,"HbMYC4"and"HbMYC5"were"successfully"cloned"from"the"latex"of"rubber"trees."Through"yeast"one-hybrid"assays,"it"was"discovered"that"HbMYC5"could"bind"to"the"promoter"regions"of"1–1000"bp"and"1501–1971"bp"upstream"of"the"start"codon"of"HbCPT7."The"results"would"provide"a"new"insight"into"the"molecular"mechanism"of"HbCPT7"in"regulating"natural"rubber"biosynthesis.
Keywords:"rubber"tree;"HbCPT7;"HbMYC;"HbMYB
DOI:"10.3969/j.issn.1000-2561.2025.06.002
天然橡膠(順式-1,4-聚異戊二烯)是重要的工業(yè)原料,也是不可或缺的戰(zhàn)略資源,主要來(lái)自巴西橡膠樹(shù)(Hevea"brasiliensis),因其具有優(yōu)越的化學(xué)和物理特性,如良好的彈性、絕緣性、較強(qiáng)的抗撕裂、耐摩擦以及抗沖擊等性能,廣泛應(yīng)用于國(guó)防軍工、交通運(yùn)輸、機(jī)械制造以及醫(yī)療衛(wèi)生等領(lǐng)域[1-3]。目前市場(chǎng)上以天然橡膠為原料的產(chǎn)品多達(dá)4萬(wàn)余種[4],特別在軍用航空輪胎中,天然橡膠是不可替代的原材料。
天然橡膠的生物合成主要由4個(gè)階段組成:合成異戊烯基焦磷酸(isopentenyl"pyrophosphate,"IPP)及其同分異構(gòu)體(dimethylallyl"diphosphate,"DMAPP)、縮合IPP/DMAPP形成線性的類異戊二烯(geranyl"diphosphate,"GPP;"farnesyl"diphosphate,"FPP;"geranylgeranyl"diphosphate,"GGPP)、進(jìn)一步縮合IPP/DMAPP和線性的類異戊二烯形成聚異戊二烯鏈、修飾聚異戊二烯鏈[5]。IPP主要通過(guò)植物細(xì)胞質(zhì)中的甲羥基戊酸途徑(mevalonic"acid,"MVA)合成,異戊烯焦磷酸異構(gòu)酶(isopentenyl"diphosphate"isomerase,"IPPI)催化IPP形成DMAPP,二者在香葉基二磷酸合酶(diphosphate"synthase,"GPS)、法尼基焦磷酸合酶(farnesyl"diphosphate"synthase,"FPS)和香葉基香葉基焦磷酸合酶(geranylgeranyl"pyrophosphate"synthase,"GGPS)的催化下產(chǎn)生天然橡膠的起始底物,即香葉基焦磷酸(GPP)、法尼基焦磷酸(FPP)和香葉基香葉基焦磷酸(GGPP)[5]。橡膠粒子是天然橡膠合成和儲(chǔ)存的場(chǎng)所,其表面的順式異戊烯基轉(zhuǎn)移酶(cis-prenyltransferase,"CPT)具有橡膠轉(zhuǎn)移酶的催化活性,能聚合IPP/DMAPP和GPP、FPP或GGPP形成天然橡膠的基本骨架,即順式-"1,4-聚異戊二烯[6-8]。研究發(fā)現(xiàn),Hevea"brasiliensis"CPT7(HbCPT7)和CPT8(HbCPT8)在膠乳中特異高表達(dá)[9],HbCPT7受割膠誘導(dǎo)表達(dá)[10],HbCPT8的表達(dá)水平與天然橡膠產(chǎn)量顯著正相關(guān)[11],說(shuō)明HbCPT7和HbCPT8與天然橡膠的生物合成密切相關(guān)。
AOKI等[12]分析了HRT1(HbCPT8)的啟動(dòng)子區(qū),發(fā)現(xiàn)其啟動(dòng)子區(qū)含有MYB和bZIP轉(zhuǎn)錄因子的結(jié)合位點(diǎn),推測(cè)該基因的表達(dá)水平可能受轉(zhuǎn)錄因子的調(diào)控。WANG等[13]發(fā)現(xiàn)轉(zhuǎn)錄因子HblMYB19和HblMYB44在橡膠樹(shù)乳管中高豐度表達(dá),并能夠在酵母和煙草中激活HbCPT8的表達(dá),認(rèn)為HblMYB19和HblMYB44可能是調(diào)控HbCPT8乳管特異表達(dá)的重要因子。然而,調(diào)控HbCPT7乳管特異表達(dá)的轉(zhuǎn)錄因子尚未鑒定。
