摘" " 要:中國柑橘產(chǎn)業(yè)在全球占據(jù)至關(guān)重要的地位,然而,柑橘病毒病卻給該產(chǎn)業(yè)帶來了嚴(yán)重的經(jīng)濟損失。隨著病毒種類的不斷增多,快速、準(zhǔn)確地對病毒進(jìn)行鑒定及遺傳多樣性分析變得愈發(fā)關(guān)鍵。高通量測序(High-Throughput Sequencing,HTS)技術(shù),具有高通量、高效快速以及效益高的優(yōu)勢,逐漸成為了鑒定柑橘病毒的核心技術(shù)手段。HTS技術(shù)的應(yīng)用不僅成功揭示了多種新病毒的存在,還深入挖掘了已知病毒的全基因組信息,提供了大量的基因序列數(shù)據(jù),極大地推動了柑橘病毒在遺傳變異、進(jìn)化關(guān)系以及生態(tài)系統(tǒng)作用等方面的研究。展望未來,隨著技術(shù)的發(fā)展和優(yōu)化,HTS將在柑橘病毒鑒定與種群多樣性分析中發(fā)揮更為重要的作用,為柑橘產(chǎn)業(yè)的可持續(xù)發(fā)展提供堅實的支撐。綜述了HTS技術(shù)在柑橘病毒檢測與鑒定,以及種群多樣性分析方面的最新進(jìn)展,并深入探討了當(dāng)前面臨的挑戰(zhàn)、未來的發(fā)展前景及其意義。
關(guān)鍵詞:柑橘;高通量測序技術(shù);柑橘病毒;種群多樣性分析
中圖分類號:S666 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2025)03-0651-11
Application of high-throughput sequencing in citrus virus identification and analysis of population diversity
LI Xiang1, YANG Jin1, HUANG Aijun1, 2, ZHOU Jun1, 2, YI Long1, 2*
(1College of Life Sciences, Gannan Normal University, Ganzhou 341000, Jiangxi, China; 2National Navel Orange Engineering Research Center, Ganzhou 341000, Jiangxi, China)
Abstract: Citrus, as an important component of global economic crops, is the world’s largest category of fruit. However, citrus is also a host for many viruses and bacterial pathogens, and its production conditions are threatened by various viral diseases. These diseases are widely distributed worldwide, causing severe impacts on the yield and quality of citrus, resulting in significant economic losses. The viruses that severely affect the citrus industry mainly include: citrus tristeza virus (CTV), citrus chlorotic dwarf-associated virus (CCDaV), citrus tatter leaf virus (CTLV), citrus yellow vein clearing virus (CYVCV), citrus psorosis virus (CPsV), citrus vein enation virus (CVEV), citrus exocortis viroid (CEVd), citrus leaf blotch virus (CLBV), citrus sudden death-associated virus (CSDaV), and satsuma dwarf virus (SDV), etc. Among them, CTV is one of the most destructive viral diseases in the citrus industry, leading to reduced citrus yield and quality, weakened tree vigor, and even death. CTV, a positive single-stranded RNA virus in the Closteroviridae family, exhibits significant genetic diversity and strain differentiation, resulting in varying pathogenicity. Based on symptoms and genomic sequences, it can be classified into quick decline, stem pitting, and yellow shoot strains. CYVCV, belonging to the Mandarivirus genus of the Alphaflexiviridae family, has a positive single-stranded RNA genome. Transmitted among citrus plants by citrus mealybugs, contaminated tools, it causes leaf wrinkling, chlorosis mottling, and yellow vein clearing in lemons, posing a global threat. CTLV, a Capillovirus genus virus in the Betaflexiviridae family, is an ASGV strain, seriously harming citrus production. CLBV, a Betaclosteroviridae family Citrivirus genus member, is a positive single-stranded RNA virus with filamentous, wavy particles, infecting diverse hosts mainly via grafting and seeds. Lately, citrus viral diseases are on the rise, yet some pathogens remain undetermined, such as citrus cristacortis disease. Citrus-infecting viruses often have latency and are hard to detect directly. Therefore, accurate detection and identification of citrus viruses play a central role in the disease control system. In recent years, with the rapid advancement of molecular biology technology, rapid and accurate virus identification and in-depth study of their genetic diversity have become key to ensuring the healthy development of the citrus industry. citrus virus detection and identification are mainly based on the biological characteristics, physical characteristics of virus particles, protein characteristics, and nucleic acid characteristics to establish some methods. At present, the conventional detection and identification methods for citrus viruses mainly include biological indexing, electron microscopy, serological detection, and molecular biological detection. The above methods are well-suited for known viruses and can be combined with multiple methods for detection and identification. However, when it is necessary to accurately identify unknown viruses or newly emerging viruses, the above methods are difficult to work. With the emergence of high-throughput sequencing (HTS) technology in recent years, the above problems have been solved. This technology uses the principle of sequencing by synthesis, which can sequence a large number of RNA and DNA molecules in a short time without prior knowledge of the virus's biological characteristics or genome structure, thus obtaining its nearly complete genomic sequence. This capability solves the limitations of traditional methods when facing unknown viruses and greatly accelerates the discovery and identification process of new viruses. Through HTS technology, researchers have revealed many previously unknown virus types and deepened the understanding of the genetic diversity of known viruses, providing a scientific basis for targeted control strategies. HTS technology also shows great potential in population diversity analysis. By sequencing a large number of virus samples, researchers can obtain rich genetic sequence data, thereby analyzing the genetic variation of viruses, evolutionary trajectories, and their interactions in the ecosystem. This provides a powerful tool for understanding the mechanisms of viral diseases, predicting virus variation trends, and assessing the effectiveness of control measures. Although HTS has achieved significant results in citrus virus research, it still faces some challenges. For example, the complexity of data analysis and the need for bioinformatics knowledge limits its popularization and application in some areas; the high cost of sequencing is still a major obstacle for resource-limited areas. In the future, with the continuous development and optimization of technology, HTS will play a more important role in the identification of citrus viruses and population diversity analysis, providing strong support for the sustainable development of the citrus industry. This article reviews the latest progress of HTS in the detection and identification of citrus viruses, as well as the challenges and future prospects in citrus virus research.
