中圖分類號:S181、Q945.78 文獻標志碼:A
【Research significance】 Jatropha curcas L plantation has been recommended by government agenciesand non-government organizationsas apossible source of biodiesel on waste and unattended lands.Wastelandsareeitherofpoorfertility,saltaccumulation in root zone or seasonal or perennial flooding.However,it is common that the jatropha production is affected by soil flooding.Cumulative photosynthetic CO2 assimilation rate (A) ,transpiration rate (E) and stomatal conductance (gs) under normalandsoilfloodedconditionscanbetakenasan indexofproductivity.Calculationsofcumulativevaluesof physiological responses requiredetermination ofphysiological responses/functions of individual leaves.A functional relationship between physiologi calresponsesand leaf position isthe basis forcalculating the cumulative physiological responses of all leavespositioned overatwig.Mathematicalmodeling of physiological responses may prove useful in avoidingtimeconsuming field experiments,andalsoinsitu measurements of physiological responses. The pro cessof developing mathematical models for physiologicalparametersassociateddifferentsteps,suchas (a),parameterization,assigning values to model parameters,eitherbasedondirectmeasurementsorestimation,optimization;and(b),determiningvalues for parameters related to solving the governing equations,and validation,comparing the model output to anexperimental data set that wasnot used in the parameterization process.【Current research progress】 Determination of physiological response pattern of J curcasleavesispossiblebymeasuringapex,middle, and bottom leaf responses.Physiological responses of leaves over a twig follow the normal distribution curves(VERMA et al.,2012;JAN et al.,2024). However,models were developed to predict physiological responses from interrelated physiological responses.For example,if net CO2 assimilation response pattern of leaves over a twig is known,the pattern of transpiration rate or stomatal conductance can be also calculated or vice versa. Soil flooding is a significant factor limiting plant productivity, leading to downregulate carbon assimilation due to stomatal and mesophyll conductance limitations (FLEXAS et al.,2006; ZHOU et al.,2013;FAHAD et al.,2017) and changes in carboxylation rates and electron transport(ZHOU et al.,2013,2014).【Breakthrough of the study】J. curcas,a deciduous drought resistant oil tree species widely distributed in tropical and subtropical areas,grows in Central and South America,Africa,and South East Asia (SCHMOOK et al.,1997; KHALID et al.,2021). Different parts of J. curcas have been used for various purposes,such as animal feed,medicinal product and ecorestoration plantation in disturbed areas(HELLER,1996;OPENSHAW, 2000;TANG et al.,2007). Oil extracted from seeds of J. curcas can be used for making soap,cosmetics, and as a diesel (kerosene or extender)(OPENSHAW,2000;LIANG et al.,2007)as well. The vast patches of waterlogged land remain fallow along the large canals or in flood prone area of river basins of India. Soil flooding affects 10% of the global land area(SETTER and WATERS,20O3),and is one of the most important constraints in agricultural crop production (SHABALA,2011). The yield penalty resulting from soil flooding may vary between 15% and 80% depending on species,soil type and duration of the stress(ZHOU,2010;JAN et al.,2024). India has about 16 Mha of land underwater logging and about 8.2 Mha under salinity(ABROL,1994).The main reason for selecting J. curcas is its recommendations for large scale plantation on unattended lands (VERMA et al., 2014).Studies found a strong, nonlinear correlation between physiological parameters and the duration of soil flooding,and that stagnant soil flooding significantly affected the growth,development,and performanceof J. curcas (ZHOU, 2010;JANetal.,2024).However,thereare few reportson the physiological response modelsof J? curcasunder soil flooding conditions.【Key issues to be resolved】The present study isdevoted to the development of a model and procedure for predicting any physiological response if at least one response pattern isknown. The developed models were tested for physiological responses of J. curcasunder normal and soil flooding conditions for wider applications.
1 Materialsand Methods
1.1 Plantmaterial and growthconditions
The forty-five-day old jatropha seedlings were raised from stem cuttings of 18~20cm in length grown in pots of 30cm in diameter and 30cm in depth filled with fertile soil. The pots were watered regularly to the field capacity. The uniform seedlings were subjected to two water regimes,i.e.,up to field capacity and continuous soil flooding. The soil flooding in the pots were maintained by retaining water level 5cm above the soil surface for a period of 4 weeks,and photosynthetic performance of the plant leavesat differentpositionsweremeasured thereafter. At the end of soil flooding stress,the average relative soil moisture was 65% and 36% for soil flooding and control,respectively. The soil texture was silty clay loam, pH7.1 ,with organic carbon,nitrogen,phosphorus and potassium of 0.86% , ,35.5
and 172kghm-2 ,respectively. The experiment was carried outatDepartmentofBotany,UniversityofLucknow,Lucknow,India.