MYB是真核生物中一類高度保守的轉(zhuǎn)錄因子超家族,通過(guò)MYB保守結(jié)構(gòu)域結(jié)合下游基因的啟動(dòng)子區(qū)來(lái)調(diào)控基因的表達(dá)水平[14]。MYB保守結(jié)構(gòu)域含有1~4個(gè)由52個(gè)氨基酸組成的重復(fù)序列(R),每一個(gè)R形成3個(gè)α螺旋,調(diào)控MYB轉(zhuǎn)錄因子與順式作用元件的識(shí)別[14]。根據(jù)R的數(shù)目,MYB轉(zhuǎn)錄因子可分為R2R3、1R、R1R2R3和4R四種類型[14]。MYC亦是真核生物中一類高度保守的轉(zhuǎn)錄因子家族,其氮端和碳端分別含有1個(gè)HLH-MYC_N和bHLH(basic"helix-loop-"helix)保守結(jié)構(gòu)域[10]。本研究通過(guò)分析HbCPT7啟動(dòng)子序列的順式作用元件,發(fā)現(xiàn)含有MYB和MYC轉(zhuǎn)錄因子的結(jié)合位點(diǎn)。為鑒定調(diào)控HbCPT7的MYB和MYC轉(zhuǎn)錄因子,利用生物信息學(xué)分析,從橡膠樹(shù)基因組中分別鑒定到226個(gè)HbMYBs和19個(gè)HbMYCs轉(zhuǎn)錄因子,其中HbMYB1、HbMYB2、HbMYC1、HbMYC2、HbMYC3、HbMYC4和HbMYC5在膠乳中特異表達(dá);成功克隆了HbMYB1、HbMYB2、HbMYC1、HbMYC4和HbMYC5,并采用酵母單雜交的方法證實(shí)HbMYC5能夠結(jié)合HbCPT7起始密碼子上游1~1000"bp和1501~1971"bp的啟動(dòng)子區(qū)域。本研究結(jié)果為解析HbCPT7調(diào)控天然橡膠生物合成的分子機(jī)制提供新的線索。
1.1""HbCPT7基因啟動(dòng)子克隆和順式作用元件預(yù)測(cè)
采用CTAB法提取橡膠樹(shù)葉片的DNA并以其為模板,參考熱研7-33-97基因組中CPT7的序列設(shè)計(jì)特異性引物(表1),在PrimeSTAR?"HS"DNA"Polymerase(R010Q)DNA聚合酶的作用下克隆HbCPT7的啟動(dòng)子序列。將克隆的目的基因片段送至海南楠山生物技術(shù)有限公司進(jìn)行Sanger測(cè)序,測(cè)序正確的片段即為HbCPT7的啟動(dòng)子序列。利用PlantCARE(https://bioinformatics.psb."ugent.be/webtools/plantcare/html/)在線軟件預(yù)測(cè)其順式作用元件。
1.2""橡膠樹(shù)膠乳高表達(dá)HbMYB和HbMYC基因的鑒定和克隆
橡膠樹(shù)MYB轉(zhuǎn)錄因子鑒定:分別以擬南芥R2R3型MYB轉(zhuǎn)錄因子AtMYB3(At1g22640)、3R型MYB轉(zhuǎn)錄因子AtMYB3R3(At3g09370.3)、4R型MYB轉(zhuǎn)錄因子ATMYB4R1(At3g18100)以及MYB-related蛋白中CCA1-like亞類的LATE"ELONGATED"HYPOCOTYL(At1g01060)、CPC-like亞類的AtMYB-like"2(At1g71030.1)、I-box-binding-like亞類的AtRL6(At1g75250)和R-R-type亞類的AtMYBL(At1g49010)的氨基酸序列為query序列[15],利用TBtools軟件,采用BLASTp的序列比對(duì)方法,從熱研7-33-97的基因組數(shù)據(jù)庫(kù)中檢索同源序列(p-value"lt;E-20)[16]。橡膠樹(shù)MYC轉(zhuǎn)錄因子鑒定:以擬南芥MYC轉(zhuǎn)錄因子AtMYC2(At1g32640.1)的氨基酸序列為query序列,利用TBtools軟件,采用BLASTp的序列比對(duì)方法,從熱研7-33-97的基因組數(shù)據(jù)庫(kù)中檢索同源序列。At1g22640、At3g09370.3、At3g18100、At1g01060、At1g71030.1、At1g75250、At1g49010和At1g32640.1的氨基酸序列下載自Tair(https://"www.arabidopsis.org/)。