Key words: Citrus; High-throughput sequencing technology; Citrus virus; Population diversity analysis
中國果樹資源豐富,各類水果的總產(chǎn)量穩(wěn)居世界首位[1]。柑橘作為世界第一大類水果,在全球超過140個國家種植,中國是主要生產(chǎn)國之一。在中國,柑橘的種植面積和產(chǎn)量均居各類水果之首[2]。柑橘是蕓香科(Rutaceae)多年生木本植物,起源于喜馬拉雅山脈的東南丘陵地帶,包括印度東北部、緬甸北部和中國云南西北部地區(qū)。作為喜馬拉雅生物多樣性熱點的一部分,云南山區(qū)是世界上植物多樣性最豐富的地區(qū)之一[3]。在云南山區(qū),峰頂和深谷構(gòu)成的物種傳播障礙以及氣候、地質(zhì)和地形的多樣性,不僅為植物區(qū)系的形成和發(fā)展提供了理想的環(huán)境,還為柑橘病毒及其宿主的共同進(jìn)化創(chuàng)造了復(fù)雜的研究背景[4]。柑橘在長期進(jìn)化和栽培過程中積累了多種病原體,包括病毒和類病毒,而病毒病嚴(yán)重影響了柑橘果實的質(zhì)量和產(chǎn)量,造成巨額的經(jīng)濟損失。隨著時間的推移,柑橘病毒病的種類不斷增加,截至目前已有30多種[5]。不同病毒在同一柑橘品種或同一病毒在不同柑橘品種上呈現(xiàn)的癥狀均存在差異[6]。目前少量柑橘病毒性病害的病原尚未明確,隨著柑橘產(chǎn)業(yè)的不斷擴大,這些未知病毒引發(fā)新病害的潛在風(fēng)險將會加劇。因為尚無治療柑橘病毒病的有效藥劑,所以前期的預(yù)防工作成為控制病毒發(fā)生和流行的主要手段。高效檢測與準(zhǔn)確鑒定病毒,深入理解病毒遺傳多樣性是構(gòu)建有效的柑橘病毒防控體系的前提[7],是保障柑橘產(chǎn)業(yè)健康發(fā)展的關(guān)鍵。
基于病毒生物學(xué)特性、病毒粒體物理特性、病毒蛋白質(zhì)特性及核酸特性,建立了多種病毒檢測和鑒定的方法[8]。傳統(tǒng)的檢測方法,包括指示植物鑒定法、電鏡觀察法、血清學(xué)方法以及聚合酶鏈?zhǔn)椒磻?yīng)檢測法(polymerase chain reaction,PCR)等,需預(yù)先了解目標(biāo)病毒的生物學(xué)特性、血清學(xué)特性、基因組結(jié)構(gòu)和核酸序列,屬于針對特定病毒的特異性檢測手段。然而,在面對未知病毒的非特異性檢測時,傳統(tǒng)檢測方法往往表現(xiàn)出較低的敏感性和特異性,且檢測周期長,這極大地阻礙了對病毒病害的及時防控和后續(xù)深入研究[9]。近年來,高通量測序(high-throughput sequencing,HTS)技術(shù)蓬勃發(fā)展,在柑橘已知或未知病毒病害的鑒定中均展現(xiàn)出巨大的潛力,為柑橘病毒研究開辟了新的道路。筆者全面綜述HTS技術(shù)在柑橘病毒鑒定與種群多樣性分析領(lǐng)域的最新進(jìn)展,深入探討其技術(shù)原理、應(yīng)用現(xiàn)狀、所面臨的挑戰(zhàn)以及未來的發(fā)展趨勢。
1 高通量測序技術(shù)
HTS技術(shù)又稱為第二代測序技術(shù)(next-generation sequencing,NGS)或深度測序技術(shù)(deep sequencing)[10]。HTS技術(shù)基于邊合成邊測序(sequencing by synthesis,SBS)原理,能夠一次性對數(shù)十萬至數(shù)百萬個DNA分子進(jìn)行測序,實現(xiàn)對物種基因組或轉(zhuǎn)錄組的詳盡分析。此外,HTS技術(shù)無需預(yù)先了解病毒的生物學(xué)特性、血清學(xué)特征、基因組結(jié)構(gòu)或序列信息,即可解析出大部分基因組序列[11]。HTS技術(shù)主要包括:基因組重測序(genome resequencing,GR)、外顯子測序(whole exon sequencing,WES)、從頭測序(de novo genome sequencing,De Novo)、轉(zhuǎn)錄組測序(RNA sequencing,RNA-seq)、小RNA測序(small RNA sequencing,sRNA)、染色質(zhì)免疫共沉淀技術(shù)(chromatin immunoprecipitation,ChIP)、染色質(zhì)分離測序(CHIRP-Seq)以及宏基因組測序(metagenomic sequencing,mNGS)技術(shù),其中RNA-seq、sRNA和mNGS已廣泛應(yīng)用于生化、醫(yī)學(xué)、食品等領(lǐng)域的研究[12]。根據(jù)測序原理不同,HTS主要包括瑞士羅氏(Roche)公司的454焦磷酸測序(454 Pyrosequencing)、美國因美納(Illumina)公司的Solexa聚合酶合成測序(Solexa polymerase synthesis sequencing)和美國應(yīng)用生物系統(tǒng)(Applied Biosystems,ABI)公司的Solid連接酶測序技術(shù)(solid ligase sequencing technology)[13]。454測序系統(tǒng)的讀長最長,運行速度快,適合未知基因組的從頭測序;Solexa測序系統(tǒng)的測序通量高,價位低,適合基因組測序和重測序;Solid測序系統(tǒng)的讀長最短,但測序精度高,適合單核苷酸多態(tài)性(single nucleotide polymorphism,SNP)檢測[14]。目前Illumina機器因各個方面具有優(yōu)勢,主導(dǎo)著HTS市場[15]。Illumina目前生產(chǎn)的MiSeq、NextSeq500、HiSeq系列、NovaSeq系列等測序儀,針對不同通量需求與時間限制進(jìn)行了專門優(yōu)化;其中HiSeq系列和NovaSeq系列平臺最為成熟,兼具極高的測序通量與準(zhǔn)確性,且運行速度快、成本低,展現(xiàn)出卓越的性價比[16]。
2 高通量測序技術(shù)在柑橘病毒檢測中的應(yīng)用
HTS技術(shù)的出現(xiàn)極大地提高了研究人員全面探究柑橘病毒病的能力,顯著加速了病毒發(fā)現(xiàn)、鑒定、基因組測序流程,并推動了基于HTS技術(shù)的新病毒病原體常規(guī)檢測技術(shù)的研發(fā)與應(yīng)用[17]。在柑橘病毒病的研究領(lǐng)域,運用HTS技術(shù)對已知及未知病毒進(jìn)行檢測成為首要步驟。傳統(tǒng)植物病毒鑒定所采用的經(jīng)典步驟,包括雙鏈RNA(dsRNA)的提取、病毒相關(guān)核酸的制備、隨機互補DNA(cDNA)的合成、克隆操作以及桑格測序等,長期以來已被證明具有可靠性。但在柑橘黃脈相關(guān)病毒(CYVaV)的發(fā)現(xiàn)歷程中,HTS技術(shù)提供了一種更先進(jìn)的替代解決方案[18-20]。近年來,通過對小RNA、總RNA及dsRNA的高通量測序分析,已成功鑒定了眾多柑橘病毒物種(表1)。
2.1 HTS技術(shù)在CTV中的應(yīng)用
柑橘衰退病是柑橘產(chǎn)業(yè)中的關(guān)鍵病害,主要由柑橘衰退病毒(citrus tristeza virus,CTV)引發(fā),該病毒借助受感染的苗木以及多種蚜蟲廣泛傳播[34]。在中國,CTV主要分布在南方和沿海地區(qū),有研究表明CTV起源于湖南、江西等地的野生柑橘,隨后在四川、重慶、湖北、福建、浙江、廣西、廣東等地的栽培柑橘中擴散傳播[35]。
