摘""要:本研究旨在探究不同貯藏溫度下甘薯塊根內(nèi)色澤和糖類成分的變化特點(diǎn),為甘薯塊根的貯藏和品質(zhì)質(zhì)量控制措施的制定提供參考。以普薯32號(hào)甘薯塊根為材料,將其分別貯藏于25"℃(對(duì)照)、14"℃(低溫處理)和–4"℃(近冰溫處理)環(huán)境,采用色差儀測(cè)量塊根的色澤指標(biāo),測(cè)定塊根內(nèi)可溶性總糖、蔗糖、果糖、葡萄糖和淀粉含量,同時(shí)測(cè)定參與塊根糖代謝的淀粉酶、中性轉(zhuǎn)化酶和酸性轉(zhuǎn)化酶活性,并對(duì)色澤指標(biāo)和糖類含量進(jìn)行相關(guān)性分析。結(jié)果表明:在貯藏期間(0~60"d),25"℃對(duì)照和14"℃處理下各取樣時(shí)間點(diǎn)的甘薯塊根L*值與取樣起始點(diǎn)(0"d)相比無(wú)顯著變化,–4"℃處理下塊根L*值始終顯著低于取樣起始點(diǎn)的樣品,3個(gè)溫度下甘薯塊根的a*和b*值隨貯藏時(shí)間的延長(zhǎng)呈波動(dòng)變化;14"℃溫度處理下塊根可溶性糖含量隨貯藏時(shí)間的延長(zhǎng)逐漸升高,同時(shí)期的14"℃處理塊根的蔗糖含量始終高于25"℃對(duì)照和–4"℃處理;3個(gè)溫度下甘薯塊根淀粉均表現(xiàn)為隨貯藏時(shí)間的延長(zhǎng)顯著降低;在貯藏初期(0~20"d),–4"℃處理的甘薯塊根內(nèi)淀粉酶、中性轉(zhuǎn)化酶和酸性轉(zhuǎn)化酶均高于25"℃對(duì)照和14"℃處理。相關(guān)性分析顯示,甘薯塊根的淀粉含量與中性轉(zhuǎn)化酶、酸性轉(zhuǎn)化酶均呈極顯著負(fù)相關(guān);塊根L*值、b*值和H°值均與蔗糖呈極顯著正相關(guān),可作為評(píng)價(jià)甘薯塊根中蔗糖含量的指標(biāo)。由此可見(jiàn),3個(gè)貯藏溫度中以14"℃誘導(dǎo)甘薯塊根糖化效果最好,可有效促進(jìn)塊根內(nèi)可溶性糖積累,可作為該品種的較適宜貯藏溫度;近冰溫–4"℃對(duì)甘薯塊根色澤變化的影響較大,塊根貯藏過(guò)程中色澤變化與糖代謝存在密切關(guān)系,轉(zhuǎn)化酶可能是調(diào)控該品種貯藏過(guò)程中可溶性糖代謝的關(guān)鍵酶,研究結(jié)果將為甘薯加工制品的品質(zhì)特性提升和工藝優(yōu)化提供參考依據(jù)。
關(guān)鍵詞:甘薯;貯藏溫度;色澤;糖類中圖分類號(hào):S531""""""文獻(xiàn)標(biāo)志碼:A
Effect"of"Different"Storage"Temperature"on"the"Color"and"Sugar"Content"of"Sweet"Potato"(Ipomoea"batatas"L.)"Tuberous"Root
LONG"Lingyun1,2,"XIE"Chaomin1,2,"MAO"Liyan1,3,"HUANG"Qiulan1,2,"HUANG"Xinxin1,2,"AI"Jingwen1,2,"TAN"Xiaohui1,3,"LIU"Gongde1,2,"DENG"Xiaohong1,2,"SHI"Qiuxiang4,"ZHAN"Meiyan5,"HUANG"Qiuwei1,2*
1."Guangxi"Subtropical"Crops"Research"Institute,"Nanning,"Guangxi"530001,"China;"2."Scientific"Research"and"Experimental"Base"of"Subtropical"Fruit"Storage"and"Processing"Technology,"Ministry"of"Agriculture"and"Rural"Affairs,"Nanning,"Guangxi"530001,"China;"3."Guangxi"Key"Laboratory"of"Quality"and"Safety"Control"for"Subtropical"Fruits,"Nanning,"Guangxi"530001,"China;"4."Guangxi"Liuzhou"Qiu"Ye"Jia"Ecological"Agriculture"Comprehensive"Development"Co.,"Ltd.,"Rongshui,"Guangxi"545300,"China;"5."Guangxi"Nanzhumei"Agricultural"Science"and"Technology"Co.,"Ltd.,"Qinzhou,"Guangxi"535000,"China
Abstract:"It"was"aimed"to"investigate"the"characteristics"of"variations"in"color"and"sugar"components"within"sweet"potato"tuberous"root"under"diverse"storage"temperatures"and"to"offer"references"for"the"formulation"of"storage"and"quality"control"measures"for"sweet"potato"tuberous"root."The"sweet"potato"tuberous"root"of"Pushu"32"was"respectively"stored"in"environments"of"25"℃"(normal"temperature"control),"14"℃"(low-temperature"treatment),"and"–4"℃"(near-freezing"temperature"treatment)."The"color"of"the"tuberous"root"was"measured"using