摘""要:木薯(Manihot"esculenta"Crantz)作為“淀粉之王”,是一種重要的熱帶糧食作物,是全球十億人的主食。木薯液泡轉(zhuǎn)化酶(MeVINV1)通過將蔗糖不可逆地分解為葡萄糖和果糖,參與植物的生長發(fā)育和逆境防御。為探究MeVINV1的基因功能和分子調(diào)控網(wǎng)絡,本研究利用酵母雙雜交實驗從木薯SC8"cDNA酵母文庫中篩選出與MeVINV1互作的8個候選蛋白。進一步利用酵母點對點驗證發(fā)現(xiàn)MeVINV1與MeUN-3、MeMTP1、MeCASP4A3、MePIRL3存在互作關系,且與MeMTP1的互作更強,后續(xù)通過雙分子熒光互補和熒火素酶互補實驗,驗證了木薯MeVINV1與MeMTP1的互作關系。因此推測,MeVINV1與MeMTP1協(xié)同調(diào)控液泡蔗糖代謝和金屬離子的轉(zhuǎn)運,參與調(diào)控木薯對金屬離子脅迫的響應。本研究結(jié)果為木薯抗逆育種提供新的基因資源和逆境調(diào)控分子機制提供科學依據(jù)。
關鍵詞:木薯;MeVINV1;酵母雙雜交;互作蛋白驗證中圖分類號:S533""""""文獻標志碼:A
Screening"and"Validation"of"MeVINV1"Interacting"Proteins"in"Cassava
FU"Dongqing1,2,3,"WANG"Xiangwen1,2,3,"GE"Yujian1,2,3,"SHEN"Chen2,3,4,"CHEN"Jinpeng1,3,"YAO"Yuan2,3,"GENG"Mengting1,"LU"Xiaohua2,3*,"WANG"Yajie2,3*
1."School"of"Tropical"Agriculture"and"Forestry,"Hainan"University,"Haikou,"Hainan"570228,"China;"2."Institute"of"Tropical"Bioscience"and"Biotechnology,"Chinese"Academy"of"Tropical"Agricultural"Sciences"/"Hainan"Institute"for"Tropical"Agricultural,"Haikou,"Hainan"571101,"China;"3."Sanya"Research"Institute,"Chinese"Academy"of"Tropical"Agricultural"Sciences,"Sanya,"Hainan"572000,"China;"4."College"of"Plant"Science"and"Technology,"Huazhong"Agricultural"University,"Wuhan,"Hubei"430070,"China
Abstract:"Cassava"(Manihot"esculenta"Crantz),"the"“king"of"starch”,"is"an"important"tropical"food"crop"and"a"staple"food"for"one"billion"people"worldwide."Cassava"vacuolar"invertase"(MeVINV1)"is"involved"in"plant"growth"and"development"and"stress"defense"by"irreversibly"breaking"down"sucrose"into"glucose"and"fructose."Eight"candidate"proteins"interacting"with"MeVINV1"were"screened"from"the"cassava"SC8"cDNA"yeast"library"by"yeast"two-hybrid"experiment"to"explore"the"gene"function"and"molecular"regulatory"network"of"MeVINV1."Furthermore,"yeast"point-to-point"verification"found"that"MeVINV1"interacted"with"MeUN-3,"MeMTP1,"MeCASP4A3"and"MePIRL3,"and"the"interaction"with"MeMTP1"was"stronger."Therefore,"it"is"speculated"that"MeVINV1"and"MeMTP1"synergistically"regulate"vacuolar"sucrose"metabolism"and"metal"ion"transport,"and"participate"in"the"regulation"of"cassava"response"to"metal"ion"stress."The"results"of"the"study"would"provide"a"scientific"basis"for"providing"new"genetic"resources"and"molecular"mechanisms"of"stress"regulation"in"cassava"stress"resistance"breeding.
