• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    土壤淹水的麻風樹(JatrophacurcasL.)生理參數(shù)估算數(shù)學模型的建立

    2025-06-25 00:00:00CHHEDILALVERMAKRISHANK.VERMAMUNNAsINGH
    農(nóng)業(yè)研究與應用 2025年1期

    中圖分類號:S181、Q945.78 文獻標志碼:A

    【Research significance】 Jatropha curcas L plantation has been recommended by government agenciesand non-government organizationsas apossible source of biodiesel on waste and unattended lands.Wastelandsareeitherofpoorfertility,saltaccumulation in root zone or seasonal or perennial flooding.However,it is common that the jatropha production is affected by soil flooding.Cumulative photosynthetic CO2 assimilation rate (A) ,transpiration rate (E) and stomatal conductance (gs) under normalandsoilfloodedconditionscanbetakenasan indexofproductivity.Calculationsofcumulativevaluesof physiological responses requiredetermination ofphysiological responses/functions of individual leaves.A functional relationship between physiologi calresponsesand leaf position isthe basis forcalculating the cumulative physiological responses of all leavespositioned overatwig.Mathematicalmodeling of physiological responses may prove useful in avoidingtimeconsuming field experiments,andalsoinsitu measurements of physiological responses. The pro cessof developing mathematical models for physiologicalparametersassociateddifferentsteps,suchas (a),parameterization,assigning values to model parameters,eitherbasedondirectmeasurementsorestimation,optimization;and(b),determiningvalues for parameters related to solving the governing equations,and validation,comparing the model output to anexperimental data set that wasnot used in the parameterization process.【Current research progress】 Determination of physiological response pattern of J curcasleavesispossiblebymeasuringapex,middle, and bottom leaf responses.Physiological responses of leaves over a twig follow the normal distribution curves(VERMA et al.,2012;JAN et al.,2024). However,models were developed to predict physiological responses from interrelated physiological responses.For example,if net CO2 assimilation response pattern of leaves over a twig is known,the pattern of transpiration rate or stomatal conductance can be also calculated or vice versa. Soil flooding is a significant factor limiting plant productivity, leading to downregulate carbon assimilation due to stomatal and mesophyll conductance limitations (FLEXAS et al.,2006; ZHOU et al.,2013;FAHAD et al.,2017) and changes in carboxylation rates and electron transport(ZHOU et al.,2013,2014).【Breakthrough of the study】J. curcas,a deciduous drought resistant oil tree species widely distributed in tropical and subtropical areas,grows in Central and South America,Africa,and South East Asia (SCHMOOK et al.,1997; KHALID et al.,2021). Different parts of J. curcas have been used for various purposes,such as animal feed,medicinal product and ecorestoration plantation in disturbed areas(HELLER,1996;OPENSHAW, 2000;TANG et al.,2007). Oil extracted from seeds of J. curcas can be used for making soap,cosmetics, and as a diesel (kerosene or extender)(OPENSHAW,2000;LIANG et al.,2007)as well. The vast patches of waterlogged land remain fallow along the large canals or in flood prone area of river basins of India. Soil flooding affects 10% of the global land area(SETTER and WATERS,20O3),and is one of the most important constraints in agricultural crop production (SHABALA,2011). The yield penalty resulting from soil flooding may vary between 15% and 80% depending on species,soil type and duration of the stress(ZHOU,2010;JAN et al.,2024). India has about 16 Mha of land underwater logging and about 8.2 Mha under salinity(ABROL,1994).The main reason for selecting J. curcas is its recommendations for large scale plantation on unattended lands (VERMA et al., 2014).Studies found a strong, nonlinear correlation between physiological parameters and the duration of soil flooding,and that stagnant soil flooding significantly affected the growth,development,and performanceof J. curcas (ZHOU, 2010;JANetal.,2024).However,thereare few reportson the physiological response modelsof J? curcasunder soil flooding conditions.【Key issues to be resolved】The present study isdevoted to the development of a model and procedure for predicting any physiological response if at least one response pattern isknown. The developed models were tested for physiological responses of J. curcasunder normal and soil flooding conditions for wider applications.

    1 Materialsand Methods

    1.1 Plantmaterial and growthconditions

    The forty-five-day old jatropha seedlings were raised from stem cuttings of 18~20cm in length grown in pots of 30cm in diameter and 30cm in depth filled with fertile soil. The pots were watered regularly to the field capacity. The uniform seedlings were subjected to two water regimes,i.e.,up to field capacity and continuous soil flooding. The soil flooding in the pots were maintained by retaining water level 5cm above the soil surface for a period of 4 weeks,and photosynthetic performance of the plant leavesat differentpositionsweremeasured thereafter. At the end of soil flooding stress,the average relative soil moisture was 65% and 36% for soil flooding and control,respectively. The soil texture was silty clay loam, pH7.1 ,with organic carbon,nitrogen,phosphorus and potassium of 0.86% , ,35.5 and 172kghm-2 ,respectively. The experiment was carried outatDepartmentofBotany,UniversityofLucknow,Lucknow,India.

    1.2 Measurementof photosynthetic characteristics

    Photosynthetic CO2 assimilation,transpiration and stomatal conductance were measured using an open system CIRAS-1,IRGA portable photosynthesissystem(PPSystem,England)undernatural sunlight at 9: 00-10: 00 am at photosynthetic photon flux density of .All measurements weretaken from the firsttotwelfthleaves(toptobottom)of jatropha plants during soil flooding stress (VERMA etal.,2014).