1.2 Measurementof photosynthetic characteristics
Photosynthetic CO2 assimilation,transpiration and stomatal conductance were measured using an open system CIRAS-1,IRGA portable photosynthesissystem(PPSystem,England)undernatural sunlight at 9: 00-10: 00 am at photosynthetic photon flux density of .All measurements weretaken from the firsttotwelfthleaves(toptobottom)of jatropha plants during soil flooding stress (VERMA etal.,2014).
1.2.1 Hypothesis
Response functions with similar trendsofvariations could form a relationship between two corresponding paired responses known as characteristic constants.Ifcharacteristic constantsbetween anytwo paired physiological response functions are known, the variation of one response function can easily be calculated froma set of another known response function. Net CO2 assimilation rate,transpiration rate and stomatal conductanceofjatrophaleaveslocated over astem/twighavesimilartrendofvariation(VERMA et al.,2o12)and follow a Gaussian distribution as writtenbelow.
where, physiological response function with respect to leaf position, x= leaf position, pm= physiological response of middle leaf, b= translation distance of peak, c= stretching factorof standard normaldistribution.
Since A , E and gs ofleaves overa stem/twig followsimilar trend[equation (1)] ,acharacteristic relationship existsbetween physiological response functions.Various characteristic constants between possible pairs of physiological response functions can be Writtenasbelow.
Thevaluesof physiological response characteristic constants are constantat given time for a plant.
1.2.2 CalculationProcedure
formation constants for converting E and gs to A were calculatedbydividing A response of leaves by corresponding mean gs of jatropha leaves.Characteristic constants for transformation of A and gs to E response,andthemean E responsesofleaves were divided by corresponding A and gs ,respectively. Similarly,characteristic transformation constants forconverting A and E responses to gs were calculated by dividing mean of gs by corresponding mean of A or E of jatropha leaves.Once these characteristic constants are worked out, the corresponding transformation maybe done as:
1,Net CO2 assimilation (A )from transpiration (E) (20
Net CO2 assimilation response function in relation to transpiration response function can be written asbelow.
AEx=λAE×Ex
where,
AEx= calculatedvaluesof A from E forleaf position, x
characteristic constant to transform E to A Ex= observed values of E for leaf position, x ·λAE canbe calculated from equation(8)asunder.
Above equation can be rewritten asunder:
where,
Thevaluesof A , E and gs as functions of leaf positions were observed in three replications for control andsoil flooding conditions.The characteristic trans
Equation which can be used for transforming transpiration to photosynthetic rate can be finally writtenas:
2,Net CO2 assimilation (A) from stomatal conductance (gs )
Net CO2 assimilation response function in relation to stomatal response function can be written as below.
Agsx=λAgs×gsx
where,
Agsx= calculatedvaluesof A from gs for leaf position, x
λAgs= characteristic constant to transform gs to A
gsx= observed values of gs asa function of leaf position, x
λAgs can be obtained from equation(16)in the following form.
where,
Thus equation which can be used for transforming gs to A can be finally written as:
3,Transpiration (E) from net CO2 assimilation 二
Transpiration response functions in relation to net CO2 assimilation response function can be written asbelow.
EAx=λEA×Ax
where,
EAx= calculatedvalues of E from A for leaf posi-tion, x :
λEA= characteristic constant to transform A to E
Ax= observed values of ?A as a function of leaf po sition, x
λEA can be obtained from equation(16)and can bewritteninthe following form.
λEA=ηEAmηbAE2ηbEA2x
where,
The equation which can be used for transforming A into E can be finally written as :
4,Transpiration (E) from stomatal conductance (gs)
Transpiration response functions in relation to stomatal conductance response function can be written asbelow.