Keywords:"cassava;"MeVINV1;"yeast"two-hybrid;"interaction"protein"validation
DOI:"10.3969/j.issn.1000-2561.2025.06.003
木薯(Manihot"esculenta"Crantz)是大戟科木薯屬的多年生灌木,原產(chǎn)于南美洲,目前在亞洲、非洲及拉丁美洲廣泛種植[1],是世界六大糧食作物之一,也是許多工業(yè)生產(chǎn)的原材料。木薯具有較強的生長適應性,但在干旱、低溫等逆境條件下,作物的生長和產(chǎn)量會受到顯著影響[2-3]。長期的干旱會導致木薯植株死亡或貯藏根產(chǎn)量大幅下降,限制木薯的生長及產(chǎn)量[4]。木薯一般種植于南、北緯30°以內(nèi)的溫暖地區(qū),低溫是限制木薯生長及區(qū)域種植的一個重要因素[5-6],溫度低于15"℃會影響木薯的生長甚至引起木薯死亡。提高木薯的抗逆性是木薯育種的重要目標之一,研究木薯抗逆機制對于木薯抗逆育種具有重要的意義。
蔗糖轉(zhuǎn)化酶(invertase,Inv)是植物分解蔗糖的關鍵酶之一,將蔗糖不可逆地分解為葡萄糖和果糖,參與植物器官發(fā)育、碳水化合物分配、糖信號傳導以及逆境應答等過程[7-9]。轉(zhuǎn)化酶在植物不同組織中存在不同形式的同工酶,分別為細胞壁轉(zhuǎn)化酶、可溶性液泡轉(zhuǎn)化酶和中性/堿性轉(zhuǎn)化酶[10-11]。1990年在胡蘿卜中克隆出編碼細胞壁β-果糖苷酶的全長cDNA,這是第一個克隆分離出的植物轉(zhuǎn)化酶基因[12]。此后,擬南芥、煙草、甘蔗、玉米、大麥、甘薯、水稻、竹子、梨樹、楊樹、蘋果、小麥和木薯等不同植物的轉(zhuǎn)化酶基因均被鑒定分離出來。液泡轉(zhuǎn)化酶(vacuolar"invertase,VINV)是定位在液泡的轉(zhuǎn)化酶,屬于β-呋喃果糖苷酶,能夠水解β-1,2-糖苷鍵,包含水解糖苷酶家族32(GH32)的NDPNG、FRDP和WECPD三個保守基序。液泡轉(zhuǎn)化酶通過直接調(diào)節(jié)細胞液泡的滲透勢,參與植物細胞的抗逆反應;也可以通過促進糖代謝,參與植物的生長發(fā)育。干旱條件下擬南芥保衛(wèi)細胞的液泡轉(zhuǎn)化酶活力降低誘導氣孔關閉從而提高植物保水抗旱的能力[13]。黃瓜液泡轉(zhuǎn)化酶基因CsVI2過量表達使黃瓜葉片中蔗糖積累輕度降低和己糖顯著增加,表現(xiàn)出較強耐旱性[14]。通過RNAi干擾馬鈴薯液泡轉(zhuǎn)化酶基因VINV和突變液泡轉(zhuǎn)化酶第二內(nèi)含子增強子VInvIn2En能顯著降低己糖的積累,避免馬鈴薯低溫糖化現(xiàn)象[15-16]。番茄液泡轉(zhuǎn)化酶參與果實成熟過程,最終影響果實品質(zhì)[17]。通過數(shù)量性狀位點(QTL)分析和突變體分析,發(fā)現(xiàn)擬南芥液泡轉(zhuǎn)化酶活性與根長呈現(xiàn)正相關[18]。棉花液泡轉(zhuǎn)化酶GhVIN1可以促進棉纖維的伸長發(fā)育[19]。本課題組發(fā)現(xiàn)木薯有3個液泡轉(zhuǎn)化酶成員[20],其中MeVINV1可以通過調(diào)控葡萄糖和果糖含量,參與木薯對逆境的響應[21],但具體的作用機制尚未明確。本研究構建MeVINV1的誘餌載體并進行酵母雙雜交篩選MeVINV1的互作蛋白,使用多種實驗手段驗證它們的互作關系,為解析液泡轉(zhuǎn)化酶MeVINV1酶活性調(diào)節(jié)機制提供新的候選基因。
1.1""材料
1.1.1""植物材料""本氏煙草(Nicotiana"benthamiana)種子為本實驗室保存,用于雙分子熒光互補實驗和熒火素酶互補實驗。木薯(Manihot"esculenta)華南8號(SC8)組培苗為本實驗室保存,用于木薯RNA的提取。
1.1.2""載體及菌株""試驗所用SC8木薯cDNA酵母雙雜交質(zhì)粒文庫、pGBKT7、pGADT7、pGADT7-T、pGBKT7-p53、pGBKT7-Lam、pNC-BiFC-Ecc、pNC-BiFC-Enc、pCAMBIA"1300-cLuc和pCAMBIA"1300-nLuc載體均為本實驗室保存。大腸桿菌DH5α、酵母菌AH109和農(nóng)桿菌GV3101(pSoup-"p19)感受態(tài)均購自上海唯地生物技術有限公司。