    1.2.1 Hypothesis

    Response functions with similar trendsofvariations could form a relationship between two corresponding paired responses known as characteristic constants.Ifcharacteristic constantsbetween anytwo paired physiological response functions are known, the variation of one response function can easily be calculated froma set of another known response function. Net CO2 assimilation rate,transpiration rate and stomatal conductanceofjatrophaleaveslocated over astem/twighavesimilartrendofvariation(VERMA et al.,2o12)and follow a Gaussian distribution as writtenbelow.

    where, physiological response function with respect to leaf position, x= leaf position, pm= physiological response of middle leaf, b= translation distance of peak, c= stretching factorof standard normaldistribution.

    Since A , E and gs ofleaves overa stem/twig followsimilar trend[equation (1)] ,acharacteristic relationship existsbetween physiological response functions.Various characteristic constants between possible pairs of physiological response functions can be Writtenasbelow.

    Thevaluesof physiological response characteristic constants are constantat given time for a plant.

    1.2.2 CalculationProcedure

    formation constants for converting E and gs to A were calculatedbydividing A response of leaves by corresponding mean gs of jatropha leaves.Characteristic constants for transformation of A and gs to E response,andthemean E responsesofleaves were divided by corresponding A and gs ,respectively. Similarly,characteristic transformation constants forconverting A and E responses to gs were calculated by dividing mean of gs by corresponding mean of A or E of jatropha leaves.Once these characteristic constants are worked out, the corresponding transformation maybe done as:

    1,Net CO2 assimilation (A )from transpiration (E) (20

    Net CO2 assimilation response function in relation to transpiration response function can be written asbelow.

    AExAE×Ex

    where,

    AEx= calculatedvaluesof A from E forleaf position, x

    characteristic constant to transform E to A Ex= observed values of E for leaf position, x ·λAE canbe calculated from equation(8)asunder.

    Above equation can be rewritten asunder:

    where,

    Thevaluesof A , E and gs as functions of leaf positions were observed in three replications for control andsoil flooding conditions.The characteristic trans

    Equation which can be used for transforming transpiration to photosynthetic rate can be finally writtenas:

    2,Net CO2 assimilation (A) from stomatal conductance (gs

    Net CO2 assimilation response function in relation to stomatal response function can be written as below.

    AgsxAgs×gsx

    where,

    Agsx= calculatedvaluesof A from gs for leaf position, x

    λAgs= characteristic constant to transform gs to A

    gsx= observed values of gs asa function of leaf position, x

    λAgs can be obtained from equation(16)in the following form.

    where,

    Thus equation which can be used for transforming gs to A can be finally written as:

    3,Transpiration (E) from net CO2 assimilation 二

    Transpiration response functions in relation to net CO2 assimilation response function can be written asbelow.

    EAxEA×Ax

    where,

    EAx= calculatedvalues of E from A for leaf posi-tion, x :

    λEA= characteristic constant to transform A to E

    Ax= observed values of ?A as a function of leaf po sition, x

    λEA can be obtained from equation(16)and can bewritteninthe following form.

    λEAEAmηbAE2ηbEA2x

    where,

    The equation which can be used for transforming A into E can be finally written as :

    4,Transpiration (E) from stomatal conductance (gs

    Transpiration response functions in relation to stomatal conductance response function can be written asbelow.

    EgsxEgs×gsx

    where,

    Egsx= calculated values of E from gs for leaf posi

    tion, x

    λ?Egs= characteristicconstantto transform gs to E

    gsx=gs as a function of leaf position, x :

    λEgs canbe obtained from equation(22)in the following form.

    where,

    The equation which can be used for transforming gs into E can be finally written as :

    EgsxEgsmηbgsE2ηbEgs?gsx2x

    5,Stomatal conductance (gs) from net CO2 as-similation (A )

    Stomatal conductance response functionsin relation to net CO2 assimilation rate response function canbewrittenasbelow.

    gs,Axgs,A×Ax

    where,

    (204號 gsAx= calculated values of gs from A for leaf posi-tion, x :

    λgsA= characteristic constant to transform A to gs

    λgs,4 can be obtained from equation(34)in the following form.

    where,

    The equation finally used for transforming net CO2 assimilation rate into gs is expressed as below:

    gsAxgs,dmηbAgs2ηbgs,A2xAx

    6,Stomatal conductance (gs) from transpiration

    Stomatal conductance response functions in relation to transpiration rate response function can be writtenasbelow.

    gsExgsE×Ex

    where,

    (204號 gsEx= calculated values of gs from E for leaf position, x

    λgs,E= characteristic constant to transform E to gs

    λgsE can be obtained from equation(34)in the following form.

    where,

    The final equation for transforming transpiration

    ratetostomatal conductanceisexpressedasbelow:

    gsExgsEmηbEgs2ηbgsE2xEx

    The different transformation characteristic constants were first calculated for different pairs of physiological responses,and later multiplied with the values of physiological responses needed to be transformed.Tocalculate A of J. curcas leaves from corresponding E response,the characteristic constants for converting E to A 1 (λAE )multipliedwith E responses and to calculate A from gs ,characteristic constants for converting gs to A(λAgs) were multiplied with values of gs of jatropha leaves. Similar calculations were done for converting A and gs responses to E and A and E to gs . Calculation of characteristic constants was also made for converting A to ,and constants for converting gs to . The calculation of characteristic constants for converting A to and constants for converting gs to E (λg,E) were presented inTable2,and calculationofcharacteristicconstants for converting A to gs (λAgs )and constants for converting E to gs (λEgs) )were presented in Table3.The calculatedvaluesof A fromobservedvaluesof E and gs , E fromobserved values of and gs and gs from observed A and E for control as well as under soil floodingconditions against leafpositions were presented in Table1to Table3.Percentdeviationsofcalculated values of and gs responses with respect to observedvalueswerecalculatedasbelow:

    Deviation (%)=[ (Observed value-Calculated value)/Observed value] ×100

    Root mean square errors (RMSE)were also usedasparameter to compare calculated values with observed values.The root mean squares error can be calculated as:

    2 Results

    The variations of calculated values of E and gs under control and soil flooding conditions with respect to leaf positions (x) )wereshown in Fig.1 to Fig. 3. The patterns of observed values of A , E and gs with respect to leaf positions were similarand followed the normal distribution.Therefore,itis possible to calculate A , E and gs responses with respect to leaf positionsat a given time with each other.Percent deviationsand RMSEofcalculated valuesof A , E and gs withobserved values under control and soil flooding conditions are presented in Table 1 to Table 3.

    2.1 Physiological characteristicconstants

    It can seen that the values of λAE rangedfrom 1.05 to 3.65 under soil flooding and from 1.23 to 2.80 without soil flooding(control),and the values of λAgs ranged from O.07 to O.22under soil floodingand from 0.06 to O.12 under control conditions.Similarly,the values λAE ranged from 0.27 to 0.95 under soil flooding and from 0.35 to 0.82 under control conditions, and the values of λEgs ranged from 0.03 to 0.07under soil flooding and from O.02 to O.06 under control conditions.Thevaluesof λAE ranged from 7.68to 15.00 with soil floodingand from 8.50 to 16.58without soil flooding. The values of λgsE ranged from 16.88 to 41.45without soil flooding and from 15.38 to 37.84 during soil flooding stress(Fig.1 to Fig.3).

    Fig.1 Observed photosynthetic CO2 assimilation rate and predicted photosynthetic CO2 assimilation rate from transpiration and stomatal conductance under control and soil flooding conditions

    2.2 Calculation of photosynthetic responses

    Thepercentdeviationsand RMSEofthecalculatedvaluesof A , E and gs from the observed values wereshowninTable1toTable3.Itcanbeseenfrom Fig.1 that the predicted values of A , E and gs were in closeagreementto the observed valuesundercontrol as well as waterlogged conditions. Average percent deviationsof thecalculatedvalues of A from E were 7.36% , 1.69% and 5.14% forthree replications under control conditions and 10.91% , 10.11% and 8.40% for the corresponding replications under waterlogged conditions. The corresponding root mean squares errors(RMSE)were found to be 0.3614,0.1091 and 0.2864 for controland 0.2392,0.1902and 0.2270 for waterloggedtreatment forall the three replications. Similarly,the average deviationsof the calculated valuesof A from gs were found to be 4.725, 1.69% and 5.14% under control and 11.17% , 10.31% and 6.33% underwaterlogged conditions forall thereplications.ThecorrespondingRMSEwerecalculatedas 0.4367,0.5075 and 0.3601 for control and 0.1611, 0.1660 and O.1445 for waterlogged treatment in three replications(Table1).

    Fig.2Observed transpiration rate and predicted transpiration rate form photosynthetic CO2 assimilation rate and stomatal conduc tanceundercontrol and soil floodingconditions
    Fig.3Observed stomatal conductance and predicted stomatal conductance from photosynthetic CO2 assimilation rate and transpiration rate under control and soil flooding condition

    Variationsoftheobservedandcalculatedvalues of E wereshownin Fig.2 and the calculated percent deviationsof E from the A and gs were presented in Table2.It could be seen from Table2 that the percent deviationsofthe calculated E from the observed A were 5.80% , 1.70% and 5.58% under control and 9.35% , 9.96% and 8.21% under waterlogged conditions for all the three replications.The corresponding RMSEwere0.1716,0.0569and0.1350undercontrol and 0.0977,0.0812 and 0.0996 under waterlogged conditions for all the three replications.

    Averagedeviationsofthecalculatedvaluesof E from gs were 6.71% , 4.51% and 5.58% under control and 11.61% , 5.48% and 8.46% under waterlogged conditions for the corresponding replications. The correspondingRMSE were foundto be 0.2039,0.2474 and 0.1954 for control and 0.0881, 0.0548 and 0.0814 for waterlogged conditions,respectively.The variationsof observed and calculated response functions of gs and calculated percent deviations of gs werepresentedinTable3.

    Fig.2 showed a close agreement between the observed and predicted values of gs Thepercent deviationsofcalculatedvaluesof gs from A with observed valueswere foundtobe 4.84% , 4.33% and 3.87% withthecorrespondingRMSEas4.5987,5.4724and 3.9477 under control and average deviationsof 13.06% , 9.65% and 5.88% with the corresponding RMSEas1.4677,1.7429 and1.3510underwaterlogged conditions,respectively.The averagedeviationsofcalculated gs from E were 7.43% , 4.27% and 5.83% forcontrol and 13.21% , 5.35% and 7.99% underwaterloggedconditionsforallthethreereplications.ThecorrespondingRMSEwere4.6322,5.6754 and4.0070undercontrol and2.2123,1.5386,2.2547 underwaterlogged conditions,respectively,for all thereplication.Thedeviationswereslightlyhighereither for apex leaves(leaf positions 1 and 2)or most bottom leaves when photosynthetic responses were verylow. The RMSE were comparatively higher for the calculated physiological responses under soil flooding conditions,however,the valueswere low. The calculated and observed values of A , E and gs wereincloseagreement.Hence,thehypothesiswas verified makingitpossibletocalculate physiological responses such as A , E and gs from each other with verylessdeviationsfromtheobservedvalues.