Egsx=λEgs×gsx
where,
Egsx= calculated values of E from gs for leaf posi
tion, x
λ?Egs= characteristicconstantto transform gs to E
gsx=gs as a function of leaf position, x :
λEgs canbe obtained from equation(22)in the following form.
where,
The equation which can be used for transforming gs into E can be finally written as :
Egsx=ηEgsmηbgsE2ηbEgs?gsx2x
5,Stomatal conductance (gs) from net CO2 as-similation (A )
Stomatal conductance response functionsin relation to net CO2 assimilation rate response function canbewrittenasbelow.
gs,Ax=λgs,A×Ax
where,
(204號 gsAx= calculated values of gs from A for leaf posi-tion, x :
λgsA= characteristic constant to transform A to gs
λgs,4 can be obtained from equation(34)in the following form.
where,
The equation finally used for transforming net CO2 assimilation rate into gs is expressed as below:
gsAx=ηgs,dmηbAgs2ηbgs,A2xAx
6,Stomatal conductance (gs) from transpiration
Stomatal conductance response functions in relation to transpiration rate response function can be writtenasbelow.
gsEx=λgsE×Ex
where,
(204號 gsEx= calculated values of gs from E for leaf position, x
λgs,E= characteristic constant to transform E to gs
λgsE can be obtained from equation(34)in the following form.
where,
The final equation for transforming transpiration
ratetostomatal conductanceisexpressedasbelow:
gsEx=ηgsEmηbEgs2ηbgsE2xEx
The different transformation characteristic constants were first calculated for different pairs of physiological responses,and later multiplied with the values of physiological responses needed to be transformed.Tocalculate A of J. curcas leaves from corresponding E response,the characteristic constants for converting E to A 1 (λAE )multipliedwith E responses and to calculate A from gs ,characteristic constants for converting gs to A(λAgs) were multiplied with values of gs of jatropha leaves. Similar calculations were done for converting A and gs responses to E and A and E to gs . Calculation of characteristic constants was also made for converting A to ,and constants for converting gs to
. The calculation of characteristic constants for converting A to
and constants for converting gs to E (λg,E) were presented inTable2,and calculationofcharacteristicconstants for converting A to gs (λAgs )and constants for converting E to gs (λEgs) )were presented in Table3.The calculatedvaluesof A fromobservedvaluesof E and gs , E fromobserved values of
and gs and gs from observed A and E for control as well as under soil floodingconditions against leafpositions were presented in Table1to Table3.Percentdeviationsofcalculated values of
and gs responses with respect to observedvalueswerecalculatedasbelow:
Deviation (%)=[ (Observed value-Calculated value)/Observed value] ×100
Root mean square errors (RMSE)were also usedasparameter to compare calculated values with observed values.The root mean squares error can be calculated as:
2 Results
The variations of calculated values of E and gs under control and soil flooding conditions with respect to leaf positions (x) )wereshown in Fig.1 to Fig. 3. The patterns of observed values of A , E and gs with respect to leaf positions were similarand followed the normal distribution.Therefore,itis possible to calculate A , E and gs responses with respect to leaf positionsat a given time with each other.Percent deviationsand RMSEofcalculated valuesof A , E and gs withobserved values under control and soil flooding conditions are presented in Table 1 to Table 3.
2.1 Physiological characteristicconstants
It can seen that the values of λAE rangedfrom 1.05 to 3.65 under soil flooding and from 1.23 to 2.80 without soil flooding(control),and the values of λAgs ranged from O.07 to O.22under soil floodingand from 0.06 to O.12 under control conditions.Similarly,the values λAE ranged from 0.27 to 0.95 under soil flooding and from 0.35 to 0.82 under control conditions, and the values of λEgs ranged from 0.03 to 0.07under soil flooding and from O.02 to O.06 under control conditions.Thevaluesof λAE ranged from 7.68to 15.00 with soil floodingand from 8.50 to 16.58without soil flooding. The values of λgsE ranged from 16.88 to 41.45without soil flooding and from 15.38 to 37.84 during soil flooding stress(Fig.1 to Fig.3).
2.2 Calculation of photosynthetic responses
Thepercentdeviationsand RMSEofthecalculatedvaluesof A , E and gs from the observed values wereshowninTable1toTable3.Itcanbeseenfrom Fig.1 that the predicted values of A , E and gs were in closeagreementto the observed valuesundercontrol as well as waterlogged conditions. Average percent deviationsof thecalculatedvalues of A from E were 7.36% , 1.69% and 5.14% forthree replications under control conditions and 10.91% , 10.11% and 8.40% for the corresponding replications under waterlogged conditions. The corresponding root mean squares errors(RMSE)were found to be 0.3614,0.1091 and 0.2864 for controland 0.2392,0.1902and 0.2270 for waterloggedtreatment forall the three replications. Similarly,the average deviationsof the calculated valuesof A from gs were found to be 4.725, 1.69% and 5.14% under control and 11.17% , 10.31% and 6.33% underwaterlogged conditions forall thereplications.ThecorrespondingRMSEwerecalculatedas 0.4367,0.5075 and 0.3601 for control and 0.1611, 0.1660 and O.1445 for waterlogged treatment in three replications(Table1).