1.1.3""主要試劑""植物總RNA提取試劑盒和同源重組連接酶均購自聚合美公司;反轉(zhuǎn)錄試劑盒購自莫納(Monad)公司;PrimeSTAR"HS(Premix)DNA"Polymerase高保真酶和限制性內(nèi)切酶均購自TaKaRa公司;純化回收試劑盒和質(zhì)粒小量提取提試劑盒均購自OMEGA公司;酵母缺陷培養(yǎng)基購自Coolaber公司;X-α-gal和D-蟲熒光素鉀鹽購自北京索萊寶公司;Nimble"Cloning試劑盒購自海南你行生物科技有限公司。引物(表1)合成和測序服務由擎科生物科技股份有限公司完成。
1.2""方法
1.2.1""誘餌載體pGBKT7-MeVINV1構建""使用SC8木薯組培苗提取總RNA并反轉(zhuǎn)錄成cDNA。根據(jù)木薯基因組數(shù)據(jù)庫網(wǎng)站(簡稱JGI,"https://"phytozome-next.jgi.doe.gov/)公布的MeVINV1基因序列(MANES.02G035900)設計含有pGBKT7載體的同源臂特異性引物,以SC8木薯"cDNA為模板,PrimeSTAR"HS(Premix)DNA"Polymerase高保真酶克隆MeVINV1基因。經(jīng)凝膠電泳檢測,對條帶符合的PCR產(chǎn)物進行純化回收備用。
利用EcoRⅠ和SalⅠ雙酶切pGBKT7空載體并純化回收,將MeVINV1基因重組到線性化pGBKT7載體上,轉(zhuǎn)化DH5α感受態(tài)。挑取單菌落使用BD檢測-F/R引物進行PCR鑒定,選取陽性克隆進行測序比對,獲得誘餌載體pGBKT7-"MeVINV1。
1.2.2""pGBKT7-MeVINV1誘餌載體的毒性與自激活檢測""pGBKT7-MeVINV1誘餌載體和pGBKT7空載體分別轉(zhuǎn)化酵母菌AH109感受態(tài),轉(zhuǎn)化成功的酵母菌擴大培養(yǎng)至OD600=0.8,分別以1∶1、1∶10、1∶100、1∶1000和1∶10"000比例稀釋后各吸取5"μL酵母菌液點在SD/-Trp平板上,30"℃靜置培養(yǎng)2~3"d,觀察酵母菌落的生長情況。
將共轉(zhuǎn)化酵母菌(pGBKT7-MeVINV1+"pGADT7),陽性對照(pGBKT7-p53+pGADT7-T,CK+)以及陰性對照(pGBKT7-Lam+pGADT7-T,CK-)培養(yǎng)至OD600=0.8,各吸取5"μL酵母菌液點在SD/-Trp-Leu、SD/-Trp-Leu-His-Ade、SD/-Trp-"Leu-His-Ade+"X-α-gal平板上,30"℃靜置培養(yǎng)3~"4"d,觀察酵母菌落的生長情況。
1.2.3""MeVINV1互作蛋白的篩選""將誘餌載體pGBKT7-MeVINV1酵母菌在SD/-Trp平板劃線活化,并制備感受態(tài)細胞。在感受態(tài)細胞中加入30"μg木薯酵母雙雜交質(zhì)粒文庫、40"μL預變性的Carrier"DNA和5"mL"PEG/LiAc溶液進行轉(zhuǎn)化。轉(zhuǎn)化后的菌液涂布于30個SD/-Trp-Leu-His平板上,30"℃靜置培養(yǎng)。挑取單菌落至0.9%"NaCl溶液重懸,點在SD/-Trp-Leu、SD/-Trp-Leu-His-Ade和SD/-Trp-Leu-His-Ade+X-α-gal平板上,利用AD檢測-F/R引物對變藍的菌斑進行PCR鑒定,選取陽性克隆進行測序比對,獲得MeVINV1的候選互作蛋白信息。
1.2.4""酵母雙雜交的點對點驗證""根據(jù)候選互作蛋白的測序信息,從NCBI獲得相應的基因序列,設計連接pGADT7載體的同源臂引物,克隆出候選互作蛋白的基因。利用BamHⅠ和EcoRⅠ雙酶切pGADT7載體并純化回收,將候選互作蛋白的基因重組到pGADT7載體上,挑取單菌落進行PCR鑒定及測序比對,獲得重組獵物載體。
將pGBKT7-MeVINV1誘餌載體和重組獵物載體兩兩共轉(zhuǎn)AH109感受態(tài),涂布于SD/-Trp-Leu平板上,挑取單菌落進行PCR鑒定。鑒定成功的酵母菌同陽性對照CK+、陰性對照CK-分別點在SD/-Trp-Leu、SD/Trp-Leu-His-Ade和SD/-Trp-Leu-"His-Ade+X-α-gal平板上靜置培養(yǎng),觀察菌落的生長及顯色情況,判斷MeVINV1與候選互作蛋白是否存在互作關系。