    3 Discussion

    The search for alternate source of fossil fuel overthe globeis on.The oilof J curcas seeds has beenusedasbiodiesel.Jatrophaplantationisrecommended asapossible sourceofbiodiesel onwasteand unattendedlands.Indiaishavingvastpatchofwaterlogged land along the large canals,where jatropha plantation is also being recommended. Physiological responses of J. curcas leaves located over twigvaries asthatof normallydistributedcurve.Thecumulative A , E and gs under control and waterlogged conditions canbe takenas an index forplantperformance and productivity(VERMA etal.,2014;KHALID et al., 2021;JANetal.,2024).

    Table1Percent deviations and RMSE of predicted A from E and gs under control conditions

    Cumulative values of photosynthetic responses requiredeterminationofphysiological observations of individual leavesundernormal aswellaswaterlogged conditions or to any other conditions.Mathematical modeling of physiological responses may prove useful in avoiding time consuming in situ measurements. Inthe present study,characteristic physiological responsetransformation constantsweredetermined fromthe observed data and prediction of the other physiological responsesweredone.Theaverage deviations of the predicted values of photosynthetic responsesover theobserved values were in acceptable range,hence,the hypothesis for existing a specific characteristic functional relationship with all possible pairsof ?A , E and gs werevalidated.

    Table2 Percent deviations and RMSE of predicted E from A and gs under control conditions
    Table3Percent deviations and RMSE of predicted gs from A and E under control conditions

    4 Conclusion

    The present study demonstrated a possibility of calculation for physiological responses following similarpattern from any other observed or measured physiological response pattern,which could reduce the fieldmeasurements soto save time,laborand cost.

    References

    ABROLI P.1994. Salinity management for sustainable agriculture[M]//Land degradation-a challenge to sustainability. Karnal, India:Central Soil Salinity Research Institute, 7-8.

    FAHADS,BAJWAAA,NAZIRU,ANJUMSA,F(xiàn)AROOQ A,ZOHAIB A,SADIA S,NASIM W,ADKINSS, SAUD S,IHSANMZ,ALHARBYH,WUC,WANG D P,HUANG JL. 2017. Crop production under drought and heat stress: Plant responses and management options[J]. Frontiersin Plant Science,8:1147.doi:10.3389/fpls.2017. 01147.

    FLEXASJ,RIBAS-CARBOM,BOTAJ,GALMESJ,HENKLE M,MARTINEZ-CANELLAS S,MEDRANO H. 2006.Decreased rubisco activity during water stress is not inducedbydecreased relativewatercontentbutrelated to conditions oflow stomatal conductance and chloroplast CO2 concentration[J].NewPhytologist,172(1):73-82. doi:10.1111/j.1469-8137.2006.01794.x.

    HELLER J. 1996. Physic nut Jatropha curcas L:promoting theconservation and use ofunderutilized and neglected crops[M]. Italy,Rome:Institute of Plant Genetics and CropPlantResearch,Gatersleben,International PlantGenetic Resources Institute,66.

    JANR,ADNAN M,HASHEMA,ABD-ALLAHEF,MURADW,KIMKM.2024.Indoleaceticacidandgibberellic acid enhance physiological and biochemical performance of Jatropha curcas L.under waterlogging and drought stress[J].Pakistan Journal ofBotany,56(5): 1653-1664. doi: 10.30848/PJB2024-5(13).

    KHALIDF,ULLAHS,REHMANF,HADIRA,KHANN, IBRAHIMF,KHANT,AZIZF,F(xiàn)EROZDA,NADEEM SG,HUSSAIN M.2021.Identification of suitablesites for Jatropha curcas L. bioenergy plantation using the AquaCrop model[J]. Forests,12(12) : 1772. doi: 10.3390/ f12121772.

    LIANG Y,CHEN H,TANG MJ, YANG PF,SHEN SH. 2007.Responses of Jatropha curcas seedlings to cold stress:Photosynthesis -related proteins and chlorophyll fluorescence characteristics [J].Physiologia Plantarum, 131(3) :508-517. doi:10.1111/j.1399-3054.2007.00974.x.

    OPENSHAW K. 2000. A review of Jatropha curcas:An oil plant of unfulfilled promise[J]. Biomass and Bioenergy, 19(1):1-15. doi: 10.1016/S0961-9534(00)00019-2.

    SCHMOOK B, SERRALTA-PERAZA L, KU-VERA J. 1997. Biofuels and industrial products from Jatropha curcas [C]//Proceedings of first international symposium on biofuel and industrial products from Jatropha curcas and other tropical oil seed plants. Managua,Nicaragua: 53-57.

    SETTER TL, WATERS I. 2003. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barleyand oats[J].Plant and Soil,253(1):1-34.doi: 10.1023/A:1024573305997.

    SHABALA S. 2011. Physiological and cellular aspects of phytotoxicity tolerance in plants:The role of membrane transporters and implications for crop breeding for waterlogging tolerance[J].New Phytologist,190(2):289-298. doi: 10.111/j.1469-8137.2010.03575.x.

    TANG M J,SUN JW,LIU Y,CHEN F,SHEN S H. 2007. Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor,in the woody oil plant Jatropha curcas[J].Plant Molecular Biology,63(3):419-428. doi: 10.1007/s11103- 006-9098-7.