Variationsoftheobservedandcalculatedvalues of E wereshownin Fig.2 and the calculated percent deviationsof E from the A and gs were presented in Table2.It could be seen from Table2 that the percent deviationsofthe calculated E from the observed A were 5.80% , 1.70% and 5.58% under control and 9.35% , 9.96% and 8.21% under waterlogged conditions for all the three replications.The corresponding RMSEwere0.1716,0.0569and0.1350undercontrol and 0.0977,0.0812 and 0.0996 under waterlogged conditions for all the three replications.
Averagedeviationsofthecalculatedvaluesof E from gs were 6.71% , 4.51% and 5.58% under control and 11.61% , 5.48% and 8.46% under waterlogged conditions for the corresponding replications. The correspondingRMSE were foundto be 0.2039,0.2474 and 0.1954 for control and 0.0881, 0.0548 and 0.0814 for waterlogged conditions,respectively.The variationsof observed and calculated response functions of gs and calculated percent deviations of gs werepresentedinTable3.
Fig.2 showed a close agreement between the observed and predicted values of gs Thepercent deviationsofcalculatedvaluesof gs from A with observed valueswere foundtobe 4.84% , 4.33% and 3.87% withthecorrespondingRMSEas4.5987,5.4724and 3.9477 under control and average deviationsof 13.06% , 9.65% and 5.88% with the corresponding RMSEas1.4677,1.7429 and1.3510underwaterlogged conditions,respectively.The averagedeviationsofcalculated gs from E were 7.43% , 4.27% and 5.83% forcontrol and 13.21% , 5.35% and 7.99% underwaterloggedconditionsforallthethreereplications.ThecorrespondingRMSEwere4.6322,5.6754 and4.0070undercontrol and2.2123,1.5386,2.2547 underwaterlogged conditions,respectively,for all thereplication.Thedeviationswereslightlyhighereither for apex leaves(leaf positions 1 and 2)or most bottom leaves when photosynthetic responses were verylow. The RMSE were comparatively higher for the calculated physiological responses under soil flooding conditions,however,the valueswere low. The calculated and observed values of A , E and gs wereincloseagreement.Hence,thehypothesiswas verified makingitpossibletocalculate physiological responses such as A , E and gs from each other with verylessdeviationsfromtheobservedvalues.
3 Discussion
The search for alternate source of fossil fuel overthe globeis on.The oilof J curcas seeds has beenusedasbiodiesel.Jatrophaplantationisrecommended asapossible sourceofbiodiesel onwasteand unattendedlands.Indiaishavingvastpatchofwaterlogged land along the large canals,where jatropha plantation is also being recommended. Physiological responses of J. curcas leaves located over twigvaries asthatof normallydistributedcurve.Thecumulative A , E and gs under control and waterlogged conditions canbe takenas an index forplantperformance and productivity(VERMA etal.,2014;KHALID et al., 2021;JANetal.,2024).
Cumulative values of photosynthetic responses requiredeterminationofphysiological observations of individual leavesundernormal aswellaswaterlogged conditions or to any other conditions.Mathematical modeling of physiological responses may prove useful in avoiding time consuming in situ measurements. Inthe present study,characteristic physiological responsetransformation constantsweredetermined fromthe observed data and prediction of the other physiological responsesweredone.Theaverage deviations of the predicted values of photosynthetic responsesover theobserved values were in acceptable range,hence,the hypothesis for existing a specific characteristic functional relationship with all possible pairsof ?A , E and gs werevalidated.
4 Conclusion
The present study demonstrated a possibility of calculation for physiological responses following similarpattern from any other observed or measured physiological response pattern,which could reduce the fieldmeasurements soto save time,laborand cost.
References
ABROLI P.1994. Salinity management for sustainable agriculture[M]//Land degradation-a challenge to sustainability. Karnal, India:Central Soil Salinity Research Institute, 7-8.
FAHADS,BAJWAAA,NAZIRU,ANJUMSA,F(xiàn)AROOQ A,ZOHAIB A,SADIA S,NASIM W,ADKINSS, SAUD S,IHSANMZ,ALHARBYH,WUC,WANG D P,HUANG JL. 2017. Crop production under drought and heat stress: Plant responses and management options[J]. Frontiersin Plant Science,8:1147.doi:10.3389/fpls.2017. 01147.