HTS技術(shù)在柑橘衰退病鑒定與種群多樣性分析方面的應(yīng)用,為植物病毒研究帶來了革命性創(chuàng)新[36]。2021年,Da Cunha等[37]運用HTS技術(shù),通過大規(guī)模并行測序,結(jié)合RT-PCR和RNA-seq方法,從非洲安哥拉柑橘屬植物中高效提取并擴增雙鏈RNA,從混合樣品中成功鑒定出多個CTV株系,并分析種群多樣性。在無需序列信息的條件下,借助隨機引物RNA-seq,全面捕捉到了病毒基因組的變異情況,實現(xiàn)了對CTV高靈敏度、高準(zhǔn)確性的早期檢測。該研究還全面揭示了CTV株系在安哥拉柑橘種植點中廣泛存在的現(xiàn)象,且這些株系與已知的嚴(yán)重致病株系以及其他地區(qū)新出現(xiàn)的株系高度相似,這為了解CTV的地理分布、遺傳變異及種群結(jié)構(gòu)提供了數(shù)據(jù)支撐。HTS技術(shù)克服了傳統(tǒng)測序方法的局限性,以更低成本和更短時間完成了對大量樣品的處理,也推動了測序技術(shù)與多分子標(biāo)記擴增(multimolecular marker amplification,MMM)等其他技術(shù)的融合應(yīng)用[38],為安哥拉及非洲其他國家制定植物病毒防控策略提供了科學(xué)依據(jù),有力推動了植物病毒研究領(lǐng)域的深入發(fā)展。
2021年,Bester等[39]建立了詳盡的HTS生物信息學(xué)分析流程,用于鑒定CTV在單一或混合感染狀態(tài)下的基因型。該流程的核心在于,它設(shè)定了基因型特異性的基因組覆蓋率閾值,其中50%和92%這兩個閾值在區(qū)分非目標(biāo)基因型與潛在新型基因型時發(fā)揮了至關(guān)重要的作用。具體而言,當(dāng)某個基因型的基因組覆蓋率超過50%時,它被視為一個可能的候選基因型;而當(dāng)覆蓋率達(dá)到或超過92%時,該基因型則被高度確信為目標(biāo)基因型。此流程有效地區(qū)分了真實的基因型信號與非目標(biāo)讀段所產(chǎn)生的噪聲信號,攻克了混合感染樣本中基因型難以區(qū)分的難題,也深入揭示了不同基因型之間復(fù)雜的相互作用機制。通過HTS技術(shù)與生物信息學(xué)分析的有機結(jié)合,Bester等[39]利用該流程成功鑒定了已知的CTV基因型,還發(fā)現(xiàn)了新的基因型變體或重組序列,這充分展示了HTS技術(shù)在病毒多樣性探索領(lǐng)域的獨特優(yōu)勢。為CTV基因型的準(zhǔn)確鑒定提供了堅實的技術(shù)支撐,有力推動了基于基因組覆蓋率閾值系統(tǒng)的完善與發(fā)展,提高了鑒定準(zhǔn)確性和效率,為植物病毒學(xué)研究領(lǐng)域帶來了新的研究視角和方法論革新,同時強調(diào)了持續(xù)研究CTV多樣性和開發(fā)準(zhǔn)確參考數(shù)據(jù)庫的重要性,以定義基因型邊界,推動進(jìn)一步的生物學(xué)特征和病毒群體進(jìn)化研究,并可能提高對交叉保護(hù)的理解,這一成果無疑是植物病毒學(xué)研究領(lǐng)域的一項重大突破。
2023年,Ghorbani等[40]在伊朗北部的薩里地區(qū),利用HTS技術(shù),首次完成了CTV Sari株系的全基因組測序工作。他們的研究不僅精確剖析了Sari病毒株的遺傳特征及進(jìn)化關(guān)系,而且有力證明了Sari株系與其他基因型之間的獨立性和獨特性。通過探究病毒基因在感染植株中的表達(dá)差異,特別是聚焦于P13基因所展現(xiàn)出的高表達(dá)特性,為深入理解CTV的致病機制開辟了新的視角[41]。此外,借助HTS技術(shù),研究人員還進(jìn)一步揭示了特定基因變異與病毒功能特性之間的內(nèi)在聯(lián)系,為精準(zhǔn)防控CTV以及促進(jìn)柑橘產(chǎn)業(yè)的健康發(fā)展帶來了重大的突破。
2.2 HTS技術(shù)在CYVCV鑒定中的應(yīng)用
HTS技術(shù)應(yīng)用于柑橘黃化脈明病毒(citrus yellow vein clearing virus,CYVCV)的鑒定及種群多樣性分析領(lǐng)域,實現(xiàn)了對病毒病原體的精確識別與基因組深度解析,極大地推動了病毒與植物相互作用研究的發(fā)展,為將現(xiàn)代科技手段運用于柑橘病毒病研究領(lǐng)域奠定了堅實基礎(chǔ)[42]。2017年,Yu等[43]運用sRNA測序技術(shù),從患病檸檬樹中快速、準(zhǔn)確地鑒定出CYVCV-CQ重慶分離株,并成功測定其全長基因組序列。CYVCV-CQ是重慶市首次發(fā)現(xiàn)的CYVCV分離株,亦是中國第二個已知全長基因組的CYVCV分離物,它的發(fā)現(xiàn)極大地提升了對病毒病原體的精準(zhǔn)識別能力?;趕RNA測序技術(shù)的從頭組裝能力,能夠揭示植物體內(nèi)復(fù)雜的基因沉默機制與病毒防御之間的聯(lián)系,為病毒-植物相互作用研究開辟全新路徑。另外,通過系統(tǒng)進(jìn)化樹分析,精準(zhǔn)呈現(xiàn)不同地理來源CYVCV分離株之間遺傳關(guān)系與地理分布的一致性,為理解病毒種群多樣性和進(jìn)化動態(tài)提供有力的數(shù)據(jù)支撐。
2023年Bin等[44]利用HTS技術(shù)深入研究了檸檬植物在感染CYVCV后的全轉(zhuǎn)錄組響應(yīng),通過比較兩組樣本的基因表達(dá)情況,鑒定到3691個差異表達(dá)基因,這些差異基因在苯丙素、油菜素類固醇、類黃酮生物合成及光合作用等關(guān)鍵代謝途徑中廣泛分布。通過HTS技術(shù),研究者發(fā)現(xiàn)CYVCV感染對檸檬植物中生長素、細(xì)胞分裂素、茉莉酸和乙烯的生物合成和信號傳導(dǎo)途徑具有顯著的調(diào)節(jié)作用。同時,水楊酸信號傳導(dǎo)途徑受到抑制。這些變化可能促進(jìn)了CYVCV的系統(tǒng)性感染,并影響了檸檬植物對病毒的防御反應(yīng);HTS數(shù)據(jù)還顯示,所有與光合作用相關(guān)的差異表達(dá)基因在CYVCV感染的檸檬植物中均下調(diào),揭示了植物激素代謝與光合作用途徑在CYVCV侵染過程中的核心作用,為深入理解CYVCV的致病機制及其與檸檬植物的相互作用提供了新的視角。為了驗證HTS結(jié)果的準(zhǔn)確性,研究者選擇了12個隨機基因進(jìn)行了實時熒光定量PCR(RT-qPCR)實驗。實驗結(jié)果表明,mRNA表達(dá)分析的結(jié)果與RNA-Seq的結(jié)果一致,進(jìn)一步鞏固了HTS技術(shù)在植物病毒研究中的可靠性。這項研究不僅展示了HTS技術(shù)在揭示復(fù)雜生物系統(tǒng)中基因表達(dá)模式變化方面的強大能力,還為理解CYVCV感染后檸檬植物癥狀發(fā)育的分子基礎(chǔ)提供了新的見解,為未來柑橘產(chǎn)業(yè)的病害防控提供重要理論依據(jù),充分展示了HTS技術(shù)在植物病毒研究領(lǐng)域的創(chuàng)新應(yīng)用與巨大潛力。
2024年,Park等[45]運用HTS技術(shù),針對從韓國6個省9個地區(qū)采集的118份柑橘類植物葉片樣品開展病毒診斷工作,成功地從樣品中鑒定出了4種病毒,分別為CTV、柑橘葉斑駁病毒(citrus leaf blotch virus,CLBV)、柑橘脈突病毒(citrus vein enation virus,CVEV)和CYVCV,其中,CYVCV在韓國是首次被報道的病毒種類。這些病毒種類的成功鑒定不僅擴充了當(dāng)前已知的柑橘病毒庫,還為后續(xù)開展針對性的柑橘病毒防控研究提供了寶貴的目標(biāo)對象,有助于提升柑橘產(chǎn)業(yè)的健康與可持續(xù)發(fā)展。
2.3 HTS技術(shù)在CTLV中的應(yīng)用
