摘" " 要:【目的】明確不同環(huán)境因子(溫度、相對濕度、光照)和蘋果品種對Alternaria mali強(qiáng)弱毒菌株致病活性的影響?!痉椒ā坎捎脟婌F接種法評價(jià)不同環(huán)境因子和蘋果品種對A. mali強(qiáng)弱毒菌株致病活性的影響。【結(jié)果】不同溫度、相對濕度和光照條件對A. mali強(qiáng)弱毒菌株致病活性均產(chǎn)生了不同程度的影響,整體程度上強(qiáng)毒菌株的潛育期短于弱毒菌株,發(fā)病程度高于弱毒菌株。在不同溫度條件下,當(dāng)溫度為30 ℃時(shí),A. mali強(qiáng)弱毒菌株潛育期均最短,分別為54 h和72 h;A. mali強(qiáng)毒菌株在溫度為25 ℃時(shí)致病活性最強(qiáng),病情指數(shù)為23.06,而弱毒菌株在30 ℃時(shí)致病活性最強(qiáng),病情指數(shù)為17.53,但是當(dāng)溫度為15 ℃時(shí),A. mali強(qiáng)弱毒菌株潛育期最長,均大于100 h,并在此溫度下葉片發(fā)病最輕,其病情指數(shù)分別為5.86和8.42。在不同濕度條件下,當(dāng)相對濕度為60%時(shí),A. mali強(qiáng)弱毒菌株潛育期均最長,為120 h,并且在此濕度條件下葉片的發(fā)病程度最輕,病情指數(shù)分別為10.88和9.42,而當(dāng)相對濕度達(dá)到100%時(shí),強(qiáng)弱毒菌株潛育期最短,均為72 h。在不同光照條件下,A. mali強(qiáng)弱毒菌株均在光暗交替、紫外照射+持續(xù)光照條件下潛育期最短,其中強(qiáng)毒菌株在光暗交替、紫外照射+持續(xù)光照條件下潛育期均為60 h,而弱毒菌株在此條件下均為72 h,但是在光暗交替條件下,強(qiáng)毒菌株病情指數(shù)最高,為22.59,而在紫外照射+持續(xù)光照下,弱毒菌株病情指數(shù)最高,為21.24。此外,A. mali強(qiáng)弱毒菌株對不同蘋果品種的致病活性存在顯著差異,其中強(qiáng)弱毒菌株對富士和新紅星品種致病性較弱,而對金冠致病性最強(qiáng)。【結(jié)論】不同環(huán)境因子和蘋果品種對A. mali強(qiáng)弱毒菌株致病活性具有顯著影響,研究結(jié)果可為蘋果早期落葉病科學(xué)防治提供理論依據(jù)。
關(guān)鍵詞:蘋果葉斑??;Alternaria mali;強(qiáng)弱毒菌株;潛育期;致病性
中圖分類號:S661.1;S436.611 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2025)03-0643-08
Effect of environmental factors and apple varieties on the pathogenic activity of virulent and attenuated Alternaria mali strains
CHEN Xingxu, ZHONG Xiaogang, JIA Xuli, XU Bingliang, ZHANG Shuwu*
(College of Plant Protection, Gansu Agricultural University/Biological Control Engineering Laboratory of Crop Diseases and Insect Pests in Gansu Province, Lanzhou 730070, Gansu, China)
Abstract: 【Objective】 The apple early leaf blight disease is one of the major diseases caused by the pathogen of Alternaria mali, which has widely distributed in the main apple-producing regions worldwide and posed a serious threat to both the yield and quality of apple. This disease is caused by A. mali strains with varying degrees of virulence. Virulent A. mali strain leads to spot leaf blight disease, which affects leaves and younger shoots, influencing the growth of flower buds and fruit. Attenuated A. mali strain causes the target spot disease, which mainly affects the leaves and results in large lesions on the fruit. Environmental factors, especially temperature and humidity, play the significant role in impacting the disease occurrence. The aims for the present study were to clarify the effects of different environmental factors (temperature, relative humidity and light conditions) and apple cultivars on the latent period and pathogenicity of both virulent and attenuated A. mali strains. 