    VERMA K K, SINGH M, VERMA C L. 2012. Developing a mathematical model for variation of physiological responses of Jatropha curcas leaves depending on leaf positions under soil flooding[J]. Acta Physiologiae Plantarum,34(4):1435-1443.doi:10.1007/s11738-012-0941-y.

    VERMAKK,SINGHM,GUPTARK,VERMACL.2014. Photosynthetic gas exchange,chlorophyll fluorescence, antioxidant enzymes,and growth responses of Jatropha curcas during soil flooding[J].Turkish Journal of Botany,38:130-140. doi:10.3906/bot-1212-32.

    ZHOU M X. 2010. Improvement of plant waterlogging tolerance[M]. In: MANCUSO S,SHABALA S.(eds) Waterlogging Signalling and Tolerance in Plants.Springer,Berlin,Heidelberg.doi.org/10.1007/978-3-642-10305-6_13.

    ZHOU S X,DUURSMA R A,MEDLYNBE,KELLY JWG, PRENTICE I C. 2013. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress[J]. Agricultural and Forest Meteorology,182: 204-214. doi: 10.1016/j.agrformet. 2013.05.009.

    ZHOU S X,MEDLYNB,SABATE S,SPERLICHD,COLIN PRENTICE I. 2014. Short-term water stress impacts on stomatal,mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates[J].Tree Physiology,34(10):1035-1046. doi: 10.1093/treephys/tpu072.

    (責任編輯 謝紅輝)