"a"colorimeter,"and"the"contents"of"total"soluble"sugar,"sucrose,"fructose,"glucose,"and"starch"within"the"tuberous"root"were"determined."Meanwhile,"the"activity"of"amylase,"neutral"invertase,"and"acid"invertase"involved"in"sugar"metabolism"of"the"tuberous"root"was"measured,"and"the"correlation"analysis"was"conducted"on"color"and"sugar"contents."During"the"storage"period"(0-60"days),"the"L*"value"of"the"tuberous"root"at"25"℃"control"and"14"℃"did"not"exhibit"significant"changes"compared"with"the"initial"sampling"point"(0"days),"while"the"L*"value"of"the"tuberous"root"at"–4"℃"was"consistently"significantly"lower"than"that"of"the"initial"sampling"point."The"a*"and"b*"values"of"the"tuberous"root"at"the"three"temperatures"fluctuated"with"the"prolongation"of"the"storage"time."Under"the"14"℃,"the"content"of"soluble"sugar"in"the"tuberous"root"gradually"increased"with"the"extension"of"the"storage"time,"and"the"sucrose"content"of"the"tuberous"root"under"the"14"℃"was"always"higher"than"that"of"the"25℃"control"and"–4"℃"treatment"during"the"same"period."The"starch"content"of"the"tuberous"root"at"the"three"temperatures"significantly"decreased"with"the"prolongation"of"the"storage"time."In"the"early"stage"of"storage"(0-20"days),"the"activity"of"amylase,"neutral"invertase,"and"acid"invertase"within"the"sweet"potato"tuberous"root"at"–4℃"was"higher"than"those"at"25"℃"and"14"℃."The"correlation"analysis"indicated"that"the"starch"content"of"the"tuberous"root"was"extremely"significantly"negatively"correlated"with"neutral"invertase"and"acid"invertase;"the"L*"value,"b*"value,"and"H°"value"of"the"tuberous"root"were"extremely"significantly"positively"correlated"with"sucrose,"which"could"be"utilized"as"indicators"for"evaluating"the"sucrose"content"in"the"tuberous"root."Thus,"among"the"three"storage"temperatures,"14"℃"induced"the"best"saccharification"effect"on"sweet"potato"tuberous"root,"effectively"facilitating"the"accumulation"of"soluble"sugar"substances"within"the"tuberous"root,"and"could"be"regarded"as"a"more"suitable"storage"temperature"for"this"variety;"–4"℃"exerted"a"considerable"influence"on"the"color"change"of"sweet"potato"tuberous"root."The"color"change"during"the"storage"process"of"the"tuberous"root"was"closely"related"to"sugar"metabolism,"and"invertase"might"be"the"key"enzyme"regulating"the"metabolism"of"soluble"sugar"during"the"storage"process"of"this"variety."The"research"findings"would"offer"a"reference"for"enhancing"the"quality"characteristics"and"optimizing"the"processing"techniques"of"sweet"potato"processed"products.
Keywords:"sweet"potato;"storage"temperature;"color;"sugar