【Methods】 In this study, the spray inoculation method was used to evaluate the effects of different environmental factors and apple varieties on the pathogenic activity of virulent and attenuated strains of A. mali. Healthy apple branches with consistent growth and diameter were collected and placed into sterile flasks containing sterile water, with five branches per flask. The virulent and attenuated strains of A. mali were inoculated by spraying spore suspensions (1×105 conidia·mL-1) onto the front and back of leaves growing on the branches, with sterile water as the control. In the temperature experiment, the treatment and control groups were cultured with a relative humidity of 90% and at temperatures of 15 ℃, 20 ℃, 25 ℃, 30 ℃ and 35 ℃ (16 h light/8 h dark), with three repetitions for each group. In the humidity experiment, the inoculated branches were cultured at 25 ℃ under 16 h light/8 h dark conditions, and the relative humidity was adjusted by modifying the concentration of H2SO4 to 60%, 70%, 80%, 90% and 100%. In the light condition experiment, the inoculated branches were placed at 25 ℃ and 90% humidity and exposed to various light treatments: continuous light, continuous darkness, 12 h light/12 h dark cycles, 3 h UV irradiation and 21 h light. In the variety experiment, branches of Starkrimson, Fuji and Golden Delicious were placed in sterile water, and the A. mali spore suspension was sprayed onto the leaves, with three repetitions for each variety, and the branches were cultured at 25 ℃ with 90% humidity under 16 h light/8 h dark conditions. After inoculation, the incubation period was observed every 6 hours and the disease index were recorded after 7 days. 【Results】 Different temperatures, relative humidity and light conditions all exerted varying degrees of influence on the pathogenic activity of virulent and attenuated strains of A. mali, with the virulent strain exhibiting a significantly shorter incubation period and higher disease severity than the attenuated strain averagely. Under different temperature conditions, at 30 ℃, both the virulent and attenuated strains of A. mali had the shortest incubation periods, being 54 h and 72 h, respectively. Within the temperature range from 20 ℃ to 30 ℃, disease severity was more pronounced after inoculation, with the virulent strain showing the highest pathogenic activity at 25 ℃, where the disease index reached 23.06 and the attenuated strain showing the highest activity at 30 ℃, with a disease index of 17.53. However, at 15 ℃, the incubation period was the longest for both strains, exceeding 100 h and the disease severity on the leaves was the slightest, with disease index of 5.86 and 8.42, respectively. Under different humidity conditions, with 60% relative humidity, the incubation period for both strains was the longest, 120 h, while at 100% relative humidity, the incubation period was the shortest, only 72 h. Additionally, with 60% relative humidity, the disease index for both strains were the lowest, being 10.88 and 9.42, respectively, while