    久久精品国产亚洲av天美| 一本久久精品| av播播在线观看一区| 精品久久久噜噜| 美女视频免费永久观看网站| 国产人妻一区二区三区在| 久久97久久精品| 在线观看国产h片| xxx大片免费视频| 久久99热这里只有精品18| 我的老师免费观看完整版| h日本视频在线播放| 欧美潮喷喷水| 97在线人人人人妻| 精品亚洲乱码少妇综合久久| 99热这里只有是精品在线观看| 王馨瑶露胸无遮挡在线观看| 国产男女内射视频| 国产成人91sexporn| 在线观看一区二区三区| 亚洲成人精品中文字幕电影| 欧美xxⅹ黑人| 高清午夜精品一区二区三区| 寂寞人妻少妇视频99o| 亚洲欧美日韩东京热| 国产精品不卡视频一区二区| 精品视频人人做人人爽| 日日啪夜夜爽| 久久精品国产亚洲av天美| 九九爱精品视频在线观看| 中文字幕亚洲精品专区| 精品99又大又爽又粗少妇毛片| 久久99热6这里只有精品| 成年人午夜在线观看视频| 国精品久久久久久国模美| 亚洲aⅴ乱码一区二区在线播放| 大话2 男鬼变身卡| 国产熟女欧美一区二区| 欧美日韩综合久久久久久| 成人亚洲精品一区在线观看 | 亚洲欧洲日产国产| 免费不卡的大黄色大毛片视频在线观看| 国产精品无大码| 日日啪夜夜撸| 在线观看av片永久免费下载| 欧美亚洲 丝袜 人妻 在线| 一区二区三区精品91| 亚洲精品日韩av片在线观看| 亚洲欧美日韩无卡精品| 五月伊人婷婷丁香| 日韩中字成人| 看非洲黑人一级黄片| 欧美日韩在线观看h| av在线观看视频网站免费| 街头女战士在线观看网站| 久久99蜜桃精品久久| 亚洲精品成人久久久久久| 日韩精品有码人妻一区| 久久久久久久久大av| 99热网站在线观看| 爱豆传媒免费全集在线观看| 高清av免费在线| 久久久精品欧美日韩精品| 在线观看美女被高潮喷水网站| 欧美日韩视频高清一区二区三区二| 丝袜美腿在线中文| 嫩草影院入口| 亚洲欧美清纯卡通| 国产 精品1| 少妇 在线观看| 亚洲成人一二三区av| 男人狂女人下面高潮的视频| 国产v大片淫在线免费观看| 晚上一个人看的免费电影| tube8黄色片| 成人欧美大片| 亚洲人成网站在线观看播放| 91狼人影院| 亚洲av二区三区四区| 久久女婷五月综合色啪小说 | 免费观看a级毛片全部| 色吧在线观看| 久久ye,这里只有精品| 91久久精品国产一区二区成人| av国产久精品久网站免费入址| 亚洲国产最新在线播放| 久久韩国三级中文字幕| 超碰av人人做人人爽久久| 日本av手机在线免费观看| av国产精品久久久久影院| 老司机影院成人| 国内精品宾馆在线| 99热全是精品| 欧美高清性xxxxhd video| 亚洲精品一区蜜桃| 久久久久久久久久久丰满| 性色av一级| 亚洲国产精品成人久久小说| 亚洲精品日本国产第一区| 91在线精品国自产拍蜜月| 国产综合精华液| 丰满乱子伦码专区| 国产精品精品国产色婷婷| 91在线精品国自产拍蜜月| 六月丁香七月| 禁无遮挡网站| 亚洲精品日本国产第一区| 国产亚洲精品久久久com| 国产精品99久久99久久久不卡 | 制服丝袜香蕉在线| 三级男女做爰猛烈吃奶摸视频| 日本免费在线观看一区| 永久网站在线| av网站免费在线观看视频| 亚洲精品,欧美精品| 少妇被粗大猛烈的视频| 又大又黄又爽视频免费| 国产精品av视频在线免费观看| 男女那种视频在线观看| 日韩欧美 国产精品| 丝袜喷水一区| 国产毛片a区久久久久| 香蕉精品网在线| 亚洲精品一区蜜桃| 80岁老熟妇乱子伦牲交| 亚洲性久久影院| 精品熟女少妇av免费看| 午夜免费鲁丝| 91在线精品国自产拍蜜月| 午夜老司机福利剧场| 久久精品夜色国产| 蜜桃亚洲精品一区二区三区| 伊人久久国产一区二区| 日日摸夜夜添夜夜添av毛片| 国产成人freesex在线| 身体一侧抽搐| 免费看a级黄色片| 亚洲综合色惰| 有码 亚洲区| av在线播放精品| 国产片特级美女逼逼视频| 如何舔出高潮| 又爽又黄a免费视频| 国产在线男女| 国产精品一区二区在线观看99| 全区人妻精品视频| av播播在线观看一区| 黑人高潮一二区| a级毛片免费高清观看在线播放| 午夜免费鲁丝| 黄色视频在线播放观看不卡| 又爽又黄无遮挡网站| av线在线观看网站| 国产精品国产av在线观看| 国产熟女欧美一区二区| 日韩av在线免费看完整版不卡| 亚洲av成人精品一二三区| 一级片'在线观看视频| 精品人妻偷拍中文字幕| 精品久久久久久久久亚洲| 亚洲精品乱久久久久久| 中国国产av一级| 午夜亚洲福利在线播放| 精品久久久久久久末码| 性色avwww在线观看| 亚洲成人一二三区av| tube8黄色片| 免费av不卡在线播放| 永久免费av网站大全| 国产精品成人在线| 亚洲av中文av极速乱| 黄片wwwwww| 七月丁香在线播放| av国产精品久久久久影院| 亚洲最大成人手机在线| 人妻少妇偷人精品九色| a级毛色黄片| 日韩视频在线欧美| 伦理电影大哥的女人| 亚洲av国产av综合av卡| 国产亚洲91精品色在线| 在线观看国产h片| 国语对白做爰xxxⅹ性视频网站| 性色av一级| 成年女人在线观看亚洲视频 | 插阴视频在线观看视频| 国产精品国产三级国产专区5o| 欧美97在线视频| 国产成人精品福利久久| 在线观看av片永久免费下载| 亚洲av.av天堂| 搡老乐熟女国产| 日韩亚洲欧美综合| 中文字幕人妻熟人妻熟丝袜美| 赤兔流量卡办理| 九九在线视频观看精品| 99热国产这里只有精品6| 激情五月婷婷亚洲| 啦啦啦中文免费视频观看日本| 少妇人妻精品综合一区二区| 成人美女网站在线观看视频| 美女脱内裤让男人舔精品视频| 久久精品久久久久久噜噜老黄| 青春草亚洲视频在线观看| 成人无遮挡网站| 欧美 日韩 精品 国产| 免费看不卡的av| 国产免费一级a男人的天堂| 久久久成人免费电影| 欧美一区二区亚洲| 人妻少妇偷人精品九色| 精品人妻一区二区三区麻豆| 日韩成人伦理影院| 三级国产精品欧美在线观看| 久久久久久伊人网av| av在线天堂中文字幕| 成年人午夜在线观看视频| 久久久久久久久久久丰满| 国产精品一区二区三区四区免费观看| 神马国产精品三级电影在线观看| 国产亚洲91精品色在线| 亚洲高清免费不卡视频| 免费看日本二区| 人妻一区二区av| 身体一侧抽搐| 各种免费的搞黄视频| 欧美成人一区二区免费高清观看| 18禁动态无遮挡网站| 国产精品.