利用課題組已發(fā)表的熱研7-33-97的轉(zhuǎn)錄組數(shù)據(jù)[9]和TBtools軟件分析HbMYBs和HbMYCs的表達(dá)水平。利用NCBI-Conserved"domain"database(https://www."ncbi.nim.nih.gov/guide/domins-Structures/)在線工具分析HbMYBs和HbMYCs的保守結(jié)構(gòu)域。使用TRIzol(ThermoFisher)試劑提取橡膠樹(shù)膠乳的RNA,取1"μg總RNA,在Hiscript"1"st"Strand"cDNA"Synthesis"kit(+gDNA"wiper)(R312)試劑盒的作用下獲得膠乳cDNA,并以其為模板,設(shè)計(jì)特異性引物(表1),利用PrimeSTAR?"HS"DNA"Polymerase(R010Q)"DNA聚合酶擴(kuò)增HbMYB1、HbMYB2、HbMYC1、HbMYC4和HbMYC5的編碼序列(coding"sequence,"CDS)。
1.3""酵母誘餌菌株的自激活檢測(cè)
利用限制性內(nèi)切酶Sma"Ⅰ和Sal"Ⅰ線性化pAbAi載體,利用同源重組引物(表1)擴(kuò)增HbCPT7啟動(dòng)子目標(biāo)片段,采用ClonExpress"Ultra"One"Step"Cloning"Kit(C115-02,"Vazyme)試劑盒構(gòu)建pAbAi-pHbCPT7-1-500、pAbAi-pHbCPT7-"501-1000、pAbAi-pHbCPT7-1001-1500、pAbAi-"pHbCPT7-1501-1971載體。利用限制性內(nèi)切酶Bbs"I線性化pAbAi(空載體)、p53-AbAi(陽(yáng)性對(duì)照)、重組載體pAbAi-pHbCPT7-1-500、pAbAi-pHbCPT7-"501-1000、pAbAi-pHbCPT7-1001-1500和pAbAi-"pHbCPT7-1501-1971的質(zhì)粒,具體操作參照TaKaRa"Bio公司的Matchmaker?"GoldYeast"One-"Hybrid"Library"Screening"System"User"Manual說(shuō)明書(shū)手冊(cè),隨后轉(zhuǎn)化Y1H酵母感受態(tài)細(xì)胞。取100"μL轉(zhuǎn)化后的酵母菌液涂布于SD/-Ura平板上,30"℃暗培養(yǎng)3~5"d,直至長(zhǎng)出菌斑。取適量酵母菌斑,加入配置好的酵母破壁酶(25"μL酵母破壁酶,470"μL山梨醇緩沖液,5"μL巰基還原劑),30"℃處理1~2"h。以處理后的菌液為模板進(jìn)行PCR,參考酵母基因組DNA提取試劑盒(DP307)說(shuō)明書(shū)操作,進(jìn)而檢測(cè)啟動(dòng)子片段是否整合至酵母基因組中。分別配制含有0、100、200、300、400、500、700、800"ng/mL金擔(dān)子素(aureobasidin"A,AbA)的SD/-Ura培養(yǎng)基。每個(gè)載體選取1個(gè)陽(yáng)性克隆進(jìn)行活化,將活化后的菌液(OD600=0.2)分別稀釋10、100、1000倍。分別取5"μL稀釋后的菌液滴至含有不同濃度AbA的SD/-Ura平板上,30"℃暗培養(yǎng)3~5"d,觀察長(zhǎng)斑情況。
1.4""酵母單雜交實(shí)驗(yàn)
從橡膠樹(shù)膠乳的cDNA中克隆HbMYB1、HbMYB2、HbMYC1、HbMYC4和HbMYC5目的基因片段,使用帶酶切位點(diǎn)的引物擴(kuò)增插入的目的基因片段,酶切載體(載體為pGADT7,使用EcoR"Ⅰ和BamH"Ⅰ進(jìn)行雙酶切)后,利用ClonExpress"Ultra"One"Step"Cloning"Kit(C115-01)同源重組酶連接插入片段和酶切后的載體,產(chǎn)物轉(zhuǎn)入DH5α感受態(tài)細(xì)胞。一端使用載體引物,另一端使用插入片段引物對(duì)產(chǎn)物進(jìn)行PCR檢測(cè),篩選陽(yáng)性克隆送至海南楠山生物技術(shù)有限公司進(jìn)行Sanger測(cè)序,選取序列正確的陽(yáng)性單克隆搖菌,提取重組質(zhì)粒AD-HbMYB1、AD-HbMYB2、AD-HbMYC1、AD-HbMYC4和AD-HbMYC5,同時(shí),提取載體pGADT7的質(zhì)粒,具體操作參照TaKaRa"Bio公司的Matchmaker?"GoldYeast"One-"Hybrid"Library"Screening"System"User"Manual手冊(cè)。將pAbAi-pHbCPT7-1-500、pAbAi-"pHbCPT7-"501-1000、pAbAi-pHbCPT7-1501-1971分別轉(zhuǎn)化至酵母菌株中,將轉(zhuǎn)化后的酵母菌液點(diǎn)板至SD/-Leu和SD/-Leu/AbA(500"ng/mL)的平板上,30"℃暗培養(yǎng)3~5"d,觀察長(zhǎng)斑情況。