1.2.5""雙分子熒光互補驗證(BiFC)""設計MeVINV1和MeMTP1的BiFC接頭引物(表1)克隆出接頭基因,通過Nimble"Cloning技術將MeVINV1重組到pNC-BiFC-Ecc載體,MeMTP1重組到pNC-BiFC-Enc載體,使用ProF和CR引物(表1)檢測pNC-BiFC-Ecc重組載體,ProF和PEGFP-N3引物檢測pNC-BiFC-Enc重組載體。將構建成功的重組載體MeVINV1-cEYFP、MeMTP1-nEYFP和cEYFP、nEYFP載體分別轉(zhuǎn)化農(nóng)桿菌GV3101(pSoup-p19)感受態(tài),選擇PCR鑒定成功的農(nóng)桿菌擴大培養(yǎng)。MeVINV1-cEYFP+"MeMTP1-nEYFP作為實驗組,MeVINV1-Ecc+"nEYFP、cEYFP+"MeMTP1-nEYFP、cEYFP+nEYFP作為對照組,農(nóng)桿菌菌液兩兩等體積混合后分別注射煙草葉片,置于培養(yǎng)室培養(yǎng)2"d后在激光共聚焦顯微鏡下觀察熒光信號。
1.2.6""熒火素酶互補驗證(LCA)""設計MeVINV1和MeMTP1的LCA同源臂引物(表1),利用BamHⅠ和SalⅠ分別雙酶切pCAMBIA"1300-cLuc和pCAMBIA"1300-nLuc載體,通過同源重組技術將MeVINV1片段重組到pCAMBIA"1300-cLuc載體上,MeMTP1片段重組到pCAMBIA"1300-nLuc載體上,使用cLuc檢測-F/R引物(表1)檢測pCAMBIA"1300-cLuc重組載體,nLuc檢測-F/R引物(表1)檢測pCAMBIA"1300-nLuc重組載體。將構建成功的pCAMBIA"1300-MeVINV1-cLuc、pCAMBIA1300-MeMTP1-"nLuc和pCAMBIA"1300-cLuc、pCAMBIA"1300-nLuc載體分別轉(zhuǎn)化農(nóng)桿菌GV3101(pSoup-"p19)感受態(tài),選擇PCR鑒定成功的農(nóng)桿菌培養(yǎng)。MeVINV1-"cLuc+MeMTP1-nLuc作為實驗組,MeVINV1-"cLuc+nLuc、cLuc+MeMTP1-nLuc、cLuc+nLuc作為對照組,農(nóng)桿菌菌液兩兩等體積混合后分別注射
同一煙草葉片的4個區(qū)域,置于培養(yǎng)室16"h光照/8"h黑暗的條件下培養(yǎng)48"h后,在原先注射的部位注入150"μg/mL"D-蟲熒光素鉀鹽,使用植物活體成像系統(tǒng)檢測煙草葉片發(fā)光情況。
2.1""pGBKT7-MeVINV1誘餌載體的構建
木薯MeVINV1基因CDS區(qū)全長為2040"bp,以SC8木薯cDNA為模板,克隆MeVINV1基因片段,凝膠電泳檢測結(jié)果顯示PCR產(chǎn)物的大小符合預期,且無非特異條帶(圖1A)。利用同源重組技術將純化的MeVINV1基因片重組到pGBKT7載體,PCR鑒定結(jié)果顯示在2000"bp處存在單一明亮條帶,表明成功獲得陽性克?。▓D1B)。測序分析陽性克隆,獲得pGBKT7-MeVINV1誘餌載體。
2.2""pGBKT7-MeVINV1誘餌載體的毒性和自激活檢測
2.2.1""pGBKT7-MeVINV1誘餌載體毒性檢測""結(jié)果顯示2種酵母菌的生長狀態(tài)及數(shù)量大致相同(圖2),表明pGBKT7-MeVINV1對AH109酵母細胞無毒性。
2.2.2""pGBKT7-MeVINV1誘餌載體自激活檢測""由圖3可知,3種酵母菌在SD/-Trp-Leu平板上均正常生長,只有陽性對照在SD/-Trp-Leu-"His-Ade平板上生長,并在SD/-Trp-Leu-His-"Ade+X-α-gal平板上生長變藍,表明誘餌載體無自激活。
2.3"""MeVINV1互作蛋白的篩選
利用SC8木薯cDNA文庫篩選與MeVINV1互作的蛋白,在SD/-Trp-Leu-His平板上生長的單菌落點在SD/-Trp-Leu-His-Ade+X-α-gal平板,5"d后觀察酵母生長及顯色情況(圖4)。PCR鑒定變藍的酵母菌落,將PCR產(chǎn)物進行測序,測序成功的樣本序列在GeneBank數(shù)據(jù)庫中進行比對,獲得8個候選互作蛋白(表2)。
根據(jù)候選互作蛋白的序列信息,分別命名為MeUN-1、MePPI1、MeUN-2、MeUN-3、MeMTP1、MeCASP4A3、MeFBA、MePIRL3。設計候選互作蛋白的特異性引物(表1),以SC8木薯品種的cDNA為模板克隆出候選互作蛋白基因片段(圖5),將片段與線性化pGADT7載體連接,PCR鑒定陽性菌落,測序獲得獵物載體。
2.4""MeVINV1互作蛋白的點對點驗證