with 90% relative humidity, the disease index were the highest, being 19.01 and 12.50. Under different light conditions, both strains had the shortest incubation periods under alternating light/dark cycles, UV irradiation and continuous light. The virulent strain had a 60 h incubation period under these conditions, while the attenuated strain had a 72 h incubation period. However, under alternating light/dark cycles, the virulent strain had the highest disease index of 22.59, while under UV irradiation and continuous light conditions, the attenuated strain had the highest disease index of 21.24. Moreover, significant differences were observed in the pathogenic activity of the virulent and attenuated strains among different apple varieties. The pathogenicity of both strains on Fuji was generally lower than that on Starkrimson and Golden Delicious, with disease index of 14.13 and 8.30, respectively. Compared to the virulent and attenuated strain pathogenicity on Starkrimson, their pathogenicity on Golden Delicious was stronger, with the highest disease index being 16.82 and 22.09, respectively. The disease resistance evaluations showed that Fuji exhibited moderate resistance to the attenuated strain of A. mali and resistance to the virulent strain, while Starkrimson and Golden Delicious both displayed resistance to both strains. 【Conclusion】 Different temperatures, relative humidity, light conditions and apple cultivars had varying degrees of influence on the incubation period and pathogenicity of virulent and attenuated strains of A. mali. It was found that when the temperature was between 25-30 ℃, relative humidity was 90%-100% and the light conditions included alternation of light and darkness, UV irradiation and continuous light, the incubation period of A. mali virulent and attenuated strains on Starkrimson was shorter, and pathogenicity was stronger. Additionally, Fuji showed better disease resistance to these strains. These findings can provide a theoretical basis for the scientific and rational control of apple early leaf blight disease.
Key words: Apple leaf spot; Alternaria mali; Virulent and attenuated strains; Incubation period; Pathogenicity
蘋果(Malus pumila Mill.)為薔薇科(Rosaceae)蘋果屬(Malus)落葉喬木,因其果實(shí)具有營養(yǎng)價(jià)值高、耐貯性好和供應(yīng)周期長等特點(diǎn),已成為農(nóng)民增收致富的支柱產(chǎn)業(yè)之一[1]。然而,蘋果早期落葉病在國內(nèi)蘋果主產(chǎn)區(qū)廣泛發(fā)生,給蘋果產(chǎn)業(yè)高質(zhì)量發(fā)展帶來了挑戰(zhàn)[2-3]。該病害發(fā)生后常導(dǎo)致蘋果樹提早大量落葉,嚴(yán)重削弱樹勢,發(fā)生嚴(yán)重情況下造成當(dāng)年或翌年果實(shí)品質(zhì)及產(chǎn)量下降[4]。相關(guān)研究表明,蘋果早期落葉病種類主要包括蘋果褐斑病、斑點(diǎn)落葉病、輪斑病、圓斑病、灰斑病和炭疽葉枯病等,并且不同區(qū)域的優(yōu)勢病害種類不同,其中蘋果褐斑病和蘋果斑點(diǎn)落葉病較為常見[5-7]。鏈格孢菌(Alternaria spp.)是引起多種蘋果早期落葉病的重要病原之一[8]。Harteveld等[9]在澳大利亞發(fā)現(xiàn)引起蘋果鏈格孢葉斑病和果斑病的主要病原為A. longipes、A. arborescens、A. alternata/A. tenuissima和A. tenuissima/A. mali,且同一物種內(nèi)分離株在致病性和毒力方面表現(xiàn)出顯著變異和交叉致病性;Toome-Heller等[10]首次在新西蘭發(fā)現(xiàn)蘋果鏈格孢復(fù)合種(A. arborescens)可引起蘋果葉斑病且出現(xiàn)褐斑病癥狀。