2.1""HbCPT7啟動(dòng)子序列克隆和順式作用元件分析
以橡膠樹(shù)葉片DNA為模板,擴(kuò)增出HbCPT7基因起始密碼子上游1971"bp的啟動(dòng)子區(qū)(圖1A)。使用PlantCARE軟件預(yù)測(cè)該區(qū)域的順式作用元件發(fā)現(xiàn),123個(gè)核心順式作用元件(TATA-box和CAAT-box)、6個(gè)光響應(yīng)元件(AE-box、chs-CMA2a、G-box、GT1-motif)、2個(gè)蛋白質(zhì)代謝調(diào)控元件(O2-site)、1個(gè)細(xì)胞周期調(diào)節(jié)相關(guān)元件(MSA-like)、6個(gè)激素響應(yīng)相關(guān)元件(GARE-motif"、STRE、ABRE、ERE)、4個(gè)脅迫相關(guān)響應(yīng)元件(TC-rich、WUN-motif)、12個(gè)MYB結(jié)合位點(diǎn)和5個(gè)MYC結(jié)合位點(diǎn)(圖1B)。
2.2""橡膠樹(shù)膠乳高表達(dá)HbMYBs基因的鑒定
從熱研7-33-97的基因組數(shù)據(jù)庫(kù)中共檢索到258條含有MYB保守結(jié)構(gòu)域的序列,去除重復(fù)的和氨基酸數(shù)目小于100的序列,共得228個(gè)預(yù)測(cè)蛋白。通過(guò)保守結(jié)構(gòu)域分析,發(fā)現(xiàn)226個(gè)預(yù)測(cè)蛋白均具有MYB轉(zhuǎn)錄因子的保守結(jié)構(gòu)域,將上述蛋白命名為HbMYB1~HbMYB226。
對(duì)226個(gè)HbMYB蛋白進(jìn)行進(jìn)化分析,發(fā)現(xiàn)橡膠樹(shù)MYB轉(zhuǎn)錄因子可分為3個(gè)亞家族,其中Group"1和Group"2中的MYB轉(zhuǎn)錄因子屬于1R類型,除HbMYB211和HbMYB225為R1R2R3型MYB以及HbMYB217為4R型MYB外,其余Group"3的HbMYBs均是R2R3型的MYB轉(zhuǎn)錄因子(圖2A)。利用熱研7-33-97樹(shù)皮、葉片和膠乳的轉(zhuǎn)錄組數(shù)據(jù)[9],分析226個(gè)HbMYB基因的表達(dá)水平,發(fā)現(xiàn)163個(gè)HbMYB基因在3個(gè)組織中的FPKM值均小于5。分析其余基因的表達(dá)量,發(fā)現(xiàn)HbMYB1(EVM0021518.1)和HbMYB2(EVM0023669.1)在膠乳中高表達(dá)(圖2B)。從橡膠樹(shù)膠乳的cDNA中成功克隆了HbMYB1和HbMYB2的編碼序列,長(zhǎng)度分別為995、1058"bp,與基因組注釋的編碼序列一致(圖2C)。
2.3""橡膠樹(shù)膠乳高表達(dá)HbMYCs基因的鑒定
從熱研7-33-97的基因組數(shù)據(jù)庫(kù)中共檢索到19條編碼MYC蛋白的序列,通過(guò)保守結(jié)構(gòu)域分析,發(fā)現(xiàn)上述序列均含有bHLH-MYC_N和bHLH兩個(gè)保守結(jié)構(gòu)域,將其分別命名為HbMYC1-"HbMYC19(圖3A)。對(duì)HbMYCs的氨基酸序列進(jìn)行進(jìn)化分析,發(fā)現(xiàn)HbMYC轉(zhuǎn)錄因子家族可分為3個(gè)亞家族。利用熱研7-33-97樹(shù)皮、葉片和膠乳的轉(zhuǎn)錄組數(shù)據(jù)[9]分析HbMYCs基因的表達(dá)模式,結(jié)果發(fā)現(xiàn),HbMYC1(EVM0032728.1)、HbMYC2(EVM0015982.1)、HbMYC3(EVM0021390.1)、HbMYC4(EVM0029927.1)及HbMYC5(EVM0033326.1)在膠乳中特異性高表達(dá)(圖3B)。隨后,從橡膠樹(shù)膠乳中成功克隆得到HbMYC1、HbMYC4和HbMYC5的編碼序列,長(zhǎng)度分別為1280、1314、1469"bp,均與基因組注釋的編碼序列長(zhǎng)度一致(圖3C)。