將pGBKT7-MeVINV1誘餌載體分別與8個獵物載體兩兩共轉(zhuǎn)酵母AH109感受態(tài)細胞,選擇陽性菌液進行酵母雙雜交點對點驗證,結(jié)果如圖6所示,共轉(zhuǎn)pGBKT7-MeVINV1+pGADT7-MeUN-"3、pGBKT7-MeVINV1+pGADT7-MeMTP1、pGBKT7-"MeVINV1+pGADT7-MeCASP4A3、pGBKT7-Me VINV1+pGADT7-MePIRL3的酵母菌在SD/-Trp-"Leu和SD/Trp-Leu-His-Ade平板上正常生長,且在SD/-Trp-Leu-His-Ade+X-α-gal平板上變藍,說明MeVINV1與MeUN-3、MeMTP1、MeCASP4A3、MePIRL3存在互作關系,鑒于MeVINV1和金屬耐受蛋白MeMTP1互作的酵母在四缺培養(yǎng)基上最藍,后續(xù)實驗將進一步驗證二者的互作關系。
2.5""雙分子熒光互補驗證MeVINV1與MeMTP1互作
雙分子熒光互補驗證結(jié)果顯示,對照組均無熒光信號,實驗組MeVINV1-cEYFP+MeMTP1-"nEYFP檢測出熒光信號,證明MeVINV1和MeMTP1存在互作關系(圖7)。
2.6""熒火素酶互補試驗驗證MeVINV1與MeMTP1互作
熒火素酶互補試驗驗證結(jié)果如圖8所示,對照組均未檢測到熒光信號。MeVINV1-cLuc+"MeMTP1-nLuc實驗組共表達后發(fā)出熒光信號,表明MeVINV1和MeMTP1存在互作關系。
液泡轉(zhuǎn)化酶(VIN)主要存在于液泡中,可以將蔗糖不可逆地分解成葡萄糖和果糖。VIN已被報道可以調(diào)節(jié)植物的生長和發(fā)育,并對干旱和寒冷等非生物脅迫做出反應[22]。然而與VIN蛋白協(xié)同調(diào)控蔗糖代謝的互作蛋白研究比較少,液泡轉(zhuǎn)化酶抑制子(VIF)可以與VIN互作,抑制其酶活性。這種抑制作用在調(diào)節(jié)植物果實中的糖含量方面非常重要。在番茄中,過表達VIF基因會導致果實中蔗糖含量升高而己糖含量降低[23]。多聚半乳糖醛酸酶抑制蛋白PpPGIP1與PpVIN2互作,正向調(diào)節(jié)PpVIN2的活性,從而促進桃果實中蔗糖的快速分解[24]。
為了探究木薯液泡轉(zhuǎn)化酶MeVINV1是否參與木薯的逆境響應,本研究利用酵母雙雜交實驗證明MeVINV1與MeMTP1存在互作關系,后續(xù)通過雙分子熒光互補驗證和熒火素酶互補驗證進一步證明了二者的互作關系,并發(fā)現(xiàn)可能在液泡膜上協(xié)同調(diào)控作用。金屬耐受蛋白(MTP)主要負責轉(zhuǎn)運Zn2+,同時也轉(zhuǎn)運"Mn2+,F(xiàn)e2+,Cd2+等金屬離子。擬南芥AtMTP1定位于液泡膜中,介導鋅解毒并驅(qū)動葉片鋅積累[25]。水稻OsMTP1和大麥HvMTP1具有較高的蛋白相似性,都定位于液泡膜,增強液泡金屬隔離的解毒作用[26-27]。
水稻OsMTP11促進鎘在葉片維管細胞液泡貯存,以限制鎘轉(zhuǎn)運到水稻籽粒[28]。茶樹CsMTP4定位于質(zhì)膜,異源表達CsMTP4可特異性增強酵母對鋅過量的耐受性,CsMTP4的過表達在缺鋅條件下刺激了茶樹毛狀根的鋅吸收,表明CsMTP4在調(diào)節(jié)茶樹鋅穩(wěn)態(tài)中起著關鍵作用[29]。
蔗糖代謝的調(diào)控對于維持植物根系生長和重金屬耐受性起著重要作用[30]。酸性轉(zhuǎn)化酶和蔗糖合成酶的上調(diào)可導致可溶性糖的積累,為植物生長和應激適應提供必須的能量和碳源,有助于植物應對非生物脅迫。重金屬離子(Pb2+、Cd2+等)可以調(diào)節(jié)碳水化合物代謝酶(如酸性轉(zhuǎn)化酶和蔗糖合成酶)的活性,酸性轉(zhuǎn)化酶催化位點含有巰基,活性受到重金屬離子抑制[31]。鎘脅迫下,刺槐和紫萍的葉片可溶性糖含量顯著增高[32-33]。豆科植物根系分泌的可溶性糖能直接與鉛形成無毒化合物[34]。本研究通過酵母雙雜交、雙分子熒光互補、熒火素酶互補實驗,驗證了木薯MeVINV1與MeMTP1的互作關系。因此推測,MeVINV1與MeMTP1協(xié)同調(diào)控液泡蔗糖代謝和金屬離子的轉(zhuǎn)運,參與調(diào)控木薯對金屬離子脅迫的響應。
參考文獻
[1]"LéOTARD"G,"DUPUTIé"A,"KJELLBERG"F,"DOUZERY"E"J,"DEBAIN"C,"DE"GRANVILLE"J"J,"MCKEY"D."Phylogeography"and"the"origin"of"cassava:"new"insights"from"the"northern"rim"of"the"Amazonian"basin[J]."Molecular"Phylogenetics"and"Evolution,"2009,"53(1):"329-334.