在植物病毒研究領(lǐng)域,HTS技術(shù)的應(yīng)用為柑橘碎葉病(citrus tatter leaf virus,CTLV)的研究帶來創(chuàng)新與突破[46]。CTLV是一種嚴(yán)重危害柑橘生產(chǎn)的病毒,它能引起柑橘砧木的芽體皺縮,且易于傳播[47]。然而,目前關(guān)于CTLV基因組的多樣性特征,以及這種多樣性如何具體影響病毒檢測過程,尚缺乏了解。2019年,Tan等[48]借助HTS技術(shù),對來自不同地區(qū)、保存多年的12種CTLV病毒樣本展開研究,成功獲取了所有分離株的全長基因組序列?;谶@些全基因組序列,研究人員進(jìn)行了系統(tǒng)發(fā)育分析,揭示了CTLV的起源、進(jìn)化路徑及其在不同植物物種間的溢出事件,并深入剖析了病毒基因組的多樣性,為確立CTLV分類學(xué)的地位提供了更堅實的數(shù)據(jù)支撐。研究基于HTS數(shù)據(jù)的分析,開發(fā)了針對CTLV的RT-qPCR測定法,該測定法具有高度的特異性和靈敏度。HTS技術(shù)的應(yīng)用克服了傳統(tǒng)測序僅針對少量分離株小基因組區(qū)域進(jìn)行分析的局限,實現(xiàn)了對多個病毒分離株全基因組序列系統(tǒng)性的分析,為分子病毒檢測方法的設(shè)計與驗證提供了指引,突破了時間和成本限制,極大地加速了對病毒基因組的全面解析[49]。這一利用HTS技術(shù)進(jìn)行的系統(tǒng)性研究顯著增強了CTLV檢測的準(zhǔn)確性和可靠性,為高價值作物種質(zhì)計劃中的病原體檢測提供了更為全面和有力的技術(shù)支持,有助于減少病毒威脅,保障農(nóng)業(yè)生產(chǎn)安全。
2.4 HTS技術(shù)在CLBV中的應(yīng)用
柑橘葉斑駁病毒(citrus leaf blotch virus,CLBV)隸屬乙型線形病毒科(Betaflexiviridae),擁有約8.7 kb的線性、正義、單鏈基因組RNA,能侵染多種宿主,涵蓋結(jié)果植物、觀賞植物以及草本植物[50]。CLBV主要通過嫁接方式進(jìn)行傳播,在中國的發(fā)生較為普遍[51]。研究表明[52],CLBV病毒可能經(jīng)由嫁接與播種兩種途徑擴散,導(dǎo)致來自不同柑橘種類及地理區(qū)域的分離株展現(xiàn)出穩(wěn)定的遺傳結(jié)構(gòu)特征。對柑橘品種Haruka(C. tamuranua)進(jìn)行基因組測序,發(fā)現(xiàn)其分離株與已知分離株間存在顯著的遺傳差異,暗示其可能代表了柑橘病毒的一種新型類別[53]。2018年,Cao等[54]利用HTS技術(shù),從表現(xiàn)出葉片褪綠斑點癥狀的Haruka柑橘樹中成功鑒定出一種新型正鏈RNA病毒,命名為“柑橘葉斑病毒2型”(CLBV-2)。HTS技術(shù)以快速且高效的方式實現(xiàn)了對病毒基因組的從頭組裝,利用深度測序能夠清晰地揭示CLBV-2與已知CLBV分離株在基因組結(jié)構(gòu)維度上的相似性與差異性。尤為值得注意的是,與已知CLBV分離株相比,CLBV-2在5'非翻譯區(qū)(5'-untranslated region,5'-UTR)及復(fù)制酶多蛋白(ORF1)區(qū)域展現(xiàn)出較低的序列相似性,而在運動蛋白(ORF2)、外殼蛋白(ORF3)及3'非翻譯區(qū)(3'-untranslated region,3'-UTR)區(qū)域則表現(xiàn)出高度的相似性?;谌蚪M序列分析,首次提出了CLBV-2可能通過與其他未知柑橘病毒發(fā)生重組從而獲取特定基因片段的假說,為理解病毒進(jìn)化的機制提供了新的視角。依據(jù)國際病毒分類學(xué)委員會(International Committee on Taxonomy of Viruses,ICTV)所制定的種劃分標(biāo)準(zhǔn),CLBV-2被正式認(rèn)定為Betaflexiviridae科內(nèi)的一個新種,這一成果標(biāo)志著CLBV-2在柑橘屬中具有獨特地位,也代表柑橘病毒分類學(xué)領(lǐng)域取得了重要進(jìn)展。
2022年,Kim等[55]運用HTS技術(shù),從韓國濟州島表現(xiàn)出斑點、變色癥狀的檸檬植株葉片中提取總RNA,進(jìn)而構(gòu)建cDNA文庫并實施深度測序,高效獲取了大量RNA測序數(shù)據(jù)。對這些數(shù)據(jù)進(jìn)行質(zhì)量過濾和重新組裝后,研究人員發(fā)現(xiàn)了與CLBV高度同源的大片段重疊群,并通過序列比對和RT-PCR實驗驗證了檸檬植株中CLBV的自然感染情況,這在韓國屬于首次報道檸檬植株自然感染CLBV。此外,分析HTS技術(shù)所得數(shù)據(jù),評估檸檬植株中CLBV的發(fā)病率,為后續(xù)開展流行病學(xué)研究、制定病害防控策略提供了重要依據(jù)。應(yīng)用HTS技術(shù)顯著加快了在檸檬中首次發(fā)現(xiàn)CLBV的進(jìn)程,也為精準(zhǔn)鑒定病毒和分析病毒基因序列提供確鑿的證據(jù)。
HTS技術(shù)已成功應(yīng)用于柑橘主要病毒病的研究,在柑橘病毒學(xué)領(lǐng)域發(fā)揮著不可估量的作用,持續(xù)有力地推動著新病毒的發(fā)現(xiàn)與鑒定工作。2018年,田欣等[56]運用宏轉(zhuǎn)錄組學(xué)技術(shù),鑒定出一種新型柑橘負(fù)鏈RNA病毒。由于該病毒在費納·克列門丁葉片上引發(fā)褪綠斑點癥狀,因此它被暫命名為柑橘褪綠斑點相關(guān)病毒(citrus chlorotic dwarf-associated virus,CCDaV)。2020年,張麗勍等[29]借助sRNA深度測序技術(shù)并結(jié)合RT-PCR分析手段,發(fā)現(xiàn)上海地區(qū)的紅美人柑橘普遍遭受CTV、CYVCV、柑橘樹皮裂紋類病毒(citrus bark cracking viroid,CBCVd)以及其他柑橘類病毒(citrus viroids)的復(fù)合侵染。2023年,廖睿玲[32]通過RNA-seq技術(shù)在柑橘中發(fā)現(xiàn)一種至少具有6條鏈的多組分RNA新病毒,并通過生物學(xué)實驗獲取了其全長序列,分析基因組結(jié)構(gòu)、序列相似性及進(jìn)化關(guān)系,確認(rèn)其為柑橘jivivirus相關(guān)病毒,命名為柑橘jivivirus相關(guān)病毒1(citrus jivi-related virus 1,CJVV1)。
3 高通量測序技術(shù)在柑橘病毒種群多樣性分析中的應(yīng)用
植物病毒依賴于生物媒介的遷徙或人類活動的助力進(jìn)行遠(yuǎn)距離擴散,它們的地理分布與時間出現(xiàn)模式展現(xiàn)出顯著的動態(tài)特征,并且這種動態(tài)性映射到其潛在宿主范圍的擴展或變遷上[57]。植物病毒對栽培作物產(chǎn)業(yè)具威脅性,因此,利用病毒組學(xué)技術(shù)探索病毒的物種多樣性有一定的實際意義[58]。HTS技術(shù)能夠有效識別已知病毒、鑒定新型病毒,在柑橘病毒種群多樣性分析、基因表達(dá)模式探究以及流行病學(xué)研究等多個科學(xué)領(lǐng)域扮演著至關(guān)重要的角色,HTS技術(shù)的應(yīng)用深化了對生物體遺傳特性的認(rèn)知,也推動了疾病傳播機制及預(yù)防策略的研究與發(fā)展[59]。
近年來,通過HTS技術(shù)在柑橘種群內(nèi)部及種群之間的遺傳變異、基因流、適應(yīng)性進(jìn)化以及種群結(jié)構(gòu)等方面有大量新的研究[60-62]。2018年,王亞飛[63]利用HTS技術(shù)揭示了巴基斯坦柑橘中多種類病毒的全基因組,其中CBCVd與已知序列差異顯著,表現(xiàn)出高度的遺傳多樣性,另創(chuàng)新性地通過一步法RT-PCR獲得CBCVd二聚體cDNA,并證實其侵染性,進(jìn)一步證明了CBCVd的復(fù)雜性和變異性。