2.4""檢測(cè)誘餌菌株的自激活活性
為了鑒定調(diào)控HbCPT7膠乳特異表達(dá)的HbMYBs和HbMYCs轉(zhuǎn)錄因子,將克隆得到的HbCPT7的啟動(dòng)子序列分為4部分,即pHbCPT7-"1-500、pHbCPT7-501-1000、pHbCPT7-1001-1500和pHbCPT7-1501-1971(圖4A),分別構(gòu)建至pAbAi載體,獲得誘餌載體pAbAi-pHbCPT7-1-"500、pAbAi-pHbCPT7-501-1000、pAbAi-pHbCPT7-"1001-1500、pAbAi-pHbCPT7-1501-1971。使用限制性內(nèi)切酶Bbs"I線性化誘餌載體、陽(yáng)性對(duì)照(p53-AbAi)以及空載體(pAbAi)并轉(zhuǎn)化Y1H酵母感受態(tài)細(xì)胞。取SD/-Ura平板上的菌斑加入配置好的酵母破壁酶,30"℃處理1~2"h,以處理后的菌液為模板進(jìn)行PCR,提取轉(zhuǎn)化后的酵母菌液,利用酵母基因組DNA提取試劑盒檢測(cè)啟動(dòng)子片段是否整合至酵母基因組上,結(jié)果如圖4B所示,目的片段均整合至誘餌菌株的基因組上。
將誘餌菌液(OD600=0.2)分別稀釋10、100、1000倍,涂布至含有0、100、200、300、400、500、700和800"ng/mL"AbA的SD/-Ura的培養(yǎng)基上,檢測(cè)誘餌菌株的自激活活性。30"℃暗培養(yǎng)3"d后發(fā)現(xiàn),pAbAi-pHbCPT7-1-500、pAbAi-pHbCPT7-"501-1000和pAbAi-pHbCPT7-1501-1971在含有400"ng/mL"AbA的SD/-Ura培養(yǎng)基上不生長(zhǎng),說(shuō)明400"ng/mL的AbA能夠抑制pAbAi-pHbCPT7-"1-500、pAbAi-pHbCPT7-501-1000和pAbAi-"pHbCPT7-1501-1971的自激活活性(圖4C),pAbAi-pHbCPT7-1001-1500在AbA濃度為100、200、300、400、500、700、800"ng/L的培養(yǎng)基上均能生長(zhǎng),說(shuō)明上述不同濃度梯度的AbA均不能抑制pAbAi-pHbCPT7-1001-1500的自激活活性。
2.5""誘餌菌株與prey載體的互作驗(yàn)證
利用同源重組技術(shù)將HbMYB1、HbMYB2、HbMYC1、HbMYC4和HbMYC5構(gòu)建至載體pGADT7上獲得prey載體,即AD-HbMYB1、AD-HbMYB2、AD-HbMYC1、AD-HbMYC4和AD-HbMYC5。采用酵母單雜交的方法檢測(cè)誘餌菌株pAbAi-pHbCPT7-1-500、pAbAi-pHbCPT7-"501-1000和pAbAi-pHbCPT7-1501-1971是否與prey載體互作。如圖5所示,AD-HbMYC5與pAbAi-pHbCPT7-1-500、pAbAi-pHbCPT7-501-"1000、pAbAi-pHbCPT7-1501-1971的組合均能在含有500"ng/mL"AbA的SD/-Ura平板上長(zhǎng)出菌斑,說(shuō)明HbMYC5能夠結(jié)合HbCPT7起始密碼子上游的1~1000"bp和1501~1971"bp的啟動(dòng)子區(qū)域。
本研究從熱研7-33-97中鑒定到226個(gè)HbMYBs和19個(gè)HbMYCs轉(zhuǎn)錄因子,利用熱研7-33-97樹(shù)皮、葉片和膠乳的轉(zhuǎn)錄組數(shù)據(jù)分析上述基因的表達(dá)模式,發(fā)現(xiàn)HbMYB1、HbMYB2、HbMYC1、HbMYC2、HbMYC3、HbMYC4及HbMYC5在膠乳中高豐度表達(dá)。與已發(fā)表的結(jié)果相比,HbMYB1、HbMYB2與HbMYC1、HbMYC4分別是橡膠樹(shù)中新鑒定的MYB和MYC類轉(zhuǎn)錄因子。此外,HbMYC2(HblMYC2)、HbMYC3(HblMYC6)和HbMYC5(HblMYC3)的表達(dá)模式與ZHANG等[10]報(bào)道的結(jié)果一致。