DOI:"10.3969/j.issn.1000-2561.2025.06.018
甘薯(Ipomoea"batatas"L.)是重要的塊根類經(jīng)濟(jì)作物,廣泛種植于熱帶和亞熱帶地區(qū)[1]。甘薯的環(huán)境適應(yīng)性強(qiáng)、產(chǎn)量高,塊根富含淀粉、可溶性糖等碳水化合物和類胡蘿卜素、花青素、維生素、蛋白等營(yíng)養(yǎng)物質(zhì),在農(nóng)副食品市場(chǎng)有較高需求,是農(nóng)戶易于接受和種植的經(jīng)濟(jì)作物[2]。甘薯采收后因貯藏溫度、濕度等環(huán)境因子的作用,塊根組織內(nèi)呼吸代謝強(qiáng)度及內(nèi)源酶活性會(huì)隨環(huán)境因子波動(dòng)和時(shí)間變化而改變,從而造成營(yíng)養(yǎng)成分和色澤變化,影響后期的運(yùn)輸、銷售及二次加工等環(huán)節(jié)[3-4]。探究不同貯藏條件甘薯塊根的品質(zhì)變化規(guī)律,對(duì)于保障食品加工行業(yè)生產(chǎn)甘薯果汁、果脯等產(chǎn)品的原料品質(zhì)穩(wěn)定供應(yīng),避免原料過(guò)度損耗帶來(lái)的經(jīng)濟(jì)損失至關(guān)重要。
溫度是影響甘薯塊根采后貯藏中淀粉、可溶性糖、色澤等品質(zhì)指標(biāo)變化的重要因素[5]。研究表明,甘薯塊根的淀粉和可溶性糖含量與貯藏溫度存在顯著相關(guān)性,低溫可顯著促進(jìn)甘薯塊根內(nèi)糖類成分代謝和相互間轉(zhuǎn)化[6]。史光輝等[7]通過(guò)比較3種甘薯在4"℃和10"℃貯藏過(guò)程中的品質(zhì)變化,發(fā)現(xiàn)甘薯塊根淀粉含量隨貯藏時(shí)間的延長(zhǎng)總體呈下降趨勢(shì),溫度對(duì)甘薯淀粉、還原糖含量等指標(biāo)的影響顯著。MASUDA等[8]將甘薯品種Kokei"14分別置于3、5、10、13"℃環(huán)境中,貯藏20"d后發(fā)現(xiàn)5"℃促進(jìn)塊根內(nèi)蔗糖和甜度顯著增加的效果最明顯。LI等[9]采用低溫調(diào)節(jié)和冷藏相結(jié)合的方式,觀察到10"℃低溫可促進(jìn)甘薯塊根內(nèi)可溶性糖積累。這些研究主要集中在探究0"℃以上溫度貯藏過(guò)程中甘薯塊根的糖類成分變化規(guī)律,關(guān)于貯藏過(guò)程中塊根色澤變化及色澤與糖類相關(guān)性研究較少。
甘薯塊根的色澤是評(píng)價(jià)其新鮮度的重要指標(biāo),也影響著消費(fèi)者對(duì)其選購(gòu)的喜好程度[10]。SANCHEZ等[11]和ZACCARI等[12]的研究表明,貯藏溫度和時(shí)間會(huì)影響甘薯塊根色澤變化,L*、a*和b*值的變化可反映出塊根的新鮮度和耐儲(chǔ)運(yùn)性。但前人未對(duì)0"℃和甘薯冰點(diǎn)之間的近冰溫貯藏過(guò)程中塊根的色澤變化規(guī)律進(jìn)行探究。故本研究以甘薯品種普薯32號(hào)作為材料,研究不同貯藏溫度對(duì)甘薯塊根色澤指標(biāo)和糖類成分含量變化的影響,同時(shí)探究近冰溫貯藏甘薯的可行性,以期為甘薯加工制品品質(zhì)特性的提升提供理論依據(jù)和技術(shù)指導(dǎo)。
1.1""材料
供試甘薯品種為普薯32號(hào)(圖1),種植于廣西壯族自治區(qū)融水縣永樂(lè)鎮(zhèn)毛潭村(109°4′12?E,24°57′0?N),正常水肥管理。于2023年9月13日采收甘薯,挑選形狀、大小一致且無(wú)損傷的塊根,當(dāng)天運(yùn)輸?shù)睫r(nóng)業(yè)農(nóng)村部亞熱帶水果貯藏保鮮加工技術(shù)科研試驗(yàn)基地實(shí)驗(yàn)室。
1.2""方法
1.2.1""甘薯塊根冰點(diǎn)測(cè)定""甘薯塊根在實(shí)驗(yàn)室內(nèi)用清水清洗晾干,隨機(jī)挑選8個(gè)質(zhì)量相近、無(wú)損傷和病蟲(chóng)害的塊根并編號(hào)。參照Z(yǔ)HAO等[13]的方法并加以改進(jìn),將溫度記錄儀(L93-8,杭州路格科技有限公司)的探頭插入塊根,再將塊根放入–20"℃冰箱,每10"s自動(dòng)記錄1次溫度,待塊根完全結(jié)冰后,從溫度記錄儀中導(dǎo)出數(shù)據(jù),以測(cè)定時(shí)間為橫坐標(biāo),塊根檢測(cè)溫度為縱坐標(biāo),繪制甘薯塊根冰點(diǎn)曲線,確定其冰點(diǎn)溫度。如圖2所示,塊根中心溫度快速下降到–5.500"℃(過(guò)冰點(diǎn)),為適應(yīng)極低溫環(huán)境塊根組織通過(guò)代謝活動(dòng)釋放熱量,使中心溫度回升到–5.025"℃,出現(xiàn)短暫的溫度躍升現(xiàn)象,而后繼續(xù)緩慢凍結(jié)。塊根的冰點(diǎn)溫度為–5.025"℃,為避免樣品完全凍結(jié),故本研究中近冰溫設(shè)置為–4"℃。
1.2.2""塊根樣品處理""甘薯塊根在實(shí)驗(yàn)室內(nèi)用清水清洗晾干,隨機(jī)分為3組,每組20個(gè)甘薯塊根,分別置于25"℃(常溫)、14"℃(低溫)和–4"℃(近冰溫)的恒溫恒濕培養(yǎng)箱中貯藏,取樣時(shí)間分別為0、20、40、60"d,每次取樣均隨機(jī)抽取5個(gè)塊根測(cè)定品質(zhì)指標(biāo)。以25"℃(常溫)為對(duì)照組,14"℃(低溫)和–4"℃(近冰溫)為處理組。
1.2.3""塊根色澤測(cè)定""參照ONWUDE等[14]的方法并加以改進(jìn)。用不銹鋼刀將所有待測(cè)的甘薯塊根樣品沿縱向切成兩半,選取每個(gè)塊根樣品剖面中軸線附近5個(gè)點(diǎn),使用分光色差儀(DS-220,杭州彩譜科技有限公司)測(cè)定甘薯塊根剖面的L*值、a*值、b*值和H°值,每個(gè)溫度處理每次取樣時(shí)間點(diǎn)均測(cè)定5個(gè)塊根樣品。