2020年,Wu等[64]借助HTS技術(shù),從巴基斯坦旁遮普省的柑橘樹皮組織中鑒定出柑橘黃化斑駁相關(guān)病毒(citrus yellow mottle-associated virus,CiYMaV),其基因組特征與曼達(dá)里病毒屬(Mandarinavirus)成員相似,并通過透射電子顯微鏡觀察到病毒顆粒的形態(tài)?;跀?shù)據(jù)分析和系統(tǒng)發(fā)育分析顯示,CiYMaV與印度柑橘環(huán)斑病毒(indian citrus ringspot virus,ICRSV)和CYVCV具有高度同源性,但在血清學(xué)和生物學(xué)上可區(qū)分。流行病學(xué)調(diào)查發(fā)現(xiàn)CiYMaV在巴基斯坦柑橘樹中流行率較高,且常與CYVCV及CTV混合感染,這表明病毒間存在潛在的相互作用與協(xié)同進(jìn)化現(xiàn)象,體現(xiàn)出病毒的遺傳多樣性。在中國云南開展的初步高通量篩查中,并未檢測到CiYMaV,這一結(jié)果表明該病毒的地理分布存在限制,或者生態(tài)適應(yīng)性具有差異。研究還開發(fā)了特異性RT-PCR檢測方法,并證實了CiYMaV的致病性,為防控該病毒的傳播提供了重要依據(jù)。這項研究不僅深化了對病毒種群多樣性與地理分布特征的高通量解析,還為人們理解柑橘病毒的進(jìn)化、傳播機制及其對柑橘產(chǎn)業(yè)的潛在影響提供了新的視角。
2021年,Liu等[65]利用HTS技術(shù),對云南哀牢山地區(qū)野生柑橘病毒的多樣性和復(fù)雜性進(jìn)行了研究,并鑒定和表征了包括葡萄卷葉病毒屬(Ampelovirus)的柑橘相關(guān)葡萄卷葉病毒1(citrus-associated ampelovirus1,CaAV-1)和柑橘相關(guān)葡萄卷葉病毒2(citrus-associated ampelovirus2,CaAV-2)以及可能代表長線形病毒科(Closteroviridae)新屬的柑橘病毒B(citrus virus B,CiVB)。通過比較基因組結(jié)構(gòu)及特征分析、進(jìn)化和重組分析,揭示了新病毒與已知病毒種群內(nèi)部的遺傳變異和重組事件,發(fā)現(xiàn)頻繁的水平基因轉(zhuǎn)移、基因重復(fù)和表達(dá)策略的改變塑造了Closteroviridae病毒的基因組復(fù)雜性和多樣化。以上發(fā)現(xiàn)不僅拓寬了人們對Closteroviridae基因組和進(jìn)化可塑性的理解,還揭示了病毒的遺傳多樣性和適應(yīng)性,以及它們與真菌、細(xì)菌和植物等其他生物體之間相互作用的復(fù)雜機制。
2023年,李雙花[66]和Li等[67]運用HTS技術(shù),從湖南道縣野生柑橘中成功鑒定出一個新型CTV分離株JY-2。同源序列比對及系統(tǒng)發(fā)育分析結(jié)果表明,該分離株代表一種新的CTV基因型-JY基因型,其基因型全基因組序列差異超過7.5%,ORF1a的核苷酸和氨基酸序列差異均超8%。通過對12個分離株的ORF1b、p33、p25、p23基因序列進(jìn)行分子序列克隆與測序,并將所得序列與已知CTV基因型分離株的基因序列進(jìn)行比對分析,發(fā)現(xiàn)JY基因型種群內(nèi)部的遺傳變異程度較低,種群結(jié)構(gòu)相對穩(wěn)定,JY基因型與其他CTV基因型之間存在顯著遺傳差異。在系統(tǒng)發(fā)育樹上,JY分離株形成獨立的簇,與已知的CTV基因型明顯區(qū)分開來。CTV在野生柑橘與栽培柑橘種群間的基因交流有限,差異明顯。
2024年,Jin等[33]借助HTS技術(shù),對從韓國地區(qū)采集的柑橘類植物葉片樣本展開病毒鑒定及遺傳多樣性分析。結(jié)果顯示,韓國各地及不同宿主來源的CYVCV分離株的基因組序列高度一致,相似度為95.2%~98.8%,且均歸屬于同一進(jìn)化分支,表明這些分離株雖遺傳變異有限,卻形成了獨特的種群結(jié)構(gòu)。通過比對韓國的CYVCV分離株與東亞及南亞(中國、巴基斯坦、印度、緬甸)的分離株后發(fā)現(xiàn),盡管存在差異,但尚未達(dá)到界定新物種或亞種的顯著程度,也表明CYVCV在全球范圍內(nèi)廣泛傳播。不同地理區(qū)域的病毒種群間存在緊密的遺傳交流與聯(lián)系。上述發(fā)現(xiàn)為制定有效的病毒防控策略提供了科學(xué)依據(jù),有力推動了柑橘病毒學(xué)領(lǐng)域的發(fā)展。
4 高通量測序技術(shù)的優(yōu)勢和局限性
與傳統(tǒng)的病毒檢測方法相比,HTS技術(shù)的優(yōu)勢主要體現(xiàn)在以下幾個方面。其一,HTS技術(shù)具有快速、靈敏的特性。在運用傳統(tǒng)檢測方法對未知病毒進(jìn)行檢測時,由于對病毒的序列以及生物學(xué)特性缺乏充分認(rèn)知,檢測過程耗時冗長,結(jié)果不理想。與之相比,HTS技術(shù)測序反應(yīng)本身通??稍诙潭虜?shù)日內(nèi)完成,且數(shù)據(jù)的分析處理和結(jié)果驗證工作亦能在較短時間內(nèi)完成,極大程度地提升了檢測效率與準(zhǔn)確性[68]。其二,HTS技術(shù)擁有獨特的樣本處理能力,可實現(xiàn)對多個樣本的同步檢測,展現(xiàn)出超高的樣品檢測通量。在操作過程中,研究人員通過為每個樣品的cDNA添加特異性標(biāo)識序列,能夠?qū)碜圆煌赜?、不同寄主物種的病毒進(jìn)行全面的種類甄別、分布狀況分析及變異進(jìn)化特征研究[69]。
盡管HTS技術(shù)在柑橘病毒鑒定及種群多樣性分析中展現(xiàn)出巨大的潛力和優(yōu)勢,但其在實際應(yīng)用中仍面臨著一系列挑戰(zhàn)。其一,整體流程耗時較長。雖然測序反應(yīng)本身快速,但從樣本采集、處理到測序完成及數(shù)據(jù)獲取和分析,整個流程耗時長達(dá)數(shù)月,這限制了其在需要快速響應(yīng)的病害診斷中的及時應(yīng)用;其二,微生物高通量測序數(shù)據(jù)量龐大,而處理大量數(shù)據(jù)需要與更多學(xué)科交叉研究,這無疑增加了數(shù)據(jù)分析的難度[70];其三,存在核酸污染與序列拼接難題。2019年,Asplund等[71]對7000個公開的HTS數(shù)據(jù)進(jìn)行分析,發(fā)現(xiàn)其中存在大量病毒序列污染現(xiàn)象。經(jīng)推斷,污染原因可能是測序過程中的交叉污染[72],這可能導(dǎo)致對低濃度病毒的錯誤鑒定,影響研究結(jié)果的準(zhǔn)確性。由于病毒(尤其是RNA病毒)準(zhǔn)種內(nèi)的序列具有高度異質(zhì)性,拼接HTS產(chǎn)生的短讀長(Reads)面臨困難。例如,低豐度的植物病毒sRNA序列會致使拼接效率降低[73],同時引發(fā)人為嵌合體(Chimeras)的產(chǎn)生[74]。此外,對于易發(fā)生自然重組的病毒而言,直接拼接的序列可能缺乏準(zhǔn)確性,需進(jìn)行額外驗證[66]。雖然這些挑戰(zhàn)限制了HTS技術(shù)的進(jìn)一步推廣和應(yīng)用,但也為柑橘病毒研究領(lǐng)域規(guī)劃出未來的發(fā)展路徑與方向。
5 結(jié) 論
綜上所述,盡管HTS技術(shù)在數(shù)據(jù)處理、技術(shù)實現(xiàn)等方面面臨挑戰(zhàn),但其具備低成本、超高通量、流程簡化、高靈敏度及高精度等顯著優(yōu)勢,在柑橘病毒鑒定與種群多樣性研究中彰顯出優(yōu)越性。HTS技術(shù)為病毒學(xué)研究,尤其是微生物群落研究開拓了全新視角,深化了對微生物群落的構(gòu)成、分類及其功能特性的認(rèn)知與探索,極大地推動了該領(lǐng)域研究向綜合化的方向發(fā)展。展望未來,HTS技術(shù)在柑橘病毒研究領(lǐng)域?qū)⒅铝τ诮鉀Q現(xiàn)存問題、提升性能和拓展應(yīng)用場景。比對HTS技術(shù)在柑橘病毒與其他植物病毒檢測中的應(yīng)用具有重要意義,有助于明確該技術(shù)在不同植物病毒體系中的共性與特性,為優(yōu)化檢測策略、推動植物病毒學(xué)的整體發(fā)展提供關(guān)鍵助力。
參考文獻(xiàn) References:
[1] Food and Agriculture Organization of the United Nations (FAO). Crops and livestock products[DB/OL]. FAOSTAT,2022. https://www.fao.org/faostat/en/#data/QCL.