何勁等[11]研究發(fā)現(xiàn),貴州地區(qū)蘋果早期落葉病種類主要有蘋果輪斑病和斑點(diǎn)落葉病,其病原分別為A. mali和A. alternata,其中,由交鏈格孢(A. alternata)引起的蘋果斑點(diǎn)落葉病是蘋果生產(chǎn)中危害嚴(yán)重的病害之一,在全球蘋果主產(chǎn)區(qū)均有發(fā)生[12]。然而,也有相關(guān)研究發(fā)現(xiàn),蘋果斑點(diǎn)落葉病和蘋果輪斑病可由A. mali的不同毒力菌株引起[13-15],其中A. mali弱毒菌株引起的蘋果輪斑病主要危害葉片,也可危害果實(shí)且病斑較大,該病害流行時(shí)植株發(fā)病率可達(dá)100%[16],而A. mali強(qiáng)毒菌株主要危害蘋果葉片和嫩枝,可引起蘋果斑點(diǎn)落葉病,發(fā)生后影響花芽形成和果實(shí)正常生長[17],導(dǎo)致葉部出現(xiàn)褐色病斑和樹勢衰弱,病害流行時(shí)引起70%蘋果樹葉片早期脫落[18]。
邵旭平等[19]將引起甘肅省蘋果斑點(diǎn)落葉病的病原鑒定為A. mali的強(qiáng)毒菌株,蘋果輪斑病的病原鑒定為A. mali的弱毒菌株,并發(fā)現(xiàn)A. mali強(qiáng)弱毒菌株間具有交叉保護(hù)作用,可有效降低病害的發(fā)生。同時(shí),蘋果斑點(diǎn)落葉病的發(fā)生和蔓延與環(huán)境因素密切相關(guān),特別是溫度和濕度可以通過影響蘋果斑點(diǎn)落葉病菌(A. mali)孢子的萌發(fā)來調(diào)控病菌的生長,在30 ℃和100%相對濕度下,孢子萌發(fā)率最高,而在極端溫濕度條件下,萌發(fā)率顯著下降[20]。此外,另有研究發(fā)現(xiàn)在9種不同溫度(4~36 ℃)和8種保濕時(shí)間(2~48 h)的組合條件下,A. mali均能侵染蘋果幼苗,且隨著保濕持續(xù)時(shí)間的延長,病害發(fā)生的程度顯著加劇[21]。但是,目前有關(guān)A. mali強(qiáng)弱毒菌株在不同環(huán)境因素下的侵染規(guī)律、發(fā)病條件及蘋果品種對其抗性方面缺乏全面系統(tǒng)的研究。鑒于此,筆者以課題組前期分離鑒定的A. mali強(qiáng)弱毒菌株作為供試菌株,采用離體葉片接種測定不同環(huán)境因子(溫度、相對濕度和光照)和不同蘋果品種對A. mali強(qiáng)弱毒菌株潛育期及致病力強(qiáng)弱的影響,以期為蘋果早期落葉病的防控提供理論支撐。
1 材料和方法
1.1 材料
1.1.1" " 供試菌株及其孢子懸浮液制備" " 供試A. mali強(qiáng)弱毒菌株均保存于甘肅農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院植物病毒學(xué)與分子生物學(xué)實(shí)驗(yàn)室。參考Harimoto等[22]的方法配制濃度為1×105個(gè)·mL-1的A. mali強(qiáng)弱毒菌株孢子懸浮液,備用。
1.1.2" " 供試蘋果品種" " 供試蘋果品種分別為新紅星、富士和金冠。選擇長勢和粗細(xì)一致的健康蘋果枝條作為室內(nèi)離體接種試材,均采集自蘭州市七里河區(qū)蘋果種植基地,樹齡為18~21 a(年)。
1.2 方法
1.2.1" " 不同溫度對Alternaria mali強(qiáng)弱毒菌株致病活性的影響" " 將采集的長勢和粗細(xì)一致的新紅星健康蘋果枝條置于裝有無菌水的無菌三角瓶內(nèi),每瓶5枝,采用噴施接種法將A. mali強(qiáng)弱毒菌株孢子懸浮液(1×105個(gè)·mL-1)分別接種于供試枝條葉片的正面和反面,并以接種等體積無菌水作為對照。隨后,將各處理和對照分別置于塑料罩內(nèi)以保持濕度(相對濕度90%),并分別置于15、20、25、30和35 ℃的人工氣候箱(16 h光照/8 h黑暗)內(nèi)培養(yǎng),并待接種后每隔培養(yǎng)6 h觀察和記錄潛育期。同時(shí),待接種7 d后,統(tǒng)計(jì)葉片病情指數(shù)。試驗(yàn)過程中不同溫度處理下,每個(gè)處理和對照均重復(fù)3次。
參照崔琳霞等[23]和王程亮等[24]分級標(biāo)準(zhǔn)進(jìn)行分級。具體分級如下:0級,葉片上未觀察到斑點(diǎn);1級,斑點(diǎn)覆蓋面積占葉片總面積比例小于10%;3級,斑點(diǎn)覆蓋面積占葉片總面積比例為11%~25%;5級,斑點(diǎn)覆蓋面積占葉片總面積比例為26%~40%;7級,斑點(diǎn)覆蓋面積占葉片總面積比例為41%~65%;9級,斑點(diǎn)覆蓋面積占葉片總面積比例大于66%。
[病情指數(shù)=(病級葉片數(shù)×病級代表值)調(diào)查總?cè)~數(shù)×9×100]。
1.2.2" " 不同相對濕度對Alternaria mali強(qiáng)弱毒菌株致病活性的影響" " 將按上述接種方法處理后的枝條分別置于干燥器中,利用不同濃度的H2SO4調(diào)整并設(shè)置相對濕度分別為60%、70%、80%、90%和100%。然后,置于溫度為25 ℃和光照條件為16 h光照/8 h黑暗的培養(yǎng)箱中培養(yǎng),并待接種后每隔培養(yǎng)6 h觀察和記錄潛育期。待接種7 d后,統(tǒng)計(jì)葉片病情指數(shù)。試驗(yàn)每個(gè)處理和對照均設(shè)置3個(gè)重復(fù)。
1.2.3 不同光照條件對Alternaria mali強(qiáng)弱毒菌株致病活性的影響 將經(jīng)上述接種處理后的枝條分別置于不同光照[持續(xù)光照(24 h·d-1)、持續(xù)黑暗(24 h·d-1)、光照與黑暗交替(12 h光照/12 h黑暗)、紫外照射3 h和光照處理21 h]、溫度為25 ℃和相對濕度為90%條件下培養(yǎng),并待接種后每隔培養(yǎng)6 h觀察和記錄潛育期。待接種7 d后,統(tǒng)計(jì)和計(jì)算葉片的病情指數(shù)。試驗(yàn)每個(gè)處理和對照均設(shè)置3個(gè)重復(fù)。