1.2.4""塊根的可溶性糖類含量測(cè)定""稱取1.0"g甘薯樣品,加入5"mL"80%乙醇,研磨后再加入15"mL"80%乙醇,80"℃水浴提取30"min,待提取液冷卻后,8500"r/min離心10"min,收集上清液,用80%乙醇定容至50"mL,即為糖提取液,用于測(cè)定可溶性糖總糖、蔗糖、果糖和葡萄糖含量。參照周振祥等[15]的方法采用改良的蒽酮比色法測(cè)定可溶性糖總糖、蔗糖、果糖和葡萄糖含量,單位為mg/g。
1.2.5""塊根的淀粉含量測(cè)定""參照田維娜等[16]的方法并加以改進(jìn)。稱取制備甘薯塊根樣品的糖提取液后剩余的沉淀物0.2"g,加入1.0"mL"95%乙醇,用ddH2O定容至15"mL,100"℃水浴10"min,糊化,待糊化液冷卻后,用ddH2O定容至100"mL,即為淀粉提取液,采用碘-淀粉比色法測(cè)定淀粉含量,單位為mg/g。
1.2.6""塊根中糖代謝相關(guān)酶活性測(cè)定""酶提取液制備:稱取1.0"g甘薯樣品,冰浴研磨,加入5"mL預(yù)冷的50"mmol/L"Hepes-NaOH緩沖液(pH"7.5)(5.0"mmol/L"MgCl2,1.0"mmol/L"EDTA,2.5"mmol/L"DTT,0.05%"TritonX-100,0.05%"BSA,2.0%甘油),混勻,4"℃,11"000"r/min離心15"min,上清液即為酶提取液,用于測(cè)定中性轉(zhuǎn)化酶(NI)、酸性轉(zhuǎn)化酶(AI)活性。
NI活性測(cè)定參照TOMLINSON等[17]的方法。吸取0.2"mL酶提取液,加入0.3"mL酶反應(yīng)液(10"g/L蔗糖,5"mmol/L"MgCl2,1"mmol/L"EDTA、0.1"mmol/L磷酸緩沖液,pH"7.5),34"℃水浴加熱10"min,然后沸水浴5"min,反應(yīng)液冷卻后加入0.5"mL"2"mol/L"NaOH終止反應(yīng)。采用3,5-二硝基水楊酸法測(cè)定還原糖含量;另取0.2"mL酶提取液沸水浴5"min作為對(duì)照。用二者的差值計(jì)算還原糖產(chǎn)生速率來(lái)表示轉(zhuǎn)化酶活性,單位為μg/(g·h)。
AI活性測(cè)定參照TOMLINSON等[17]的方法并加以改進(jìn),吸取0.2"mL酶提取液,加入0.3"mL酶反應(yīng)液(100"mmol/L醋酸-醋酸鈉緩沖液,pH"5.5,10"g/L蔗糖),34"℃水浴加熱10"min,然后沸水浴5"min,反應(yīng)液冷卻后加入0.5"mL"2"mol/L"NaOH終止反應(yīng)。酶活力換算方法與NI活性測(cè)定相同。
1.2.7""塊根中淀粉酶活性測(cè)定""酶提取液制備:稱取1.0"g甘薯塊根樣品,置于預(yù)冷研缽,加入5"mL"ddH2O冰浴研磨,轉(zhuǎn)移至離心管中,用ddH2O洗滌研缽3次,每次加入5"mL"ddH2O,將洗滌液與研磨液合并,靜置20"min,4"℃,6000"r/min離心10"min,吸取上清液,用ddH2O定容至50"mL,即為淀粉酶提取液。
參照田維娜等[16]的方法并加以改進(jìn),吸取0.25"mL淀粉酶提取液,加入0.25"mL淀粉提取液,混勻后40"℃水浴5"min,再加入0.5"mL"DNS溶液,沸水浴5"min,待反應(yīng)液冷卻后用ddH2O定容至5"mL。在540"nm處測(cè)定反應(yīng)液吸光值。采用麥芽糖標(biāo)準(zhǔn)品繪制標(biāo)準(zhǔn)曲線,計(jì)算淀粉酶催化形成的麥芽糖含量,以每克甘薯塊根鮮樣每分鐘產(chǎn)生的麥芽糖質(zhì)量表示淀粉酶活性,單位為mg/(g·min)。
1.3""數(shù)據(jù)處理
采用Excel"2007和SPSS"19.0軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,采用Duncan多重比較法進(jìn)行方差分析(ANOVA)及顯著性檢驗(yàn),采用Pearson法進(jìn)行相關(guān)性分析;采用Origin"Pro"2021軟件繪制圖像。所有試驗(yàn)最少重復(fù)3次。
2.1""不同貯藏溫度下塊根色澤的變化
2.1.1""塊根L*值的變化""L*值通常用來(lái)反映物體顏色的明亮程度,L*值越大,亮度越高。不同貯藏溫度條件下甘薯塊根L*值的變化如圖3所示。隨貯藏時(shí)間的延長(zhǎng),25"℃(對(duì)照)和14"℃(處理)的甘薯塊根L*值與取樣起始點(diǎn)(0"d)相比無(wú)明顯變化,但–4"℃(處理)的甘薯塊根L*值在貯藏初期(0~20"d)與取樣起始點(diǎn)(0"d)相比顯著降低。貯藏20~60"d,–4"℃(處理)的甘薯塊根的L*值低于25"℃(對(duì)照)和14"℃(處理),說(shuō)明近冰溫貯藏對(duì)甘薯塊根L*值的影響較大,貯藏后的塊根顏色相對(duì)偏暗。
2.1.2""塊根a*值的變化""a*值可反映物體中紅色或綠色物質(zhì)的積累濃度,正值為紅色,負(fù)值為綠色。不同貯藏溫度條件下甘薯塊根a*值的變化如圖4所示。整個(gè)貯藏期內(nèi)(0~60"d),3個(gè)溫度(25"℃、14"℃和–4"℃)處理的甘薯塊根a*值均為正值,說(shuō)明甘薯塊根中呈色物質(zhì)表現(xiàn)為紅色。其中25"℃對(duì)照的甘薯塊根a*值呈先降后升的變化趨勢(shì),14"℃處理和–4"℃處理的塊根a*值均表現(xiàn)為先升后降的變化趨勢(shì),表明甘薯中呈色的紅色物質(zhì)受貯藏溫度和時(shí)間變化的影響。