[2] 中國國家統(tǒng)計局. 中國統(tǒng)計年鑒 2023[DB/OL]. 2023. http://www.stats.gov.cn/english/.
National Bureau of Statistics of China. China Statistical Yearbook 2023[DB/OL]. 2023. http://www.stats.gov.cn/english/.
[3] WU G A,TEROL J,IBANEZ V,LóPEZ-GARCíA A,PéREZ-ROMáN E,BORREDá C,DOMINGO C,TADEO F R,CARBONELL-CABALLERO J,ALONSO R,CURK F,DU D L,OLLITRAULT P,ROOSE M L,DOPAZO J,GMITTER F G,ROKHSAR D S,TALON M. Genomics of the origin and evolution of citrus[J]. Nature,2018,554(7692):311-316.
[4] QIU X. Studies on the forest ecosystem in ailao mountains,Yunnan,China[M]. Kunming:Yunnan Sciences and Technology Press,1998:1-12.
[5] ZHOU C,DA GRA?A J V,F(xiàn)REITAS-ASTUA J,VIDALAKIS G,DURAN-VILA N,LAVAGI I. Chapter 19—Citrus viruses and viroids[M]//TALON M,CARUSO M,GMITTER F G JR. The genus Citrus. Elsevier ScienceDirect:Woodhead Publishing,2020:391-410.
[6] HERNáNDEZ-RODRíGUEZ L,BENíTEZ-GALEANO M J,BERTALMíO A,RUBIO L,RIVAS F,ARRUABARRENA A,ROLóN R,COLINA R,MAESO D. Diversity of uruguayan citrus tristeza virus populations segregated after single aphid transmission[J]. Tropical Plant Pathology,2019,44(4):352-362.
[7] 張松. 基于宏病毒組學(xué)技術(shù)的柑橘病毒多樣性及其分子進(jìn)化研究[D]. 重慶:西南大學(xué),2022.
ZHANG Song. Metaviromics-based studies on diversity and molecular evolution of citrus viruses[D]. Chongqing:Southwest University,2022.
[8] READ D A,PIETERSEN G. Diversity of citrus tristeza virus populations in commercial grapefruit orchards in Southern Africa,determined using Illumina MiSeq technology[J]. European Journal of Plant Pathology,2017,148(2):379-391.
[9] 戰(zhàn)斌慧,周雪平. 高通量測序技術(shù)在植物及昆蟲病毒檢測中的應(yīng)用[J]. 植物保護(hù),2018,44(5):120-126.
ZHAN Binhui,ZHOU Xueping. Application of next-generation sequencing technology in detection of plant and insect viruses[J]. Plant Protection,2018,44(5):120-126.
[10] 金鑫,張艷慧,唐萌,周彥. 柑橘病毒類病害診斷技術(shù)研究進(jìn)展[J]. 園藝學(xué)報,2016,43(9):1675-1687.
JIN Xin,ZHANG Yanhui,TANG Meng,ZHOU Yan. Advances of diagnosis techniques for citrus virus and virus-like diseases[J]. Acta Horticulturae Sinica,2016,43(9):1675-1687.
[11] RADFORD A D,CHAPMAN D,DIXON L,CHANTREY J,DARBY A C,HALL N. Application of next-generation sequencing technologies in virology[J]. Journal of General Virology,2012,93(Pt 9):1853-1868.
[12] GAO W,ZHANG L W. Comparative analysis of the microbial community composition between Tibetan kefir grains and milks[J]. Food Research International,2019,116:137-144.
[13] BARBA M,CZOSNEK H,HADIDI A. Historical perspective,development and applications of next-generation sequencing in plant virology[J]. Viruses,2014,6(1):106-136.
[14] KULSKI J K. Next generation sequencing-advances,applications and challenges[M]. London:Intech Open, 2016.
[15] 宋丹丹. 高通量測序技術(shù)在野生動物病毒性疫病診斷中的應(yīng)用研究[D]. 濟南:山東師范大學(xué),2023.
SONG Dandan. Application of high-throughput sequencing technology in diagnosis of viral diseases in wild animals[D]. Jinan:Shandong Normal University,2023.
[16] 張文力. 高通量測序數(shù)據(jù)分析現(xiàn)狀與挑戰(zhàn)[J]. 集成技術(shù),2012,1(3):20-24.
ZHANG Wenli. Status and challenges on data analysis of high throughput sequencing[J]. Journal of Integration Technology,2012,1(3):20-24.
[17] HADIDI A,F(xiàn)LORES R,CANDRESSE T,BARBA M. Next-generation sequencing and genome editing in plant virology[J]. Frontiers in Microbiology,2016,7:1325.
[18] SADEGHI M S,AFSHARIFAR A,IZADPANAH K,LOCONSOLE G,DE STRADIS A,MARTELLI G P,SAPONARI M. Isolation and partial characterization of a novel cytorhabdovirus from citrus trees showing foliar symptoms in Iran[J]. Plant Disease,2016,100(1):66-71.
[19] VISSER M,BESTER R,BURGER J T,MAREE H J. Next-generation sequencing for virus detection:Covering all the bases[J]. Virology Journal,2016,13:85.
[20] MASSART S,CHIUMENTI M,DE JONGHE K,GLOVER R,HAEGEMAN A,KOLONIUK I,KOMíNEK P,KREUZE J,KUTNJAK D,LOTOS L,MACLOT F,MALIOGKA V,MAREE H J,OLIVIER T,OLMOS A,POOGGIN M M,REYNARD J S,RUIZ-GARCíA A B,SAFAROVA D,SCHNEEBERGER P H H,SELA N,TURCO S,VAINIO E J,VARALLYAY E,VERDIN E,WESTENBERG M,BROSTAUX Y,CANDRESSE T. Virus detection by high-throughput sequencing of small RNAs:Large-scale performance testing of sequence analysis strategies[J]. Phytopathology,2019,109(3):488-497.
[21] LOCONSOLE G,SALDARELLI P,DODDAPANENI H,SAVINO V,MARTELLI G P,SAPONARI M. Identification of a single-stranded DNA virus associated with citrus chlorotic dwarf disease,a new member in the family Geminiviridae[J]. Virology,2012,432(1):162-172.
[22] ROY A,CHOUDHARY N,GUILLERMO L M,SHAO J,GOVINDARAJULU A,ACHOR D,WEI G,PICTON D D,LEVY L,NAKHLA M K,HARTUNG J S,BRLANSKY R H. A novel virus of the genus Cilevirus causing symptoms similar to citrus leprosis[J]. Phytopathology,2013,103(5):488-500.
[23] CRUZ-JARAMILLO J L,RUIZ-MEDRANO R,ROJAS-MORALES L,LóPEZ-BUENFIL J A,MORALES-GALVáN O,CHAVARíN-PALACIO C,RAMíREZ-POOL J A,XOCONOSTLE-CáZARES B. Characterization of a proposed dichorhavirus associated with the Citrus leprosis disease and analysis of the host response[J]. Viruses,2014,6(7):2602-2622.
[24] MATSUMURA E E,COLETTA-FILHO H D,NOURI S,F(xiàn)ALK B W,NERVA L,OLIVEIRA T S,DORTA S O,MACHADO M A. Deep sequencing analysis of RNAs from citrus plants grown in a citrus sudden death-affected area reveals diverse known and putative novel viruses[J]. Viruses,2017,9(4):92.
[25] RAMOS-GONZáLEZ P L,CHABI-JESUS C,GUERRA-PERAZA O,TASSI A D,KITAJIMA E W,HARAKAVA R,SALAROLI R B,F(xiàn)REITAS-ASTúA J. Citrus leprosis virus N:A new dichorhavirus causing Citrus leprosis disease[J]. Phytopathology,2017,107(8):963-976.