天然橡膠存在于橡膠樹(shù)韌皮部的乳管細(xì)胞中,通過(guò)割開(kāi)樹(shù)皮(割膠)來(lái)收集膠乳。已有研究報(bào)道,開(kāi)割樹(shù)中的茉莉酸含量顯著高于未開(kāi)割樹(shù)的,說(shuō)明割膠促進(jìn)內(nèi)源茉莉酸含量的積累。DENG等[17]發(fā)現(xiàn)HbCPT7在開(kāi)割樹(shù)中的表達(dá)水平顯著高于未開(kāi)割樹(shù),并且HbCPT7在茉莉酸處理后顯著上調(diào)表達(dá),表明HbCPT7響應(yīng)茉莉酸信號(hào),也說(shuō)明HbCPT7在膠乳中特異高表達(dá)可能是由于茉莉酸的誘導(dǎo)。MYC轉(zhuǎn)錄因子可以與E3泛素連接酶CORONATINE"INSENSITIVE1(COI1)、茉莉酸ZIM結(jié)構(gòu)域抑制因子Jasmonate-ZIM(JAZ)形成COI1/JAZ/MYC復(fù)合體,參與茉莉酸信號(hào)途徑。當(dāng)植物體內(nèi)的茉莉酸積累時(shí),茉莉酸活性物質(zhì)(JA-Ile)結(jié)合JAZ-COI1復(fù)合體使JAZ被泛素化和解離,進(jìn)而被26S蛋白酶體降解,最終釋放出MYC,隨后MYC在轉(zhuǎn)錄水平調(diào)控響應(yīng)茉莉酸信號(hào)的基因,因此MYC是調(diào)節(jié)茉莉酸信號(hào)的重要蛋白[16]。ZHANG等[10]用茉莉酸替代物(冠菌素,Coronatine)處理橡膠樹(shù)0.5~4"h[18-20],顯著提高了形成層中HblMYC3(HbMYC5)的表達(dá)水平,說(shuō)明HblMYC3(HbMYC5)能夠響應(yīng)茉莉酸信號(hào)[10]。本研究發(fā)現(xiàn)HbMYC5在酵母中能夠與HbCPT7的啟動(dòng)子序列結(jié)合,進(jìn)而推測(cè)橡膠樹(shù)割膠后,內(nèi)源茉莉酸可能通過(guò)誘導(dǎo)HbMYC5的表達(dá)調(diào)控膠乳中HbCPT7的表達(dá)水平。此外,HbMYC2[18]和HbMYC2b[21]分別顯著促進(jìn)HbFPS和小橡膠粒子基因(Hevea"brasiliensis"small"rubber"particle"protein,"HbSRPP)的表達(dá),其中HbSRPP是膠乳中豐度最高的蛋白,在抑制膠乳凝固及維持橡膠粒子的穩(wěn)定性等方面發(fā)揮重要作用,進(jìn)一步說(shuō)明MYC是調(diào)控橡膠樹(shù)產(chǎn)膠相關(guān)基因表達(dá)的重要轉(zhuǎn)錄因子。
AOKI等[12]分析了橡膠樹(shù)乳管特異表達(dá)基因HbREF1、HbSRPP1和HRT1"(HbCPT8)的啟動(dòng)子區(qū),發(fā)現(xiàn)啟動(dòng)子區(qū)含有MYB和bZIP轉(zhuǎn)錄因子的結(jié)合位點(diǎn),推測(cè)上述基因的表達(dá)水平可能受MYB轉(zhuǎn)錄因子的調(diào)控。HbWRKY1、HbWRKY3、HbWRKY14、HbWRKY55、HblMYB19、HblMYB44、HbMYC2b以及HbMADS4等轉(zhuǎn)錄因子均能與HbSRPP1的啟動(dòng)子序列結(jié)合,促進(jìn)或抑制HbSRPP1的表達(dá),表明上述轉(zhuǎn)錄因子協(xié)同調(diào)控HbSRPP在膠乳中高豐度表達(dá)[8]。本研究利用酵母單雜交的方法,未發(fā)現(xiàn)HbMYB1、HbMYB2與HbCPT7啟動(dòng)子直接結(jié)合,表明在天然橡膠的合成過(guò)程中HbMYB1和HbMYB2可能不參與調(diào)控HbCPT7的表達(dá)。綜上所述,本研究克隆分析了HbCPT7的啟動(dòng)子序列,鑒定了在橡膠樹(shù)膠乳中高豐度表達(dá)的MYB和MYC類轉(zhuǎn)錄因子,并發(fā)現(xiàn)HbMYC5能與HbCPT7的啟動(dòng)子序列結(jié)合,研究結(jié)果為解析HbCPT7調(diào)控天然橡膠合成的分子機(jī)理提供新的思路。
參考文獻(xiàn)
[1]"METCALFE"C"R."Distribution"of"latex"in"the"plant"kingdom[J]."Economic"Botany,"1967,"21:"115-127.