2.1.3""塊根b*值的變化""b*值可反映物體中黃色或藍(lán)色物質(zhì)的積累濃度,正值為黃色,負(fù)值為藍(lán)色。不同貯藏溫度條件下甘薯塊根b*值的變化如圖5所示。3個(gè)溫度(25"℃、14"℃和–4"℃)條件下的甘薯塊根b*值均為正值,說(shuō)明塊根內(nèi)呈色物質(zhì)表現(xiàn)為黃色。整個(gè)貯藏期間(0~60"d),25"℃
對(duì)照組溫度下的甘薯塊根b*值呈先降后升的變化趨勢(shì);14"℃處理組的甘薯塊根的b*值呈先升后降的變化趨勢(shì),表明0~40"d該溫度條件下塊根中黃色呈色物質(zhì)隨貯藏時(shí)間的延長(zhǎng)逐漸積累,且在第40天時(shí)塊根b*值極顯著高于同時(shí)期25"℃對(duì)照樣品;–4"℃處理組中甘薯塊根b*值表現(xiàn)為逐漸降低的趨勢(shì),第60天的塊根b*值極顯著低于同時(shí)期對(duì)照樣品,說(shuō)明–4"℃處理不利于甘薯塊根內(nèi)黃色呈色物質(zhì)的積累。
2.1.4""塊根H°值的變化""H°值可反映物體的色調(diào),0°表示紅色,180°表示綠色,360°表示藍(lán)色。不同貯藏溫度條件下甘薯塊根H°值的變化如圖6所示。3個(gè)溫度(25"℃、14"℃和–4"℃)條件下的甘薯塊根H°均小于60°,說(shuō)明塊根的顏色偏紅。整個(gè)貯藏期(0~60"d),25"℃對(duì)照組和14"℃處理組的甘薯塊根H°值均呈先升后降的變化趨勢(shì),但各時(shí)間段(除0"d外)的樣品H°值相對(duì)于起始取樣點(diǎn)(0"d)波動(dòng)不明顯。–4"℃處理組塊根各時(shí)間段(除0"d外)的H°值均顯著低于同時(shí)期的對(duì)照組樣品,且也明顯低于起始取樣點(diǎn)。說(shuō)明25"℃對(duì)照和14"℃處理對(duì)甘薯塊根的H°值影響不大,–4"℃近冰溫環(huán)境對(duì)塊根H°值影響較大。
2.2""不同貯藏溫度下塊根中糖類成分的變化
2.2.1""可溶性糖含量變化""不同貯藏溫度條件下甘薯塊根可溶性糖含量變化如圖7所示。整個(gè)貯藏期內(nèi)(0~60"d),25"℃溫度條件下甘薯塊根的可溶性糖含量隨貯藏時(shí)間的延長(zhǎng)呈現(xiàn)先升后降再升的波動(dòng)變化,14"℃溫度條件下塊根的可溶性糖含量隨時(shí)間延長(zhǎng)持續(xù)升高,–4"℃溫度條件下塊根的可溶性糖含量表現(xiàn)為先降后升的變化趨勢(shì)。3個(gè)溫度(25"℃、14"℃和–4"℃)條件下甘薯塊根均在第60天時(shí),可溶性糖含量達(dá)到最高值,且14"℃溫度條件下的甘薯塊根中可溶性糖含量[(151.90±"0.98)mg/g]高于同時(shí)期的25"℃對(duì)照[(142.47±"2.03)mg/g]和–4"℃處理[(137.59±9.87)mg/g]。說(shuō)明14"℃的貯藏溫度相較于25"℃和–4"℃,更有利于甘薯塊根的可溶性糖積累。
2.2.2""蔗糖含量變化""不同貯藏溫度條件下甘薯塊根蔗糖含量變化如圖8所示。整個(gè)貯藏期內(nèi)(0~60"d),25"℃對(duì)照組和14"℃處理組的甘薯塊根蔗糖含量均呈先升后降的趨勢(shì),且各時(shí)間段(除0"d外)取樣點(diǎn)的塊根蔗糖含量均高于起始取樣點(diǎn)(0"d);–4"℃處理組的塊根蔗糖含量呈先降后升再降的變化趨勢(shì),各時(shí)間段(除0"d外)取樣點(diǎn)的塊根蔗糖含量均低于起始取樣點(diǎn)(0"d),且顯著低于同時(shí)期的25"℃對(duì)照。由此可知,25"℃和14"℃貯藏溫度有利于甘薯塊根內(nèi)蔗糖積累,而貯藏時(shí)間也對(duì)塊根蔗糖積累有較大影響,–4"℃處理不利于甘薯塊根中蔗糖積累。
2.2.3""果糖含量變化""不同貯藏溫度條件下甘薯塊根果糖含量變化如圖9所示。整個(gè)貯藏期(0~"60"d),25"℃對(duì)照組的甘薯塊根果糖含量表現(xiàn)為先升后降變化;14"℃處理組的塊根果糖含量呈先降低、后升高、再降低的變化趨勢(shì);–4"℃處理組的塊根果糖含量呈先快速降低,到基本穩(wěn)定不變,再快速降低的變化趨勢(shì)。從第40天開(kāi)始,3個(gè)溫度(25"℃、14"℃和–4"℃)條件下的塊根果糖含量均出現(xiàn)大幅度的降低,表明塊根中果糖不斷被消耗,有可能被用于其他代謝物的合成。此外,–4"℃處理的塊根在第40天和第60天的果糖含量分別極顯著和顯著低于同時(shí)期的25"℃對(duì)照,說(shuō)明–4"℃近冰溫環(huán)境促進(jìn)了果糖的消耗。
2.2.4""葡萄糖含量變化""不同貯藏溫度條件下甘薯塊根葡萄糖含量變化如圖10所示。整個(gè)貯藏期(0~60"d),3個(gè)溫度(25"℃、14"℃和–4"℃)條件下甘薯塊根的葡萄糖含量均表現(xiàn)為先降低后升高的變化趨勢(shì)。第40天達(dá)到最低值,隨后出現(xiàn)大幅度的升高,結(jié)合圖9中果糖含量的變化,推測(cè)40~60"d的貯藏期內(nèi),甘薯塊根中消耗的果糖可能被大量轉(zhuǎn)化為葡萄糖。
2.2.5""淀粉含量變化""不同貯藏溫度條件下甘薯塊根淀粉含量變化如圖11所示。整個(gè)貯藏期間(0~60"d)內(nèi),3個(gè)溫度(25"℃、14"℃和–4"℃)條件下的甘薯塊根內(nèi)淀粉含量均呈顯著降低變化(Plt;0.05),表明3個(gè)溫度條件下貯藏的甘薯塊根隨貯藏時(shí)間延長(zhǎng),淀粉不斷被降解。
2.3""不同貯藏溫度下甘薯塊根糖代謝相關(guān)酶活力變化