[2]"JOSHI"R"K,"BHARAT"S"S,"MISHRA"R."Engineering"drought"tolerance"in"plants"through"CRISPR/Cas"genome"editing[J]."3"Biotech,"2020,"10(9):"400.
[3]"DARYANTO"S,"WANG"L"X,"JACINTHE"P"A."Drought"effects"on"root"and"tuber"production:"a"meta-analysis[J]."Agricultural"Water"Management,nbsp;2016,"176:"122-131.
[4]"MUIRURI"S,"NTUI"V"O,"TRIPATHI"L,"TRIPATHI"J"N."Mechanisms"and"approaches"towards"enhanced"drought"tolerance"in"cassava"(Manihot"esculenta)[J]."Current"Plant"Biology,"2021,"28(1):"100227.
[5]"AN"D,"YANG"J,"ZHANG"P."Transcriptome"profiling"of"low"temperature-treated"cassava"apical"shoots"showed"dynamic"responses"of"tropical"plant"to"cold"stress[J]."BMC"Genomics,"2012,"13(1):"64.
[6]"王惠君,"王文泉,"李文彬,"陳新,"盧誠,"黎明,"陳友."木薯的抗寒性及北移栽培技術研究進展綜述[J]."熱帶作物學報,"2016,"37(7):"1437-1443.WANG"H"J,"WANG"W"Q,"LI"W"B,"CHEN"X,"LU"C,"LI"M,"CHEN"Y."Research"progress"on"cold"resistance"and"northward"cultivation"techniques"of"cassava[J]."Chinese"Journal"of"Tropical"Crops,"2016,"37(7):"1437-1443."(in"Chinese)
[7]"RUAN"Y"L,"JIN"Y,"YANG"Y"J,"LI"G"J,"BOYER"J"S."Sugar"input,"metabolism,"and"signaling"mediated"by"invertase:"roles"in"development,"yield"potential,"and"response"to"drought"and"heat[J]."Molecular"Plant,"2010,"3(6):"942-955.
[8]"TAUZIN"A"S,"GIARDINA"T."Sucrose"and"invertases,"a"part"of"the"plant"defense"response"to"the"biotic"stresses[J]."Frontiers"in"Plant"Science,"2014,"(5):"293.
[9]"LIAO"S"J,"WANG"L,"LI"J,"RUAN"Y"L."Cell"wall"invertase"is"essential"for"ovule"development"through"sugar"signaling"rather"than"provision"of"carbon"nutrients[J]."Plant"Physiology,"2020,"183(3):"1126-1144.
[10]"ROITSCH"T,"GONZáLEZ"M"C."Functionnbsp;and"regulation"of"plant"invertases:"sweet"sensations[J]."Trends"in"Plant"Science,"2004,"9(12):"606-613.
[11]"KULSHRESTHA"S,"TYAGI"P,"SINDHI"V,"YADAVILLI"K"S."Invertase"and"its"applications-A"brief"review[J]."Journal"of"Pharmacy"Research,"2013,"7(9):"792-797.