1.2.4 不同品種對Alternaria mali強(qiáng)弱毒菌株致病活性的影響 將采集的長勢和粗細(xì)一致的健康新紅星、富士及金冠3個(gè)品種枝條分別置于裝有無菌水的無菌三角瓶內(nèi),每瓶5枝。然后,采用噴施接種法將A. mali強(qiáng)弱毒菌株孢子懸浮液(1×105個(gè)·mL-1)分別接種于不同品種供試枝條葉片的正反面,并以接種等體積無菌水作為對照,每個(gè)處理和對照均設(shè)置3次重復(fù)。然后,將其放置在溫度為25 ℃、相對濕度為90%、光照條件為16 h光照/8 h黑暗的環(huán)境中培養(yǎng)。待接種后每隔培養(yǎng)6 h觀察和記錄潛育期,并待接種7 d后,統(tǒng)計(jì)葉片病情指數(shù)。同時(shí),參照王昆等[25]抗病性評價(jià)標(biāo)準(zhǔn)對不同品種進(jìn)行抗病性評價(jià)。病情指數(shù)(DI)≤5,高抗;5<DI≤10,中抗;10<DI≤30,抗病;30<DI≤50,感??;DI>50,高感。
2 結(jié)果與分析
2.1 不同溫度對Alternaria mali強(qiáng)弱毒菌株致病活性的影響
不同溫度對A. mali強(qiáng)弱毒菌株潛育期和病情指數(shù)均具有不同程度的影響。隨著溫度升高,A. mali強(qiáng)弱毒菌株潛育期呈先降低(15~30 ℃)后升高(30~35 ℃)的變化趨勢(圖1-A),而病情指數(shù)表現(xiàn)出先升高后降低的變化趨勢(圖1-B)。在不同溫度條件下,A. mali弱毒菌株的葉片潛育期始終較A. mali強(qiáng)毒菌株長,當(dāng)溫度條件為30 ℃時(shí),A. mali強(qiáng)弱毒菌株的潛育期均最短,分別為54 h和72 h;在溫度為20~30 ℃范圍時(shí),A. mali強(qiáng)弱毒菌株接種葉片后,發(fā)病程度較為嚴(yán)重,其中接種強(qiáng)弱毒菌株后,A. mali強(qiáng)毒菌株在溫度為25 ℃時(shí)致病活性最強(qiáng),病情指數(shù)為23.06,而弱毒菌株在30 ℃時(shí)致病活性最強(qiáng),病情指數(shù)為17.53。然而,當(dāng)溫度為15 ℃時(shí),A. mali強(qiáng)弱毒菌株潛育期均大于100 h,并在此溫度下接種A. mali強(qiáng)弱毒菌株后,接種A. mali強(qiáng)毒菌株的葉片發(fā)病嚴(yán)重程度顯著低于接種弱毒菌株的葉片,病情指數(shù)分別為5.86和8.42。
2.2 不同相對濕度對Alternaria mali強(qiáng)弱毒菌株致病活性的影響
由圖2-A可知,與A. mali弱毒菌株相比,A. mali強(qiáng)毒菌株在葉片上的潛育期整體較短,并且隨著相對濕度(60%~100%)的增加,A. mali強(qiáng)毒菌株在葉片上的潛育期呈逐漸變短到趨于穩(wěn)定的趨勢,而弱毒菌株呈先趨于穩(wěn)定后逐漸變短的趨勢。當(dāng)相對濕度為60%時(shí),A. mali強(qiáng)弱毒菌株的潛育期最長,均為120 h,而當(dāng)相對濕度達(dá)到100%時(shí),潛育期均達(dá)到最短,為72 h。由圖2-B可知,在不同相對濕度條件下培養(yǎng)7 d后,發(fā)現(xiàn)接種A. mali弱毒菌株的葉片發(fā)病程度低于A. mali強(qiáng)毒菌株,并且在60%的相對濕度條件下,接種強(qiáng)弱毒菌株后的葉片病情指數(shù)均最低,分別為10.88和9.42,而在90%的相對濕度條件下,接種A. mali強(qiáng)弱毒菌株后的葉片病情指數(shù)均最高,分別為19.01和12.50。
2.3 不同光照條件對Alternaria mali強(qiáng)弱毒菌株致病活性的影響
在持續(xù)光照、持續(xù)黑暗、光暗交替、紫外照射+持續(xù)光照條件下,A. mali強(qiáng)毒菌株的潛育期均較A. mali弱毒菌株短,并且在光暗交替、紫外照射和持續(xù)光照條件下,強(qiáng)弱毒菌株潛育期較短,其中強(qiáng)毒菌株在光暗交替、紫外照射+持續(xù)光照條件下潛育期均為60 h,而弱毒菌株在此條件下均為72 h(圖3-A)。在不同光照條件下培養(yǎng)7 d后,除紫外照射+持續(xù)光照條件外,在其他不同光照處理下,A. mali強(qiáng)毒菌株接種葉片后,葉片的病情指數(shù)均高于弱毒菌株,其中A. mali強(qiáng)毒菌株在光暗交替條件下病情指數(shù)最高,為22.59,但是在紫外照射+持續(xù)光照條件,A. mali弱毒菌株侵染葉片后病情指數(shù)最高,為21.24。然而,A. mali強(qiáng)弱毒菌株均在持續(xù)黑暗條件下,接種葉片后病情指數(shù)最低,分別為13.58和13.33(圖3-B)。
2.4 不同品種對Alternaria mali強(qiáng)弱毒菌株致病活性的影響
不同蘋果品種葉片接種A. mali強(qiáng)弱毒菌株后,A. mali強(qiáng)弱毒菌株在新紅星和金冠品種上的潛育期均顯著低于富士品種,并且強(qiáng)弱毒菌株均在金冠品種上潛育期最短且相同(48 h)(圖4-A)。待接種A. mali強(qiáng)弱毒菌株7 d后,A. mali強(qiáng)弱毒菌株對富士品種的致病力整體低于新紅星和金冠品種,其中在富士品種上的病情指數(shù)分別為14.13和8.30。與A. mali強(qiáng)弱毒菌株對新紅星的致病力相比,其對金冠的致病力較強(qiáng),病情指數(shù)最高,分別為16.82和22.09(圖4-B)。不同品種抗病性評價(jià)結(jié)果表明,富士品種對A. mali弱毒菌株表現(xiàn)為中抗,而對A. mali強(qiáng)毒菌株表現(xiàn)為抗病,但是新紅星和金冠對A. mali強(qiáng)弱毒菌株均表現(xiàn)為抗病。
3 討 論