[2]"CORNISH"K."Biochemistry"of"natural"rubber,"a"vital"raw"material,"emphasizing"biosynthetic"rate,"molecular"weight"and"compartmentalization,"in"evolutionarily"divergent"plant"species[J]."Natural"Product"Reports,"2001,"18(2):"182-189.
[3]"CORNISH"K."Similarities"and"differences"in"rubber"biochemistry"among"plant"species[J]."Phytochemistry,"2001,"57(7):"1123-1134.
[4]"LIU"J"P,"XIA"Z"Q,"TIAN"X"Y,"LI"Y"J."Transcriptome"sequencing"and"analysis"of"rubber"tree"(Hevea"brasiliensis"Muell.)"to"discover"putative"genes"associated"with"tapping"panel"dryness"(TPD)[J]."BMC"Genomics,"2015,"16(1):"398.
[5]"TAN"Y"C,"CAO"J,"TANG"C"R,"LIU"K"Y."Advances"in"genome"sequencing"and"natural"rubber"biosynthesis"in"rubber-producing"plants[J]."Current"Issues"in"Molecular"Biology,"2023,"45(12):"9342-9353.
[6]"ENG"A"H,"KAWAHARA"S,"TANAKA"Y."Trans-isoprene"units"in"natural"rubber[J]."Rubber"Chemistry"and"Technology,"1994,"67(1):"159-168.
[7]"TANAKA"Y,"KAWAHARA"S,nbsp;AIK-HWEE"E,"SHIBA"K,"OHYA"N."Initiation"of"biosynthesis"in"cis-polyisoprenes[J]."Phytochemistry,"1995,"39(4):"779-784.
[8]"TAKAHASHI"S"J,"KOYAMA"T."Structure"and"function"of"cis-prenyl"chain"elongating"enzymes[J]."The"Chemical"Record,"2006,"6(4):"194-205.
[9]"TANG"C"R,"YANG"M,"FANG"Y"J,"LUO"Y"F,"GAO"S"H,"XIAO"X"H,"AN"Z"W,"ZHOU"Bnbsp;H,"ZHANG"B,"TAN"X"Y,"YEANG"H"Y"H,"QIN"Y"X,"YANG"J"H,"LIN"Q,"MEI"H"L,"MONTORO"P,"LONG"X"Y,"QI"J"Y,"HUA"Y"W,"HE"Z"L,"SUN"M,"LI"W"G,"ZENG"X,"CHENG"H,"LIU"Y,"YANG"J,"TIAN"W"M,"ZHUANG"N"S,"ZENG"R"Z,"LI"D"G,"HE"P,"LI"Z,"ZOU"Z,"LI"S"L,"LI"C"G,"WANG"J"X,"WEI"D,"LAI"C"Q,"LUO"W,"YU"J,"HU"S"N,"HUANG"H"S."The"rubber"tree"genome"reveals"new"insights"into"rubber"production"and"species"adaptation[J]."Nature"Plants,"2016,"2(6):"1-10.
[10]"ZHANG"S"X,"WU"S"H,"CHAO"J"Q,"YANG"S"G,"BAO"J,"TIAN"W"M."Genome-wide"identification"and"expression"analysis"of"MYC"transcription"factor"family"genes"in"rubber"tree"(Hevea"brasiliensis"Muell."Arg.)[J]."Forests,"2022,"13(4):"531.