久久久| 亚洲精品,欧美精品| 久久久久久国产a免费观看| 99久久精品国产国产毛片| 国产欧美日韩一区二区三区在线 | 久久久a久久爽久久v久久| 日本熟妇午夜| 亚洲精品久久久久久婷婷小说| 18禁裸乳无遮挡动漫免费视频 | 久久女婷五月综合色啪小说 | 少妇的逼好多水| 在线亚洲精品国产二区图片欧美 | 人妻 亚洲 视频| 国产av码专区亚洲av| 国产精品av视频在线免费观看| 国产成人免费无遮挡视频| 一级av片app| 日日摸夜夜添夜夜添av毛片| 中文字幕av成人在线电影| 国产精品人妻久久久影院| 最近手机中文字幕大全| 精品99又大又爽又粗少妇毛片| 人人妻人人爽人人添夜夜欢视频 | 国产综合精华液| 少妇人妻精品综合一区二区| 国产成人午夜福利电影在线观看| 22中文网久久字幕| 一级片'在线观看视频| 日韩欧美精品免费久久| 国产乱人偷精品视频| 成年版毛片免费区| 亚洲欧美精品专区久久| 有码 亚洲区| 亚洲欧美一区二区三区国产| 秋霞伦理黄片| 一级毛片黄色毛片免费观看视频| 美女主播在线视频| 少妇裸体淫交视频免费看高清| 久久精品夜色国产| 久热这里只有精品99| 日韩欧美 国产精品| 中国三级夫妇交换| 大片免费播放器 马上看| 成人亚洲精品av一区二区| 特级一级黄色大片| 国产免费一级a男人的天堂| 精品久久久久久久久av| 亚洲国产色片| 成人综合一区亚洲| 美女脱内裤让男人舔精品视频| 久久99热这里只有精品18| 日日摸夜夜添夜夜爱| 婷婷色av中文字幕| 精品少妇黑人巨大在线播放| 久久久亚洲精品成人影院| 国产亚洲午夜精品一区二区久久 | 欧美日韩综合久久久久久| 久久久久精品久久久久真实原创| 国精品久久久久久国模美| 99热这里只有是精品在线观看| 熟女av电影| 亚洲精品,欧美精品| 久久ye,这里只有精品| 国产视频内射| 91狼人影院| 久久99精品国语久久久| 免费大片18禁| 热re99久久精品国产66热6| 91精品一卡2卡3卡4卡| 中文欧美无线码| 少妇裸体淫交视频免费看高清| 天堂俺去俺来也www色官网| 国产伦理片在线播放av一区| 国产精品偷伦视频观看了| 中国国产av一级| 热re99久久精品国产66热6| 免费看光身美女| 欧美日韩视频精品一区| 亚洲欧美日韩卡通动漫| 国产片特级美女逼逼视频| 美女被艹到高潮喷水动态| 欧美精品人与动牲交sv欧美| 国产亚洲午夜精品一区二区久久 | 亚洲国产高清在线一区二区三| 亚洲国产精品专区欧美| 一个人观看的视频www高清免费观看| 直男gayav资源| 亚洲第一区二区三区不卡| 久久久久久伊人网av| 在线 av 中文字幕| 精品久久久久久久人妻蜜臀av| 在线看a的网站| 有码 亚洲区| a级毛色黄片| 亚洲精华国产精华液的使用体验| 日本与韩国留学比较| 久久综合国产亚洲精品| 极品教师在线视频| 成年版毛片免费区| 我的女老师完整版在线观看| 免费观看的影片在线观看| 又黄又爽又刺激的免费视频.| 1000部很黄的大片| 一级片'在线观看视频| 中文乱码字字幕精品一区二区三区| av在线app专区| 黄色一级大片看看| 色吧在线观看| 亚洲国产精品成人久久小说| 亚洲欧美成人精品一区二区| 国产精品成人在线| 国产成人免费无遮挡视频| 直男gayav资源| 精品国产一区二区三区久久久樱花 | 色播亚洲综合网| 麻豆精品久久久久久蜜桃| 欧美激情国产日韩精品一区| 日本wwww免费看| 成年人午夜在线观看视频| 免费看不卡的av| 久久精品国产自在天天线| 亚洲精品影视一区二区三区av| videos熟女内射| 身体一侧抽搐| 国产高清国产精品国产三级 | 久久精品国产鲁丝片午夜精品| 国产午夜福利久久久久久| 97在线视频观看| 欧美 日韩 精品 国产| 亚洲av二区三区四区| 亚洲自偷自拍三级| 麻豆精品久久久久久蜜桃| 国产高清不卡午夜福利| 亚洲自偷自拍三级| 99久久精品一区二区三区| 国产成人精品久久久久久| 18禁在线播放成人免费| 国产日韩欧美亚洲二区| 欧美xxⅹ黑人| 日韩成人av中文字幕在线观看| 精品人妻一区二区三区麻豆| 精品人妻偷拍中文字幕| 欧美日韩视频高清一区二区三区二| 尤物成人国产欧美一区二区三区| 男的添女的下面高潮视频| 日韩强制内射视频| 中文字幕制服av| 午夜福利高清视频| 国产成人免费无遮挡视频| 大又大粗又爽又黄少妇毛片口| 街头女战士在线观看网站| 欧美成人a在线观看| 在线观看一区二区三区激情| 交换朋友夫妻互换小说| 色视频在线一区二区三区| 老师上课跳d突然被开到最大视频| 亚洲精品亚洲一区二区| 丝袜美腿在线中文| 中文字幕久久专区| 欧美日韩精品成人综合77777| 亚洲av免费高清在线观看| 国产一区二区三区综合在线观看 | 熟女av电影| av免费在线看不卡| 成人鲁丝片一二三区免费| 大话2 男鬼变身卡| 狂野欧美激情性xxxx在线观看| 久久久久久久大尺度免费视频| 边亲边吃奶的免费视频| 久久人人爽av亚洲精品天堂 | 男人爽女人下面视频在线观看| 中文乱码字字幕精品一区二区三区| 99re6热这里在线精品视频| 黑人高潮一二区| 久热久热在线精品观看| 大陆偷拍与自拍| 色哟哟·www| 久久精品国产a三级三级三级| 成人毛片60女人毛片免费| 国产精品女同一区二区软件| av在线app专区| 国产精品国产三级专区第一集| 