[12]"STURM"A,"CHRISPEELS"M"J."cDNA"cloning"of"carrot"extracellular"beta-fructosidase"and"its"expression"in"response"to"wounding"and"bacterial"infection[J]."The"Plant"Cell,"1990,"2(11):"1107-1119.
[13]"陳素芬."液泡蔗糖轉(zhuǎn)化酶調(diào)控擬南芥氣孔運動及其抗旱作用[D]."上海:"上海應用技術學院,"2015.CHEN"S"F."Vacuolar"sucrose"invertase"regulates"stomatal"movement"and"drought"resistance"in"Arabidopsis"thaliana[D]."Shanghai:"Shanghai"Institute"of"Applied"Technology,"2015."(in"Chinese)
[14]"CHEN"L,"ZHENG"F"H,"FENG"Z"L,"LI"Y,"MA"M"X,"WANG"G"P,"ZHAO"H"B."A"vacuolar"invertase"CsVI2"regulates"sucrose"metabolism"and"increases"drought"tolerance"in"Cucumis"sativus"L.[J]."International"Journal"of"Molecular"Sciences,"2021,"23(1):"176.
[15]"BHASKAR"P"B,"WU"L,"BUSSE"J"S,"WHITTY"B"R,"HAMERNIK"A"J,"JANSKY"S"H,"ROBIN"BUELL"C,"BETHKE"P"C,"JIANG"J."Suppression"of"the"vacuolar"invertase"gene"prevents"cold-induced"sweetening"in"potato[J]."Plant"Physiology,"2010,"154(2):"939-948.
[16]"ZHU"X"B,"CHEN"A"R,"BUTLER"N"M,"ZENG"Z"X,"XIN"H"Y,"WANG"L"X,"LV"Z"Y,"ESHEL"D,"DOUCHES"D"S,"JIANG"J"M."Molecular"dissection"of"an"intronic"enhancer"governing"cold-induced"expression"of"the"vacuolar"invertase"gene"in"potato[J]."The"Plant"Cell,"2024,"36(5):"1985-1999.
[17]"ELLIOTT"K"J,"BUTLER"W"O,"DICKINSON"C"D,"KONNO"Y,"VEDVICK"T"S,"FITZMAURICE"L,"MIRKOV"T"E."Isolation"and"characterization"of"fruit"vacuolar"invertase"genes"from"two"tomato"species"and"temporal"differences"in"mRNA"levels"during"fruit"ripening[J]."Plant"Molecular"Biology,"1993,"21(3):"515-524.
[18]"SERGEEVA"L"I,"KEURENTJES"J"J,"BENTSINK"L,"VONK"J,"VAN"DER"PLAS"L"H,"KOORNNEEF"M,"VREUGDENHIL"D."Vacuolar"invertase"regulates"elongation"of"Arabidopsis"thaliana"roots"as"revealed"by"QTL"and"mutant"analysis[J]."Proceedings"of"the"National"Academy"of"Sciences"of"the"United"States"of"America,"2006,"103(8):"2994-2999.
[19]"WANG"L,"LI"X"R,"LIAN"H,"NI"D"A,"HE"Y"K,"CHEN"X"Y,"RUAN"Y"L."Evidence"that"high"activity"of"vacuolar"invertase"is"required"for"cotton"fiber"and"Arabidopsis"root"elongation"through"osmotic"dependent"and"independent"pathways,"respectively[J]."Plant"Physiology,"2010,"154(2):"744-756.
[20]"姚遠."木薯轉(zhuǎn)化酶基因家族克隆、結(jié)構進化及表達分析[D]."海口:"海南大學,"2013.YAO"Y."Cloning,"structural"evolution"and"expression"analysis"of"cassava"invertase"gene"family[D]."Haikou:"Hainan"University,"2013."(in"Chinese)
[21]"劉釗君."木薯液泡轉(zhuǎn)化酶基因MeVINV1的抗逆功能鑒定[D]."海口:"海南大學,"2021.LIU"Z"J."Identification"of"stress"resistance"function"of"cassava"vacuolar"invertase"gene"MeVINV1[D]."Haikou:"Hainan"University,"2021."(in"Chinese)
[22]"WU"Y,"CHEN"H"N,"WU"M"B,"ZHOU"Y"Y,"YU"C"Y,"YANG"Q"H,"ROLLAND"F,"VAN"DE"POEL"B,"BOUZAYEN"M,"HU"N,"WANG"Y"K,"LIU"M"C."A"vacuolar"invertase"gene"SlVI"modulates"sugar"metabolism"and"postharvest"fruit"quality"and"stress"resistance"in"tomato[J]."Horticulture"Research,"2024,"12(1):"uhae283.