筆者通過測定不同環(huán)境(溫度、相對濕度和光照)對A. mali強(qiáng)弱毒菌株潛育期和致病活性的影響,發(fā)現(xiàn)在不同的溫度、相對濕度和光照條件下,A. mali強(qiáng)毒菌株的潛育期整體上較A. mali弱毒菌株短,并且強(qiáng)毒菌株接種后的蘋果葉片發(fā)病程度整體上高于弱毒菌株。吳桂本等[26]研究表明,膠東地區(qū)A. alternata f. sp. mali菌株A1致病性明顯弱于A2。研究表明,A. mali強(qiáng)毒菌株接種印度蘋果品種葉片后,在溫度為25~30 ℃時(shí),其潛育期最短為48 h,病葉率最高為90%[27]。本研究表明,A. mali強(qiáng)弱毒菌株接種新紅星蘋果品種葉片后,在溫度為30 ℃時(shí)潛育期最短,且在溫度為20 ~30 ℃范圍時(shí),葉片發(fā)病程度較為嚴(yán)重,尤其溫度為25 ℃和30 ℃。然而,在溫度為25 ℃、相對濕度為90%條件下,A. mali強(qiáng)毒菌株接種蘋果葉片后,其潛育期最短且病情指數(shù)最高,這一結(jié)果與胡同樂等[28]關(guān)于蘋果斑點(diǎn)落葉病在降雨后,相對濕度為90%且持續(xù)10 h以上會導(dǎo)致病原菌大量侵染的研究結(jié)果相吻合。此外,與持續(xù)光照相比,在12 h光照與12 h黑暗交替、3 h紫外線照射和21 h持續(xù)光照條件下,A. mali強(qiáng)弱毒菌株在葉片上的潛育期均顯著縮短,病情指數(shù)均達(dá)到最高峰,初步發(fā)現(xiàn)紫外線照射可增強(qiáng)A. mali弱毒菌株的致病性,進(jìn)而促進(jìn)了病斑的形成速度。薛軍等[29]研究表明,蘋果斑點(diǎn)落葉病的發(fā)病條件與田間光照時(shí)長及紫外線輻射強(qiáng)烈相關(guān),光照時(shí)長及紫外線輻射可促使病原菌在葉片上的潛育期縮短,從而促進(jìn)病害的發(fā)生,與本試驗(yàn)室內(nèi)條件下的研究結(jié)果一致。
呂松等[30]發(fā)現(xiàn)在新疆的野生蘋果和引進(jìn)的西洋蘋果上蘋果斑點(diǎn)落葉病的發(fā)病率較高,而在國產(chǎn)蘋果和野生品種中,發(fā)病率則顯著降低。本試驗(yàn)結(jié)果表明,A. mali強(qiáng)弱毒菌株在金冠品種上的潛育期最短且致病性最強(qiáng),與徐秉良[27]研究發(fā)現(xiàn)致病力較強(qiáng)的A. mali菌株(蘭州1號)對金冠品種致病活性較強(qiáng)的結(jié)果一致。另外,紅星、印度和金冠等蘋果品種在接種A. mali后,其中紅星和印度均為高感品種,金冠為中抗品種[27],而本試驗(yàn)初步發(fā)現(xiàn)富士對A. mali強(qiáng)弱毒菌株分別表現(xiàn)為抗病和中抗,新紅星和金冠對強(qiáng)弱毒菌株均表現(xiàn)為抗病。因此,本試驗(yàn)明確了不同環(huán)境因子和蘋果品種對A. mali強(qiáng)弱毒菌株致病活性具有顯著影響,而有關(guān)不同環(huán)境因子和蘋果品種對A. mali強(qiáng)弱毒菌株潛育期和致病性影響的機(jī)制還有待進(jìn)一步深入研究。
4 結(jié) 論
不同溫度、相對濕度、光照條件及蘋果品種對A. mali強(qiáng)弱毒菌株潛育期和致病性具有不同程度的影響,當(dāng)溫度為25~30 ℃、相對濕度為90%~100%、光照條件為光暗交替、紫外照射+持續(xù)光照時(shí),A. mali強(qiáng)弱毒菌株在新紅星品種上的潛育期較短,致病性較強(qiáng)。富士蘋果對A. mali強(qiáng)弱毒菌株均具有較強(qiáng)抗病性,分別表現(xiàn)為抗病和中抗。
參考文獻(xiàn) References:
[1] CHAO X F,SUN G Y,ZHAO H K,LI M,HE D J. Identification of apple tree leaf diseases based on deep learning models[J]. Symmetry,2020,12(7):1065.
[2] 壽園園,李春敏,趙永波,陳東玫,張新忠. 蘋果抗褐斑病離體鑒定的方法[J]. 果樹學(xué)報(bào),2009,26(6):912-914.
SHOU Yuanyuan,LI Chunmin,ZHAO Yongbo,CHEN Dongmei,ZHANG Xinzhong. In vitro evaluation of resistance to Marssonina mali in apple[J]. Journal of Fruit Science,2009,26(6):912-914.
[3] 程守云,周吉生,周中磊,張耀峰. 蘋果樹早期落葉病綜合防治技術(shù)[J]. 山西果樹,2019(5):80-82.
CHENG Shouyun,ZHOU Jisheng,ZHOU Zhonglei,ZHANG Yaofeng. Prevention and treatment technology of apple leaf defoliation diseases[J]. Shanxi Fruits,2019(5):80-82.
[4] 楊文淵,謝紅江,陳善波,江國良,陳棟,涂美艷,李靖,孫淑霞. 川西高原蘋果早期落葉病調(diào)查及防治研究[J]. 安徽農(nóng)業(yè)科學(xué),2011,39(31):19181-19182.
YANG Wenyuan,XIE Hongjiang,CHEN Shanbo,JIANG Guoliang,CHEN Dong,TU Meiyan,LI Jing,SUN Shuxia. Occurrence regularity and control of apple early defoliation disease in West Sichuan Plateau[J]. Journal of Anhui Agricultural Sciences,2011,39(31):19181-19182.
[5] 趙華,黃麗麗,謝芳芹,康振生. 蘋果盤二孢的分離培養(yǎng)研究[J]. 菌物學(xué)報(bào),2009,28(4):490-495.
ZHAO Hua,HUANG Lili,XIE Fangqin,KANG Zhensheng. Culture study of Marssonina coronaria from diseased apple leaves[J]. Mycosystema,2009,28(4):490-495.
[6] 鄧振山,白重炎,李軍,李東旭. 陜北蘋果常見真菌病害病原菌的分離鑒定研究[J]. 延安大學(xué)學(xué)報(bào)(自然科學(xué)版),2006,25(4):65-70.