2.3.1""中性轉(zhuǎn)化酶活力變化""不同貯藏溫度條件下甘薯塊根的中性轉(zhuǎn)化酶(NI)活力如圖12所示。整個(gè)貯藏期(0~60"d),3個(gè)溫度(25"℃、14"℃和–4"℃)條件下的甘薯塊根內(nèi)NI活力均隨著時(shí)間的延長(zhǎng)表現(xiàn)為先升高后降低的變化趨勢(shì),在第40天時(shí)NI活力達(dá)到最高值,隨后大幅度降低。表明不同溫度對(duì)甘薯塊根NI活力變化趨勢(shì)的影響相同。
2.3.2""酸性轉(zhuǎn)化酶活力變化""不同貯藏溫度條件下甘薯塊根的酸性轉(zhuǎn)化酶(AI)活力如圖13所示。整個(gè)貯藏期(0~60"d),25"℃對(duì)照組的甘薯塊根AI活力表現(xiàn)在貯藏初期(0~20"d)與起始取樣點(diǎn)比較無(wú)明顯變化,隨后快速升高,達(dá)到最高值后酶活力趨于平穩(wěn);14"℃處理組塊根AI活力表現(xiàn)為在貯藏初期略微下降,隨后快速升高的變化;–4"℃處理組中塊根AI活力隨貯藏時(shí)間延長(zhǎng)呈先升后降變化。表明隨著貯藏時(shí)間延長(zhǎng),14"℃處理的甘薯塊根內(nèi)AI仍具有較高活力。
2.3.3""淀粉酶活力變化""不同貯藏溫度條件下甘薯塊根的淀粉酶活力如圖14所示。整個(gè)貯藏期(0~60"d),25"℃對(duì)照組的甘薯塊根淀粉酶活力呈先升后降再升的波浪式變化;14"℃處理組和–4"℃處理組的塊根淀粉酶活力呈先升后降變化。貯藏60"d后,14"℃和–4"℃的塊根中淀粉酶活力均極顯著低于25"℃對(duì)照,說(shuō)明在貯藏后期隨著時(shí)間延長(zhǎng),較高溫度貯藏可顯著提高塊根內(nèi)淀粉酶活力。
2.4""甘薯塊根內(nèi)在品質(zhì)與色差的相關(guān)性分析
貯藏期內(nèi)甘薯塊根色澤指標(biāo)與糖類含量、糖代謝酶活力之間的相關(guān)性如圖15所示。甘薯塊根色澤的L*值與可溶性糖、蔗糖含均呈極顯著正相關(guān),與淀粉酶活力呈顯著負(fù)相關(guān);a*值與已檢測(cè)的糖類含量、糖代謝酶活力均無(wú)顯著相關(guān)性;b*值與蔗糖呈極顯著正相關(guān),與淀粉含量呈顯著正相關(guān),而與葡萄糖含量呈顯著負(fù)相關(guān)。H°值與蔗糖和淀粉呈極顯著正相關(guān),與果糖呈顯著正相關(guān),而與NI活力呈顯著負(fù)相關(guān)。蔗糖與可溶性糖呈極顯著正相關(guān),與葡萄糖呈顯著負(fù)相關(guān),表明在甘薯塊根中蔗糖是主要的可溶性糖類成分之一。果糖與葡萄糖呈極顯著負(fù)相關(guān),與淀粉呈極顯著正
相關(guān)。此外,葡萄糖與NI活力呈極顯著負(fù)相關(guān),淀粉與NI和AI的活力均呈極顯著負(fù)相關(guān)。相關(guān)性分析結(jié)果說(shuō)明,色澤變化與糖類成分的代謝活動(dòng)密切相關(guān),3個(gè)色差指標(biāo)L*值、b*值和H°值均與蔗糖呈極顯著正相關(guān),表明甘薯在貯藏過(guò)程中蔗糖可能是決定色澤變化的重要因素之一。
溫度是影響采收后甘薯貯藏過(guò)程中甜味品質(zhì)變化的重要因子[18]。甘薯不同品種對(duì)溫度的適應(yīng)性不同,故不同品種的適宜貯藏溫度存在差異。有文獻(xiàn)報(bào)道12~15"℃是甘薯塊根的最適宜貯藏溫度[19],亦有研究表明甘薯的適宜貯藏溫度范圍應(yīng)為10~14"℃[20]。本研究中,整個(gè)貯藏期內(nèi)(0~"60"d),14"℃溫度下甘薯塊根的可溶性糖含量表現(xiàn)為隨時(shí)間延長(zhǎng)持續(xù)升高,且各貯藏時(shí)間點(diǎn)的蔗糖含量均高于同時(shí)期25"℃和–4"℃溫度下的甘薯塊根,表明14"℃是甘薯品種普薯32號(hào)的適宜貯藏溫度,與前人關(guān)于甘薯貯藏適宜溫度范圍相印證。從甘薯糖化增甜效果上看,近冰溫–4"℃處理甘薯塊根的增甜效果低于25"℃和14"℃。
植物塊根、塊莖等貯藏器官中轉(zhuǎn)化酶活性會(huì)影響其組織細(xì)胞中的淀粉含量[21-23]。AMJAD等[24]發(fā)現(xiàn),馬鈴薯塊莖在低溫環(huán)境中的酸性轉(zhuǎn)化酶活性大幅度升高,隨之可溶性糖種類和含量比例發(fā)生明顯變化,參與淀粉分解的關(guān)鍵酶是酸性轉(zhuǎn)化酶而不是淀粉酶。ZHANG等[25]采用比較轉(zhuǎn)錄組分析發(fā)現(xiàn),甘薯塊根內(nèi)編碼液泡酸性轉(zhuǎn)化酶的Ibβfruct2表達(dá)量與淀粉含量存在負(fù)相關(guān)性,編碼的轉(zhuǎn)化酶可調(diào)節(jié)塊根淀粉含量,液泡酸性轉(zhuǎn)化酶活性越高,胞內(nèi)淀粉顆粒積累越少。這也解釋了本研究中甘薯塊根的淀粉含量與中性轉(zhuǎn)化酶、酸性轉(zhuǎn)化酶活性呈顯著負(fù)相關(guān)的現(xiàn)象。
色澤是甘薯外觀品質(zhì)的核心指標(biāo)之一,對(duì)鮮食及加工產(chǎn)品的商品價(jià)值有著重要影響。甘薯塊根顏色的變化歸因于組織細(xì)胞中花青素、類胡蘿卜素等天然色素成分,它們的含量變化與塊根色澤強(qiáng)度直接相關(guān)[26-27],而貯藏溫度和時(shí)間也會(huì)極大的影響塊根內(nèi)代謝活性,從而導(dǎo)致色澤變化[28-29]。本研究中同時(shí)期的近冰溫–4"℃處理甘薯塊根L*值顯著低于25"℃對(duì)照和14"℃處理,3個(gè)溫度條件下甘薯塊根的a*和b*值亦隨貯藏時(shí)間延長(zhǎng)而發(fā)生波動(dòng)變化,這與SANCHEZ等[11]的研究結(jié)果相似,可能是溫度影響了塊根內(nèi)花青素、類胡蘿卜素等成分的代謝,從而改變塊根色澤,這有待后續(xù)深入探究溫度對(duì)甘薯塊根色素組成和含量的影響。