国模一区二区三区四区视频| 日韩在线高清观看一区二区三区| 国产精品秋霞免费鲁丝片| 国产人妻一区二区三区在| 黄色一级大片看看| 久久久国产一区二区| 国产91av在线免费观看| 亚洲激情五月婷婷啪啪| 大片免费播放器 马上看| 亚洲精华国产精华液的使用体验| 日日撸夜夜添| 色视频www国产| 天堂中文最新版在线下载 | 国产精品久久久久久精品古装| 永久网站在线| 精品少妇久久久久久888优播| 国产成人精品一,二区| 视频区图区小说| 国产美女午夜福利| 久久久久国产网址| 国产成年人精品一区二区| 亚洲精品456在线播放app| 欧美精品一区二区大全| 大片免费播放器 马上看| 内射极品少妇av片p| 777米奇影视久久| 欧美极品一区二区三区四区| 亚洲精品自拍成人| 男插女下体视频免费在线播放| 18+在线观看网站| 美女国产视频在线观看| 国产精品久久久久久精品古装| 边亲边吃奶的免费视频| 国产免费一区二区三区四区乱码| 国产午夜精品一二区理论片| 国产精品一及| 成人鲁丝片一二三区免费| 1000部很黄的大片| 亚洲高清免费不卡视频| 可以在线观看毛片的网站| 看非洲黑人一级黄片| 国产亚洲一区二区精品| 国产女主播在线喷水免费视频网站| 亚洲国产最新在线播放| 国产探花极品一区二区| 国产精品秋霞免费鲁丝片| 麻豆乱淫一区二区| 三级国产精品欧美在线观看| 国国产精品蜜臀av免费| 国产真实伦视频高清在线观看| 男人爽女人下面视频在线观看| 久久女婷五月综合色啪小说 | 三级国产精品片| 国内精品美女久久久久久| 毛片一级片免费看久久久久| 中文资源天堂在线| 国产av不卡久久| 涩涩av久久男人的天堂| 欧美日韩视频精品一区| 一级黄片播放器| 亚洲欧美一区二区三区黑人 | 97在线人人人人妻| 深夜a级毛片| 亚洲精品第二区| 纵有疾风起免费观看全集完整版| 王馨瑶露胸无遮挡在线观看| 欧美+日韩+精品| 国产精品三级大全| 国产色爽女视频免费观看| 精品久久久久久电影网| 成年免费大片在线观看| 亚洲电影在线观看av| 好男人视频免费观看在线| 天天一区二区日本电影三级| 亚州av有码| 在线亚洲精品国产二区图片欧美 | 五月伊人婷婷丁香| 免费在线观看成人毛片| 亚洲av日韩在线播放| 在线观看免费高清a一片| 国产伦在线观看视频一区| 国产精品爽爽va在线观看网站| 久久精品熟女亚洲av麻豆精品| 亚洲精品色激情综合| av在线app专区| 搡女人真爽免费视频火全软件| 特大巨黑吊av在线直播| 免费看a级黄色片| 少妇人妻精品综合一区二区| 边亲边吃奶的免费视频| 大香蕉97超碰在线| 欧美区成人在线视频| 久久韩国三级中文字幕| 日本熟妇午夜| 欧美日韩视频高清一区二区三区二| 午夜视频国产福利| av又黄又爽大尺度在线免费看| 别揉我奶头 嗯啊视频| 哪个播放器可以免费观看大片| 三级国产精品片| 男女边摸边吃奶| 丝袜脚勾引网站| 国产成人精品久久久久久| 婷婷色综合www| 亚洲成色77777| 男男h啪啪无遮挡| 亚洲成色77777| 美女内射精品一级片tv| 国产探花极品一区二区| 在线观看国产h片| 亚洲人成网站在线观看播放| 男女边吃奶边做爰视频| 青春草视频在线免费观看| 精品午夜福利在线看| 国产日韩欧美亚洲二区| 一区二区av电影网| 免费黄网站久久成人精品| 黄片wwwwww| 女的被弄到高潮叫床怎么办| 亚洲自拍偷在线| 免费看日本二区| 深夜a级毛片| 天堂俺去俺来也www色官网| 亚洲精品亚洲一区二区| 国产精品99久久99久久久不卡 | 亚洲最大成人av| 国产午夜精品一二区理论片| 有码 亚洲区| 国产淫语在线视频| 日韩av免费高清视频| 亚洲丝袜综合中文字幕| av又黄又爽大尺度在线免费看| 99热这里只有是精品50| 亚洲精品乱久久久久久| 国产大屁股一区二区在线视频| 一区二区av电影网| 中文字幕免费在线视频6| 26uuu在线亚洲综合色| 欧美成人精品欧美一级黄| 在线观看一区二区三区| 亚洲不卡免费看| 男女下面进入的视频免费午夜| 丝瓜视频免费看黄片| 国内揄拍国产精品人妻在线| 晚上一个人看的免费电影| 黄片wwwwww| 国产91av在线免费观看| 精品久久久久久电影网| 亚洲不卡免费看| 亚洲美女视频黄频| 国产日韩欧美亚洲二区| 国产精品国产三级国产av玫瑰| 久久精品国产鲁丝片午夜精品| 我的女老师完整版在线观看| 国产日韩欧美在线精品| 亚洲av免费在线观看| 成人美女网站在线观看视频| 一级片'在线观看视频| 久热这里只有精品99| 亚洲最大成人av| 日日摸夜夜添夜夜添av毛片| av在线天堂中文字幕| 国产精品99久久久久久久久| 综合色丁香网| 国产精品一区二区三区四区免费观看| 国精品久久久久久国模美| 成年版毛片免费区| 成人无遮挡网站| 夜夜看夜夜爽夜夜摸| 午夜爱爱视频在线播放| 久久精品人妻少妇| 国产69精品久久久久777片| 免费观看a级毛片全部| 欧美日韩亚洲高清精品| 亚洲美女视频黄频| av在线app专区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇的逼水好多| 深爱激情五月婷婷| 亚洲在久久综合| 69av精品久久久久久| 国产精品.久久久| 亚洲va在线va天堂va国产| av在线蜜桃| 久久久久网色| 国产午夜福利久久久久久| 国产老妇伦熟女老妇高清| 国产免费一级a男人的天堂| 水蜜桃什么品种好| 2022亚洲国产成人精品| 又爽又黄无遮挡网站| 精华霜和精华液先用哪个| av线在线观看网站| 免费电影在线观看免费观看| 国产免费又黄又爽又色| 久久精品综合一区二区三区| 亚洲精华国产精华液的使用体验| 嫩草影院精品99| 欧美人与善性xxx| 偷拍熟女少妇极品色| 亚洲丝袜综合中文字幕| 亚洲av.av天堂| 亚洲人成网站在线播| 五月伊人婷婷丁香| 亚洲成人一二三区av|