DENG Zhenshan,BAI Chongyan,LI Jun,LI Dongxu. Isolation and identification of apple common fungal pathogenes in northern Shaanxi[J]. Journal of Yanan University (Natural Science Edition),2006,25(4):65-70.
[7] 張書輝,王連起,曲向遠(yuǎn). 蘋果斑點(diǎn)落葉病的發(fā)生原因與防治方法[J]. 中國果樹,2007(1):62-63.
ZHANG Shuhui,WANG Lianqi,QU Xiangyuan. Causes and prevention of apple leaf spot disease[J]. China Fruits,2007(1):62-63.
[8] LIU B Y,LI Z W,DU J F,ZHANG W,CHE X Z,ZHANG Z R,CHEN P,WANG Y Z,LI Y,WANG S L,DING X H. Loop-mediated isothermal amplification (LAMP) for the rapid and sensitive detection of Alternaria alternata (Fr.) Keissl in apple Alternaria blotch disease with Aapg-1 encoding the endopolygalacturonase[J]. Pathogens,2022,11(11):1221.
[9] HARTEVELD D O C,AKINSANMI O A,DRENTH A. Pathogenic variation of Alternaria species associated with leaf blotch and fruit spot of apple in Australia[J]. European Journal of Plant Pathology,2014,139(4):789-799.
[10] TOOME-HELLER M,BASKARATHEVAN J,BURNIP G,ALEXANDER B. First report of apple leaf blotch caused by Alternaria arborescens complex in New Zealand[J]. New Zealand Journal of Crop and Horticultural Science,2018,46(4):354-359.
[11] 何勁,雷幫星,宋貞富,喬光,宋莎,康冀川,文曉鵬. DEB-2菌株對貴州蘋果早期落葉病病原的毒力效應(yīng)[J]. 西南農(nóng)業(yè)學(xué)報(bào),2014,27(2):652-657.
HE Jin,LEI Bangxing,SONG Zhenfu,QIAO Guang,SONG Sha,KANG Jichuan,WEN Xiaopeng. Toxicity of endophyte DEB-2 to pathogens of Guizhou apple early defoliation disease[J]. Southwest China Journal of Agricultural Sciences,2014,27(2):652-657.
[12] 胡清玉,胡同樂,王亞南,王樹桐,曹克強(qiáng). 中國蘋果病害發(fā)生與分布現(xiàn)狀調(diào)查[J]. 植物保護(hù),2016,42(1):175-179.
HU Qingyu,HU Tongle,WANG Yanan,WANG Shutong,CAO Keqiang. Survey on the occurrence and distribution of apple diseases in China[J]. Plant Protection,2016,42(1):175-179.
[13] 胡同樂,曹克強(qiáng),王樹桐,甄文超. 生長季蘋果斑點(diǎn)落葉病流行主導(dǎo)因素的確定[J]. 植物病理學(xué)報(bào),2005,35(4):374-377.
HU Tongle,CAO Keqiang,WANG Shutong,ZHEN Wenchao. Study on the main factor for the epidemic of Alternaria blotch on apple[J]. Acta Phytopathologica Sinica,2005,35(4):374-377.
[14] 陸敏,吳明勤,王金友. 蘋果斑點(diǎn)落葉病菌形態(tài)及侵染行為的超微結(jié)構(gòu)研究[J]. 植物保護(hù),1994,20(5):16-18.
LU Min,WU Mingqin,WANG Jinyou. Ultrastructural study on morphology and infection behavior of Alternaria mali[J]. Plant Protection,1994,20(5):16-18.
[15] 張彩霞,陳瑩,李壯,康國棟,張利義,周宗山,叢佩華. 蘋果斑點(diǎn)落葉病致病菌的鑒定及生物學(xué)特性研究[J]. 生物技術(shù),2011,21(4):58-61.
ZHANG Caixia,CHEN Ying,LI Zhuang,KANG Guodong,ZHANG Liyi,ZHOU Zongshan,CONG Peihua. Identification and biological characteristics of a pathogenic strain causing Alternaria blotch of apples[J]. Biotechnology,2011,21(4):58-61.
[16] 郭小俠,陳川,唐周懷,石曉紅,石勇強(qiáng). 蘋果早期落葉病的發(fā)生規(guī)律及生物防治[J]. 陜西農(nóng)業(yè)科學(xué),2004,50(1):62-64.
GUO Xiaoxia,CHEN Chuan,TANG Zhouhuai,SHI Xiaohong,SHI Yongqiang. Occurrence and biological control of early leaf litter disease in apple[J]. Shaanxi Journal of Agricultural Sciences,2004,50(1):62-64.
[17] FONTAINE K,F(xiàn)OURRIER-JEANDEL C,ARMITAGE A D,BOUTIGNY A L,CRéPET M,CAFFIER V,GNIDE D C,SHILLER J,LE CAM B,GIRAUD M,IOOS R,AGUAYO J. Identification and pathogenicity of Alternaria species associated with leaf blotch disease and premature defoliation in French apple orchards[J]. PeerJ,2021,9:e12496.
[18] LI Y,ZHANG L Y,ZHANG Z,CONG P H,CHENG Z M. A simple sequence repeat marker linked to the susceptibility of apple to Alternaria blotch caused by Alternaria alternata apple pathotype[J]. Journal of the American Society for Horticultural Science,2011,136(2):109-115.