[26] CHABI-JESUS C,RAMOS-GONZáLEZ P L,TASSI A D,GUERRA-PERAZA O,KITAJIMA E W,HARAKAVA R,Jr BESERRA J A,SALAROLI R B,F(xiàn)REITAS-ASTúA J. Identification and characterization of citrus chlorotic spot virus,a new dichorhavirus associated with Citrus leprosis-like symptoms[J]. Plant Disease,2018,102(8):1588-1598.
[27] NAVARRO B,MINUTOLO M,DE STRADIS A,PALMISANO F,ALIOTO D,DI SERIO F. The first phlebo-like virus infecting plants:A case study on the adaptation of negative-stranded RNA viruses to new hosts[J]. Molecular Plant Pathology,2018,19(5):1075-1089.
[28] NAVARRO B,ZICCA S,MINUTOLO M,SAPONARI M,ALIOTO D,DI SERIO F. A negative-stranded RNA virus infecting citrus trees:The second member of a new genus within the order Bunyavirales[J]. Frontiers in Microbiology,2018,9:2340.
[29] 張麗勍,管麗琴,蔣飛,方獻(xiàn)平,李水根,張學(xué)英. 利用小RNA深度測序技術(shù)鑒定上海地區(qū)‘紅美人’柑橘病毒種類[J]. 植物保護(hù),2021,47(6):102-108.
ZHANG Liqing,GUAN Liqin,JIANG Fei,F(xiàn)ANG Xianping,LI Shuigen,ZHANG Xueying. Identification of the viruses from Hongmeiren citrus in Shanghai by small RNA sequencing[J]. Plant Protection,2021,47(6):102-108.
[30] KWON S J,BODAGHI S,DANG T,GADHAVE K R,HO T,OSMAN F,AL RWAHNIH M,TZANETAKIS I E,SIMON A E,VIDALAKIS G. Complete nucleotide sequence,genome organization,and comparative genomic analyses of citrus yellow-vein associated virus (CYVaV)[J]. Frontiers in Microbiology,2021,12:683130.
[31] 楊柳. 柑橘黃斑病毒的分子鑒定及其侵染性克隆的構(gòu)建[D]. 重慶:西南大學(xué),2022.
YANG Liu. Molecular identification and construction of infectious cDNA clone of citrus yellow spot virus[D]. Chongqing:Southwest University,2022.
[32] 廖睿玲. 兩種果樹多組分RNA新病毒的分子鑒定[D]. 重慶:西南大學(xué),2023.
LIAO Ruiling. Molecular identification of two new multicomponent RNA viruses infecting fruit trees[D]. Chongqing:Southwest University,2023.
[33] JIN T,KIM J K,BYUN H S,CHOI H S,CHA B,KWAK H R,KIM M. Occurrence and multiplex PCR detection of Citrus yellow vein clearing virus in Korea[J]. Plant Pathology Journal,2024,40(2):125-138.
[34] 申世凱,曾婷,喬興華,陳力,任杰群,周彥. 柑橘衰退病毒RT-RPA-LFD可視化檢測方法的建立及應(yīng)用[J]. 果樹學(xué)報,2023,40(12):2652-2660.
SHEN Shikai,ZENG Ting,QIAO Xinghua,CHEN Li,REN Jiequn,ZHOU Yan. Establishment and application of RT-RPA-LFD visualization assay for rapid detection of citrus tristeza virus[J]. Journal of Fruit Science,2023,40(12):2652-2660.
[35] WANG C N,CHEN C Y,CHEN Y Q,ZHONG K,YI L. Bayesian phylodynamic analysis reveals the evolutionary history and the dispersal patterns of citrus tristeza virus in China based on the p25 gene[J]. Virology Journal,2023,20(1):223.
[36] 李平. 兩種柑橘病毒的高通量測序鑒定[D]. 重慶:西南大學(xué),2018.
LI Ping. Identification of viral causal agent for two citrus disease through high-throughput sequencing[D]. Chongqing:Southwest University,2018.
[37] DA CUNHA A T P,CHIUMENTI M,LADEIRA L C,KUBAA R A,LOCONSOLE G,PANTALEO V,MINAFRA A. High throughput sequencing from angolan citrus accessions discloses the presence of emerging CTV strains[J]. Virology Journal,2021,18(1):62.
[38] HILF M E,MAVRODIEVA V A,GARNSEY S M. Genetic marker analysis of a global collection of isolates of citrus tristeza virus:Characterization and distribution of CTV genotypes and association with symptoms[J]. Phytopathology,2005,95(8):909-917.
[39] BESTER R,COOK G,MAREE H J. Citrus tristeza virus genotype detection using high-throughput sequencing[J]. Viruses,2021,13(2):168.
[40] GHORBANI A,F(xiàn)AGHIHI M M,F(xiàn)ALAKI F,IZADPANAH K. Complete genome sequencing and characterization of a potential new genotype of citrus tristeza virus in Iran[J]. PLoS One,2023,18(6):e0288068.
[41] TATINENI S C,ROBERTSON C J,GARNSEY S M,DAWSON W O. A plant virus evolved by acquiring multiple nonconserved genes to extend its host range[J]. Proceedings of the National Academy of Sciences,2011,108(42):17366-17371.
[42] ZHANG Y,ZHOU C,LIU Y,WANG X,LI Z,LI F,LIU H,ZHOU Y. Molecular characterization and population structure of Citrus yellow vein clearing virus in China[J]. Plant Pathology,2019,68(3):487-496.
[43] YU Y Q,WU Q,SU H N,WANG X F,CAO M J,ZHOU C Y. Small RNA deep sequencing reveals full-length genome of Citrus yellow vein clearing virus in Chongqing,China[J]. Journal of Integrative Agriculture,2017,16(2):503-508.
[44] BIN Y,ZHANG Q,SU Y,WANG C Q,JIANG Q Q,SONG Z,ZHOU C Y. Transcriptome analysis of Citrus limon infected with Citrus yellow vein clearing virus[J]. BMC Genomics,2023,24:65.
[45] PARK C Y,PARK J,KIM H,YI S I,MOON J S. First report of citrus leaf blotch virus in satsuma mandarin in Korea[J]. Journal of Plant Pathology,2019,101(4):1229.
[46] 孫現(xiàn)超,周常勇,青玲,楊水英. 柑橘碎葉病毒研究進(jìn)展[J]. 果樹學(xué)報,2009,26(2):213-216.
SUN Xianchao,ZHOU Changyong,QING Ling,YANG Shuiying. Advances in research on citrus tatter leaf virus[J]. Journal of Fruit Science,2009,26(2):213-216.
[47] TATINENI S,AFUNIAN M R,HILF M E,GOWDA S,DAWSON W O,GARNSEY S M. Molecular characterization of Citrus tatter leaf virus historically associated with Meyer lemon trees:Complete genome sequence and development of biologically active in vitro transcripts[J]. Phytopathology,2009,99(4):423-431.
[48] TAN S H,OSMAN F,BODAGHI S,DANG T,GREER G,HUANG A,HAMMADO S,ABU-HAJAR S,CAMPOS R,VIDALAKIS G. Full genome characterization of 12 citrus tatter leaf virus isolates for the development of a detection assay[J]. PLoS One,2019,14(10):e0223958.
[49] BOSTOCK R M,THOMAS C S,HOENISCH R W,GOLINO D A,VIDALAKIS G. EXCLUDING PESTS AND PATHOGENS:Plant health:How diagnostic networks and interagency partnerships protect plant systems from pests and pathogens[J]. California Agriculture,2014,68(4):117-124.
[50] GRESS J C,SMITH S,TZANETAKIS I E. First report of Citrus leaf blotch virus in peony in the USA[J]. Plant Disease,2017,101(4):637.
[51] YI L,CHEN Y Q,CHEN B,ZHOU J. Occurrence and molecular characteristics of citrus leaf blotch virus from citrus in China based on coat protein genes[J]. Tropical Plant Pathology,2021,46(6):714-718.