糖類可參與調(diào)節(jié)植物花青素生物合成途經(jīng),進(jìn)而影響器官色澤變化[30-31]。甘薯塊根中花青素含量通常與色澤指標(biāo)L*、a*、b*值呈正相關(guān),花青素含量對(duì)塊根色澤變化有顯著影響,而淀粉含量與色澤指標(biāo)呈負(fù)相關(guān)[32],淀粉的降解可能為合成花青素前體物質(zhì)提供重要中間體,從而促進(jìn)塊根中花青素積累[33]。因?yàn)楸狙芯课磳?duì)甘薯塊根色素成分進(jìn)行檢測(cè),糖類成分如何參與調(diào)節(jié)呈色物質(zhì)的代謝機(jī)理,后續(xù)還需進(jìn)一步細(xì)化分析。
參考文獻(xiàn)
[10]"Sanchez"C"D"P,"Hashim"N,"Shamsudin"R,"Nor"m"z"m."Applications"of"imaging"and"spectroscopy"techniques"for"non-destructive"quality"evaluation"of"potatoes"and"sweet"potatoes:"a"review[J]."Trends"in"Food"Science"amp;"Technology,"2020,"96:"208-221.
[11]"SANCHEZ"C"D"P,"HASHIM"N,"SHAMSUDIN"R,"NOR"M"Z"M."Effects"of"different"storage"temperatures"on"the"quality"and"shelf"life"of"Malaysian"sweet"potato"(Ipomoea"batatas"L.)"varieties[J]."Food"Packaging"and"Shelf"Life,"2021,"28:"100642.
[12]"ZACCARI"F,"CABRERA"M,"SAADOUN"A."Sweet"potato"and"squash"storage[J]."Encyclopedia"of"Food"Security"and"Sustainability,"2019,"2:"464-472.
[13]"ZHAOnbsp;H"D,"JIAO"W"X,"CUI"K"B,"FAN"X"G,"SHU"C,"ZHANG"W"L,"CAO"J"K,"JIANG"W"B."Near-freezing"temperature"storage"enhances"chilling"tolerance"in"nectarine"fruit"through"its"regulation"of"soluble"sugars"and"energy"metabolism[J]."Food"Chemistry,"2019,"289:"426-435.
[14]"ONWUDE"D"I,"HASHIM"N,"ABDAN"K,"JANIUS"R,"CHEN"G"N."Combination"of"computer"vision"and"backscattering"imaging"for"predicting"the"moisture"content"and"colour"changes"of"sweet"potato"(Ipomoea"batatas"L.)"during"drying"[J]."Computers"and"Electronics"in"Agriculture,"2018,"150:"178-187.
[15]"周振祥,"趙博,"王唯先,"仝驍鵬,"鄭劍波,"李艷紅,"高建明,"羅峰,"孫守鈞,"裴忠有."不同前處理對(duì)測(cè)定甜高粱莖稈汁液3種糖含量的影響[J]."草業(yè)科學(xué),"2022,"39(5):"940-948.ZHOU"Z"X,"ZHAO"B,"WANG"W"X,"TONG"X"P,"ZHENG"J"B,"LI"Y"H,"GAO"J"M,"LUO"F,"SUN"S"J,"PEI"Z"Y."Determination"of"three"soluble"sugars"in"stem"juice"of"sweet"sorghum"by"anthrone"colorimetry[J]."Pratacultural"Science,"2022,"39(5):"940-948."(in"Chinese)
[16]"田維娜,"文一,"繆穎,"李雯妮,"姜微波,"曹建康."外源亞精胺脈沖負(fù)壓滲透對(duì)采后菜豆豆粒衰老生理的影響[J]."中國(guó)食品學(xué)報(bào),"2014,"14(10):"75-82.Tian"W"N,"Wen"Y,"Miao"Y,"Li"W"N,"Jiang"W"B,"Cao"J"K."Effects"of"vacuum"pulse"infiltration"of"exogenous"spermidine"on"senescence"physiology"of"postharvest"common"bean-seed[J]."Journal"of"Chinese"Institute"of"Food"Science"and"Technology,"2014,"14(10):"75-82."(in"Chinese)
[17]"Tomlinson"K"L,"McHugh"S,"Labbe"H,"Grainger"J"L,"James"L"E,"Pomeroy"K"M,"Mullin"J"W,"Miller"S"S,"Dennis"D"T,"Miki"B"L"A."Evidence"that"the"hexose-to-sucrose"ratio"does"not"control"the"switch"to"storage"product"accumulation"in"oilseeds:"analysis"of"tobacco"seed"development"and"effects"of"overexpressing"apoplastic"invertase[J]."Journal"of"Experimental"Botany,"2004,"55(406):"2291-2303.