[19] 邵旭平,鐘小剛,薛應(yīng)鈺,劉佳,張樹武,王衛(wèi)雄,徐秉良. 甘肅省蘋果葉斑病病原菌鑒定及交叉保護(hù)作用研究[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,49(3):78-84.
SHAO Xuping,ZHONG Xiaogang,XUE Yingyu,LIU Jia,ZHANG Shuwu,WANG Weixiong,XU Bingliang. Identification and its cross protection on pathogens of apple leaf spot in Gansu Province[J]. Journal of Gansu Agricultural University,2014,49(3):78-84.
[20] AALUM K,WANI I A,SINGH S D. Influence of temperature and relative humidity on the sorulation and growth of the fungus (Alternaria mali),causal agent of Alternaria leaf spot/blotch of apple (Malus domestica Borkh.)[J]. International Journal of Advance Research in Science and Engineering,2018,7(4):312-321.
[21] FILAJDI? N,SUTTON T B. Influence of temperature and wetness duration on infection of apple leaves and virulence of different isolates of Alternaria mali[J]. Phytopathology,1992,82(11):1279-1283.
[22] HARIMOTO Y,TANAKA T,KODAMA M,YAMAMOTO M,OTANI H,TSUGE T. Multiple copies of AMT2 are prerequisite for the apple pathotype of Alternaria alternata to produce enough AM-toxin for expressing pathogenicity[J]. Journal of General Plant Pathology,2008,74(3):222-229.
[23] 崔琳霞,武艷芍. 3%多抗霉素水劑防治蘋果斑點(diǎn)落葉病田間藥效試驗(yàn)[J]. 中國農(nóng)學(xué)通報(bào),2008,24(12):394-395.
CUI Linxia,WU Yanshao. Control effects of 3% polyoxin AS on apple spot leaf drop in field[J]. Chinese Agricultural Science Bulletin,2008,24(12):394-395.
[24] 王程亮,張潞生,高微微,張文,戚元勇,楊慶軍. 芽孢桿菌TS-01對蘋果斑點(diǎn)落葉病菌的拮抗作用及防病效果[J]. 植物保護(hù)學(xué)報(bào),2008,35(2):183-184.
WANG Chengliang,ZHANG Lusheng,GAO Weiwei,ZHANG Wen,QI Yuanyong,YANG Qingjun. Antagonism and control effect produced by Bacillus strain TS-01 against Alternaria mali[J]. Acta Phytophylacica Sinica,2008,35(2):183-184.
[25] 王昆,龔欣,劉立軍,王大江,高源. 蘋果地方品種資源蘋果斑點(diǎn)落葉病抗性調(diào)查與評價(jià)[J]. 中國果樹,2015(5):81-84.
WANG Kun,GONG Xin,LIU Lijun,WANG Dajiang,GAO Yuan. Investigation and evaluation of resistance to apple spot deciduous disease of apple local variety resources[J]. China Fruits,2015(5):81-84.
[26] 吳桂本,王英姿,王培松,王繼秋,宮本義. 蘋果斑點(diǎn)落葉病菌的分化及生物學(xué)研究[J]. 中國果樹,1999(4):11-15.
WU Guiben,WANG Yingzi,WANG Peisong,WANG Jiqiu,GONG Benyi. Study on the differentiation and biology of Alternaria mali[J]. China Fruits,1999(4):11-15.
[27] 徐秉良. 蘋果鏈格孢菌侵染條件及致病性研究[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),1997,32(1):43-47.
XU Bingliang. The infection factors and pathogenicity of Alternaria mall Roberts[J]. Journal of Gansu Agricultural University,1997,32(1):43-47.
[28] 胡同樂,王樹桐,宋萍,張鳳巧,甄文超,曹克強(qiáng). 蘋果斑點(diǎn)落葉病菌大量侵染的決定性天氣條件初探[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2006,29(1):63-66.
HU Tongle,WANG Shutong,SONG Ping,ZHANG Fengqiao,ZHEN Wenchao,CAO Keqiang. Primary study on the crucial weather conditions of mass infection of Alternaria mali on apple[J]. Journal of Agricultural University of Hebei,2006,29(1):63-66.
[29] 薛軍,孫繼玲,王孝友. 蘋果斑點(diǎn)落葉病發(fā)生規(guī)律的研究[J]. 落葉果樹,2006,38(1):36-37.
XUE Jun,SUN Jiling,WANG Xiaoyou. Study on the regularity of apple leaf spot disease[J]. Deciduous Fruits,2006,38(1):36-37.
[30] 呂松,王憶,張新忠,李天紅,韓振海. 蘋果斑點(diǎn)落葉病抗病性種質(zhì)評價(jià)及遺傳分析[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,17(4):68-74.
Lü Song,WANG Yi,ZHANG Xinzhong,LI Tianhong,HAN Zhenhai. Evaluation of resistance of Malus germplasms to apple Alternaria blotch (Alternaria mali) and analysis of inheritance for resistance[J]. Journal of China Agricultural University,2012,17(4):68-74.