FLEXASJ,RIBAS-CARBOM,BOTAJ,GALMESJ,HENKLE M,MARTINEZ-CANELLAS S,MEDRANO H. 2006.Decreased rubisco activity during water stress is not inducedbydecreased relativewatercontentbutrelated to conditions oflow stomatal conductance and chloroplast CO2 concentration[J].NewPhytologist,172(1):73-82. doi:10.1111/j.1469-8137.2006.01794.x.
HELLER J. 1996. Physic nut Jatropha curcas L:promoting theconservation and use ofunderutilized and neglected crops[M]. Italy,Rome:Institute of Plant Genetics and CropPlantResearch,Gatersleben,International PlantGenetic Resources Institute,66.
JANR,ADNAN M,HASHEMA,ABD-ALLAHEF,MURADW,KIMKM.2024.Indoleaceticacidandgibberellic acid enhance physiological and biochemical performance of Jatropha curcas L.under waterlogging and drought stress[J].Pakistan Journal ofBotany,56(5): 1653-1664. doi: 10.30848/PJB2024-5(13).
KHALIDF,ULLAHS,REHMANF,HADIRA,KHANN, IBRAHIMF,KHANT,AZIZF,F(xiàn)EROZDA,NADEEM SG,HUSSAIN M.2021.Identification of suitablesites for Jatropha curcas L. bioenergy plantation using the AquaCrop model[J]. Forests,12(12) : 1772. doi: 10.3390/ f12121772.
LIANG Y,CHEN H,TANG MJ, YANG PF,SHEN SH. 2007.Responses of Jatropha curcas seedlings to cold stress:Photosynthesis -related proteins and chlorophyll fluorescence characteristics [J].Physiologia Plantarum, 131(3) :508-517. doi:10.1111/j.1399-3054.2007.00974.x.
OPENSHAW K. 2000. A review of Jatropha curcas:An oil plant of unfulfilled promise[J]. Biomass and Bioenergy, 19(1):1-15. doi: 10.1016/S0961-9534(00)00019-2.
SCHMOOK B, SERRALTA-PERAZA L, KU-VERA J. 1997. Biofuels and industrial products from Jatropha curcas [C]//Proceedings of first international symposium on biofuel and industrial products from Jatropha curcas and other tropical oil seed plants. Managua,Nicaragua: 53-57.
SETTER TL, WATERS I. 2003. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barleyand oats[J].Plant and Soil,253(1):1-34.doi: 10.1023/A:1024573305997.
SHABALA S. 2011. Physiological and cellular aspects of phytotoxicity tolerance in plants:The role of membrane transporters and implications for crop breeding for waterlogging tolerance[J].New Phytologist,190(2):289-298. doi: 10.111/j.1469-8137.2010.03575.x.
TANG M J,SUN JW,LIU Y,CHEN F,SHEN S H. 2007. Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor,in the woody oil plant Jatropha curcas[J].Plant Molecular Biology,63(3):419-428. doi: 10.1007/s11103- 006-9098-7.
VERMA K K, SINGH M, VERMA C L. 2012. Developing a mathematical model for variation of physiological responses of Jatropha curcas leaves depending on leaf positions under soil flooding[J]. Acta Physiologiae Plantarum,34(4):1435-1443.doi:10.1007/s11738-012-0941-y.
VERMAKK,SINGHM,GUPTARK,VERMACL.2014. Photosynthetic gas exchange,chlorophyll fluorescence, antioxidant enzymes,and growth responses of Jatropha curcas during soil flooding[J].Turkish Journal of Botany,38:130-140. doi:10.3906/bot-1212-32.
ZHOU M X. 2010. Improvement of plant waterlogging tolerance[M]. In: MANCUSO S,SHABALA S.(eds) Waterlogging Signalling and Tolerance in Plants.Springer,Berlin,Heidelberg.doi.org/10.1007/978-3-642-10305-6_13.
ZHOU S X,DUURSMA R A,MEDLYNBE,KELLY JWG, PRENTICE I C. 2013. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress[J]. Agricultural and Forest Meteorology,182: 204-214. doi: 10.1016/j.agrformet. 2013.05.009.
ZHOU S X,MEDLYNB,SABATE S,SPERLICHD,COLIN PRENTICE I. 2014. Short-term water stress impacts on stomatal,mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates[J].Tree Physiology,34(10):1035-1046. doi: 10.1093/treephys/tpu072.
(責任編輯 謝紅輝)