[52] VIVES M C,RUBIO L,GALIPIENSO L,NAVARRO L,MORENO P,GUERRI J. Low genetic variation between isolates of Citrus leaf blotch virus from different host species and of different geographical origins.[J]. The Journal of general virology,2002,83(10):2587-2591.
[53] LI P,LI M,ZHANG S,WANG J,YANG F Y,CAO M J,LI Z A. Complete genome sequences of four isolates of Citrus leaf blotch virus from citrus in China[J]. Journal of Integrative Agriculture,2018,17(3):712-715.
[54] CAO M J,LI P,ZHANG S,YANG F Y,ZHOU Y,WANG X F,LI R H,LI Z A. Molecular characterization of a novel citrivirus from citrus using next-generation sequencing[J]. Archives of Virology,2018,163(12):3479-3482.
[55] KIM N Y,LEE K P,HAN Y S,PARK K B. First report of citrus leaf blotch virus (CLBV) infection among lemon trees in Korea[J]. Journal of Plant Pathology,2023,105(4):1693.
[56] 田欣. 宏轉(zhuǎn)錄組學(xué)技術(shù)快速鑒定兩種果樹負(fù)鏈RNA新病毒[D]. 重慶:西南大學(xué),2018.
TIAN Xin. The identification of two novel negative viruses infecting fruits by metatranscriptomics[D]. Chongqing:Southwest University,2018.
[57] ROOSSINCK J M. Plant virus metagenomics:Biodiversity and ecology[J]. Annual Review of Genetics,2012,46(1):359-369.
[58] JONES R A C. Plant virus emergence and evolution:Origins,new encounter scenarios,factors driving emergence,effects of changing world conditions,and prospects for control[J]. Virus Research,2009,141(2):113-130.
[59] 呂玉琢. 基于高通量測序技術(shù)分析梨病毒的群體組成及分子變異[D]. 武漢:華中農(nóng)業(yè)大學(xué),2022.
Lü Yuzhuo. Population composition and molecular diversity of pear viruses revealed by high throughput sequencing technology[D]. Wuhan:Huazhong Agricultural University,2022.
[60] OLLITRAULT P,DE SAINT ROMAN M,BLOQUEL E,MIRANDA M,ATHIYANNAN N,MOURNET P,KRATTINGER S,BACHèS B,BACHèS M,OIHABI A,AL HAMEID A,BEHEIRY H,JULHIA L,F(xiàn)ROELICHER Y. Genotyping by sequencing reveals the genetic diversity of citrus cultivars cultivated in AlUla[J]. Acta Horticulturae,2024(1401):67-74.
[61] CURK F,ANCILLO G,GARCIA-LOR A,LURO F,PERRIER X,JACQUEMOUD-COLLET J P,NAVARRO L,OLLITRAULT P. Next generation haplotyping to decipher nuclear genomic interspecific admixture in citrus species:Analysis of chromosome 2[J]. BMC Genetics,2014,15:152.
[62] CURK F,ANCILLO G,OLLITRAULT F,PERRIER X,JACQUEMOUD-COLLET J P,GARCIA-LOR A,NAVARRO L,OLLITRAULT P. Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties[J]. PLoS One,2015,10(5):e0125628.
[63] 王亞飛. 柑橘樹皮裂紋類病毒的遺傳多樣性及其對裂皮類病毒拮抗作用的分子機理研究[D]. 重慶:西南大學(xué),2018.
WANG Yafei. The study on genetic diversity of Citrus bark cracking viroid and its antagonistic mechanism against Citrus exocortis viroid[D]. Chongqing:Southwest University,2018.
[64] WU J X,ZHANG S,ATTA S,YANG C X,ZHOU Y,DI SERIO F,ZHOU C Y,CAO M J. Discovery and survey of a new mandarivirus associated with leaf yellow mottle disease of citrus in Pakistan[J]. Plant Disease,2020,104(6):1593-1600.
[65] LIU Q Y,ZHANG S,MEI S Q,ZHOU Y,WANG J H,HAN G Z,CHEN L,ZHOU C Y,CAO M J. Viromics unveils extraordinary genetic diversity of the family Closteroviridae in wild citrus[J]. PLoS Pathogens,2021,17(7):e1009751.
[66] 李雙花. 柑橘衰退病毒新基因型鑒定及其基因型多重鑒定體系的建立[D]. 贛州:贛南師范大學(xué),2023.
LI Shuanghua. Identification of a novel genotype of Citrus tristeza virus and development of a multiplex genotype identification system[D]. Ganzhou:Gannan Normal University,2023.
[67] LI S H,ZHOU J,YI L,HUANG A J,HAN R Y,YOU P. Complete genome sequence of a novel variant of Citrus tristeza virus infecting Chinese wild mandarin (Citrus daoxianensis S. W. He amp; G. F. Liu., syn. Citrus reticulata Blanco) in China[J]. Tropical Plant Pathology,2023,48(3):352-356.
[68] 馬宇欣,李世訪. 高通量測序技術(shù)在鑒定木本植物雙生病毒中的應(yīng)用[J]. 植物保護(hù),2016,42(6):1-10.
MA Yuxin,LI Shifang. Application of next-generation sequencing technology in identification of geminiviruses from woody plants[J]. Plant Protection,2016,42(6):1-10.
[69] ROOSSINCK M J,SAHA P,WILEY G B,QUAN J X,WHITE J D,LAI H,CHAVARRíA F,SHEN G A,ROE B A. Ecogenomics:Using massively parallel pyrosequencing to understand virus ecology[J]. Molecular Ecology,2010,19:81-88.
[70] 韓霞,方佳麗,孟沈坤兒,朱曉堯,李楠,溫海虹. 高通量測序技術(shù)在藥用植物微生物多樣性研究中的應(yīng)用進(jìn)展[J]. 浙江農(nóng)業(yè)科學(xué),2024,65(2):329-334.
HAN Xia,F(xiàn)ANG Jiali,MENG Shenkuner,ZHU Xiaoyao,LI Nan,WEN Haihong. Application of high-throughput sequencing technology in the study of microbial diversity of medicinal plants[J]. Journal of Zhejiang Agricultural Sciences,2024,65(2):329-334.
[71] ASPLUND M,KJARTANSDóTTIR K R,MOLLERUP S,VINNER L,F(xiàn)RIDHOLM H,HERRERA J A R,F(xiàn)RIIS-NIELSEN J,HANSEN T A,JENSEN R H,NIELSEN I B,RICHTER S R,REY-IGLESIA A,MATEY-HERNANDEZ M L,ALQUEZAR-PLANAS D E,OLSEN P V S,SICHERITZ-PONTéN T,WILLERSLEV E,LUND O,BRUNAK S,MOURIER T,NIELSEN L P,IZARZUGAZA J M G,HANSEN A J. Contaminating viral sequences in high-throughput sequencing viromics:A linkage study of 700 sequencing libraries[J]. Clinical Microbiology and Infection,2019,25(10):1277-1285.
[72] LLAMAS B,VALVERDE G,F(xiàn)EHREN-SCHMITZ L,WEYRICH L S,COOPER A,HAAK W. From the field to the laboratory:Controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era[J]. Science amp; Technology of Archaeological Research,2017,3(1):1-14.
[73] PECMAN A,KUTNJAK D,GUTIéRREZ-AGUIRRE I,ADAMS I,F(xiàn)OX A,BOONHAM N,RAVNIKAR M. Next generation sequencing for detection and discovery of plant viruses and viroids:Comparison of two approaches[J]. Frontiers in Microbiology,2017,8:1998.
[74] TURCO S,GOLYAEV V,SEGUIN J,GILLI C,F(xiàn)ARINELLI L,BOLLER T,SCHUMPP O,POOGGIN M M. Small RNA-omics for virome reconstruction and antiviral defense characterization in mixed infections of cultivated Solanum plants[J]. Molecular Plant-Microbe Interactions,2018,31(7):707-723.
[75] 黃江慶,李彬. 高通量測序在細(xì)菌進(jìn)化分析中的應(yīng)用與展望[J]. 中華檢驗醫(yī)學(xué)雜志,2021,44(2):171-174.
HUANG Jiangqing,LI Bin. Application and prospect of high throughput sequencing in bacterial evolutionary analysis[J]. Chinese Journal of Laboratory Medicine,2021,44(2):171-174.