[11]"楊署光,"陳月異,"李言,"張世鑫,"張曉飛,"曾霞,"晁金泉,"田維敏."天然橡膠生物合成相關(guān)基因表達(dá)與橡膠產(chǎn)量的相關(guān)性[J]."熱帶作物學(xué)報(bào),"2019,"40(3):"475-482."""""""""""""""""""""""""""""""""""""""""""""""YANG"S"G,"CHEN"Y"Y,"LI"Y,"ZHANG"S"X,"ZHANG"X"F,"ZENG"X,"CHAO"J"Q,"TIAN"W"M."Correlation"between"the"expression"level"of"natural"rubber"biosynthesis"genes"and"rubber"yield[J]."Chinese"Journal"of"Tropical"Crops,"2019,"40(3):"475-482."(in"Chinese)
[12]"AOKI"Y,"TAKAHASHI"S,"TAKAYAMA"D,"OGATA"Y,"SAKURAI"N,"SUZUKI"H,"ASAWATRERATANAKUL"K,"WITITSUWANNAKUL"D,"WITITSUWANNAKUL"R,"SHIBATA"D,"KOYAMA"T,"NAKAYAMA"T."Identification"of"laticifer-specific"genes"and"their"promoter"regions"from"a"natural"rubber"producing"plant"Hevea"brasiliensis[J]."Plant"Science,"2014,"225:"1-8.
[13]"WANG"Y,"ZHAN"D"F,"LI"H"L,"GUO"D,"ZHU"J"H,"PENG"S"Q."Transcriptome-wide"identification"and"characterization"of"MYB"transcription"factor"genes"in"the"laticifer"cells"of"Hevea"brasiliensis[J]."Front"Plantnbsp;Science,"2017,"8:"1974.
[14]"DUBOS"C,"STRACKE"R,"GROTEWOLD"E,"WEISSHAAR"B,"MARTIN"C,"LEPINIEC"L."MYB"transcription"factors"in"Arabidopsis[J]."Trends"in"Plant"Science,"2010,"15(10):"573-581.
[15]"CHEN"Y"H,"YANG"X"Y,"HE"K,"LIU"M"H,"LI"J"G,"GAO"Z"F,"LIN"Z"Q,"ZHANG"Y"F,"WANG"X"X,"QIU"X"M,"SHEN"Y"P,"ZHANG"L,"DENG"X"H,"LUO"J"C,"DENG"X"W,"CHEN"Z"L,"GU"H"Y,"QU"L"J."The"MYB"transcription"factor"superfamily"of"Arabidopsis:"expression"analysis"and"phylogenetic"comparison"with"the"rice"MYB"family[J]."Plant"Molecular"Biology,"2006,"60:"107-124.
[16]"ZHANG"S"X,"WU"S"H,"CHEN"Y"Y,"TIAN"W"M."Analysis"of"differentially"expressed"genes"associated"with"coronatine-induced"laticifer"differentiation"in"the"rubber"tree"by"subtractive"hybridization"suppression[J]."PLoS"One,"2015,"10(7):"e0132070.
[17]"DENG"X"M,"GUO"D,"YANG"S"G,"SHI"M"J,"CHAO"J"Q,"LI"H"L,"PENG"S"Q,"TIAN"W"M."Jasmonate"signalling"in"the"regulation"of"rubber"biosynthesis"in"laticifer"cells"of"rubber"tree,"Hevea"brasiliensis[J]."Journal"of"Experimental"Botany,"2018,"69(15):"3559-3571.
[18]"CHINI"A,"FONSECA"S,"FERNáNDEZ"G,"ADIE"B,"CHICO"J"M,"LORENZO"O,"GARCíA-CASADO"G,"LóPEZ-"VIDRIERO"I,"LOZANO"F"M,"PONCE"MR,"MICOL"J"L,"SOLANO"R."The"JAZ"family"of"repressors"is"the"missing"link"in"jasmonate"signalling[J]."Nature,"2007,"448(7154):"666-671.
[19]"WU"S"H,"ZHANG"S"X,"CHAO"J"Q,"DENG"X"M,"CHEN"Y"Y,"SHI"M"J,"TIAN"W"M."Transcriptome"analysis"of"the"signalling"networks"in"coronatine-induced"secondary"laticifer"differentiation"from"vascular"cambia"in"rubber"trees[J]."Scientific"Reports,"2016,"6(1):"36384.
[20]"TIAN"W"M,"YANG"S"G,"SHI"M"J,"ZHANG"S"X,"WU"J"L."Mechanical"wounding-induced"laticifer"differentiation"in"rubber"tree:"an"indicative"role"of"dehydration,"hydrogen"peroxide,"and"jasmonates[J]."Journal"of"Plant"Physiology,"2015,"182:"95-103.
[21]"GUO"D,"LI"H"L,"WANG"Y,"ZHU"J"H,"PENG"S"Q."A"myelocytomatosis"transcription"factor"from"Hevea"brasiliensis"positively"regulates"the"expression"of"the"small"rubber"particle"protein"gene[J]."Industrial"Crops"and"Production,"2019,"133:"90-97.