[18]"Wang"S"Q,"Tang"J,"Hu"K"D,"Huang"Z"Q,"Yang"F,"Zhang"H"Y,"Hu"L"Y,"Li"Y"H,"Yao"G"F,"Zhang"H."Antioxidative"system"in"sweet"potato"root"is"activated"by"low-temperature"storage[J]."Journal"of"the"Science"of"Food"and"Agriculture,"2019,"99(8):"3824-3833.
[19]"解則義,"李洪民,"馬代夫,"陳天嬌,"韓永華,"李宗蕓."低溫脅迫影響甘薯貯藏的研究進(jìn)展[J]."植物生理學(xué)報(bào),"2017,"53(5):"758-767.XIE"Z"Y,"LI"H"M,"MA"D"F,"CHEN"T"J,"HAN"Y"H,"LI"Z"Y."Research"progress"of"the"effects"of"low"temperature"stress"on"the"sweetpotato"during"storage[J]."Plant"Physiology"Journal,"2017,"53(5):"758-767."(in"Chinese)
[20]"呂尊富,"潘超,"崔鵬,"陳國(guó)林,"龐林江,"陸國(guó)權(quán)."短期儲(chǔ)藏對(duì)不同大小甘薯理化特性的影響[J]."中國(guó)糧油學(xué)報(bào),"2019,"34(6):"30-36.LYU"Z"F,"PAN"C,"CUI"P,"CHEN"G"L,"PANG"L"J,"LU"G"Q."Effects"of"short-term"storage"on"physical"and"chemical"characteristics"of"sweet"potato"in"different"sizes[J]."Journal"of"the"Science"of"Food"and"Agriculture,"2019,"34(6):"30-36."(in"Chinese)
[21]"Draffehn"A"M,"Meller"S,"Li"L,"Gebhardt"C."Natural"diversity"of"potato"(Solanum"tuberosum)"invertases[J]."BMC"Plant"Biology,"2010,"10(1):"271.
[23]"占雷雷,"朱國(guó)鵬,"劉永華."4種蔗糖分解酶在甘薯塊根品質(zhì)形成中的作用[J]."熱帶作物學(xué)報(bào),"2019,"40(9):"1723-1728.ZHAN"L"L,"ZHU"G"P,"LIU"Y"H."Differential"roles"of"four"sucrose-degrading"enzymes"in"the"formation"of"qualities"of"the"storage"roots"of"sweet"potato[J]."Chinese"Journal"of"Tropical"Crops,"2019,"40(9):"1723-1728."(in"Chinese)
[24]"AMJAD"A,"JAVED"M"S,"HAMEED"A,"HUSSAIN"M,"ISMAIL"A."Changes"in"sugar"contents"and"invertase"activity"during"low"temperature"storage"of"various"chipping"potato"cultivars[J]."Food"Science"and"Technology,"2020,"40(2):"340-345.
[25]"Zhang"K,"Wu"Z"D,"Tang"D"B,"Luo"K,"Lu"H"X,nbsp;Liu"Y"Y,"Dong"J,"Wang"X,"Lv"C"W,"Wang"J"H,"Lu"K."Comparative"transcriptome"analysis"reveals"critical"function"of"sucrose"metabolism"related-enzymes"in"starch"accumulation"in"the"storage"root"of"sweet"potato[J]."Frontiers"in"Plant"Science,"2017,"8:"914.
[26]"ROSE"I"M,"VASANTHAKAALAM"H."Comparison"of"the"nutrient"composition"of"four"sweet"potato"varieties"cultivated"in"Rwanda[J]."American"Journal"of"Food"and"Nutrition,"2011,"1(1):"34-38.
[27]"Amoanimaa-Dede"H,"Su"C"T,"Yeboah"A,"Chen"C"H,"Yang"S"X,"Zhu"H"B,"Chen"M."Flesh"color"diversity"of"sweet"potato:"an"overview"of"the"composition,"functions,"biosynthesis,"and"gene"regulation"of"the"major"pigments[J]."Phyton-International"Journal"of"Experimental"Botany,"2020,"89(4):"805-833.
[28]"Maeshima"M,"Asahi"T,"Uritani"I."Effect"of"temperature"on"the"activity"and"stability"of"plant"cytochrome"c"oxidase[J]."Agricultural"and"Biological"Chemistry,"2014,"44(10):"2351-2356.
[29]"KONCZAK-ISLAM"I,"NAKATANI"M,"YOSHINAGA"M,"YAMAKAWA"O."Effect"of"ammonium"ion"and"temperature"on"anthocyanin"composition"in"sweet"potato"cell"suspension"culture[J]."Plant"Biotechnology,"2001,"18(2):"109-117.
[30]"Ohto"M,"Onai"K,"Furukawa"Y,"Aoki"E,"Araki"T,"Nakamura"K."Effects"of"sugar"on"vegetative"development"and"floral"transition"in"Arabidopsis[J]."Plant"Physiology,"2001,"127(1):"252-261.
[31]"Hara"M,"Oki"K,"Hoshino"K,"Kuboi"T."Enhancement"of"anthocyaninnbsp;biosynthesis"by"sugar"in"radish"(Raphanus"sativus)"hypocotyl[J]."Plant"Science,"2003,"164(2):"259-265.
[32]"Xu"M,"Li"J,"Yin"J,"WU"M"C,"ZHOU"W"T,"YANG"X"S,"ZHANG"R,"HE"J"R."Color"and"nutritional"analysis"of"ten"different"purple"sweet"potato"varieties"cultivated"in"China"via"principal"component"analysis"and"cluster"analysis[J]."Foods,"2024,"13(6):"1-16.
[33]"Wang"S"Q,"Pan"D"Z,"LYU"X"J,"SONG"X"M,"QIU"Z"M,"HUANG"C"M,"HUANG"R"H,"CHENG"W."Proteomic"approach"reveals"that"starch"degradation"contributes"to"anthocyanin"accumulation"in"tuberous"root"of"purple"sweet"potato[J]."Journal"of"Proteomics,"2016,"143:"298-305.