[23]"QIN"G"Z,"ZHU"Z,"WANG"W"H,"CAI"J"H,"CHEN"Y,"LI"L,"TIAN"S"P."A"tomato"vacuolar"invertase"inhibitor"mediates"sucrose"metabolism"and"influences"fruit"ripening[J]."Plant"Physiology,"2016,"172(3):"1596-1611.
[24]"WEI"Y"Y,"MAO"Y"H,"GAO"Y"L,"CHEN"Y,"SUN"J"C,"WANG"X"X,"JIANG"S,"XU"F,"WANG"H"F,"SHAO"X"F."The"polygalacturonase-inhibiting"protein"PpPGIP1,"positively"regulates"vacuolar"invertase"activity"via"a"protein-protein"interaction"with"PpVIN2"in"peach"fruit[J]."Scientia"Horticulturae,"2023,"320:"112209.
[25]"DESBROSSES-FONROUGE"A"G,"VOIGT"K,"SCHR?DER"A,"ARRIVAULT"S,"THOMINE"S,"KR?MER"U."Arabidopsis"thaliana"MTP1"is"a"Zn"transporter"in"the"vacuolar"membrane"which"mediates"Zn"detoxification"and"drives"leaf"Zn"accumulation[J]."FEBS"Letters,"2005,"579(19):"4165-4174.
[26]"RICACHENEVSKY"F"K,"MENGUER"P"K,"SPEROTTO"R"A,"WILLIAMS"L"E,"FETT"J"P."Roles"of"plant"metal"tolerance"proteins"(MTP)"in"metal"storage"and"potential"use"in"biofortification"strategies[J]."Frontiers"in"Plant"Science,"2013,"4:"144.
[27]"YUAN"L"Y,"YANG"S"G,"LIU"B"X,"ZHANG"M,"WU"K"Q."Molecular"characterization"of"a"rice"metal"tolerance"protein,"OsMTP1[J]."Plant"Cell"Reports,"2012,"31(1):"67-79.
[28]"LIU"P,"SUN"L,"ZHANG"Y,"TAN"Y"J,"ZHU"Y"X,"PENG"C,"WANG"J"R,"YAN"H"L,"MAO"D"H,"LIANG"G"H,"LIANG"G,"LI"X"X,"LIANG"Y"T,"WANG"F,"HE"Z"Y,"TANG"W"B,"HUANG"D"Y,"CHEN"C"Y."The"metal"tolerance"protein"OsMTP11"facilitates"cadmium"sequestration"in"the"vacuoles"of"leaf"vascular"cells"for"restricting"its"translocation"into"rice"grains[J]."Molecular"Plant,"2024,"17(11):"1733-1752.
[29]"LI"Q"H,"ZHANG"X"Y,"ZHAO"P"L,"CHEN"Y"Q,"NI"D"J,"WANG"M"L."Metal"tolerance"protein"CsMTP4"has"dual"functions"in"maintaining"zinc"homeostasis"in"tea"plant[J]."Journal"of"Hazardous"Materials,"2024,"471:"134308.
[30]"XIONG"Z"T,"WANG"T,"LIU"K,"ZHANG"Z"Z,"GAN"J"H,"HUANG"Y,"LI"M"J."Differential"invertase"activity"and"root"growth"between"Cu-tolerant"and"non-tolerant"populations"in"Kummerowia"stipulacea"under"Cu"stress"and"nutrient"deficiency[J]."Environmental"and"Experimental"Botany,"2008,"62(1):"17-27.
[31]"STURM"A."Invertases."Primary"structures,"functions,"and"roles"in"plant"development"and"sucrose"partitioning[J].nbsp;Plant"Physiology,"1999,"121(1):"1-8.
[32]"JIA"X,"ZHAO"Y"H,"LIU"T,"HE"Y"H."Leaf"defense"system"of"Robinia"pseudoacacia"L."seedlings"exposed"to"3"years"of"elevated"atmospheric"CO2"and"Cd-contaminated"soils[J]."The"Science"of"the"Total"Environment,"2017(605/606):"48-57.
[33]"SU"C"L,"JIANG"Y"J,"LI"F"F,"YANG"Y"R,"LU"Q"Q,"ZHANG"T"T,"HU"D,"XU"Q"S."Investigation"of"subcellular"distribution,"physiological,"and"biochemical"changes"in"Spirodela"polyrhiza"as"a"function"of"cadmium"exposure[J]."Environmental"and"Experimental"Botany,"2017,"142:"24-33.
[34]"WEIGEL"H"J,"J?GER"H"J."Subcellular"distribution"and"chemical"form"of"cadmium"in"bean"plants[J]."Plant"Physiology,"1980,"65(3):"480-482.