摘" " 要:【目的】探明有核沃柑和無核沃柑在落花落果期礦質(zhì)養(yǎng)分和內(nèi)源激素的含量變化,為沃柑保花保果提供理論支撐。【方法】以有核沃柑和無核沃柑為材料,從盛花期開始每10 d采集一次花、果和葉片,測定其礦質(zhì)養(yǎng)分和內(nèi)源激素的含量?!窘Y(jié)果】無核沃柑葉片和果實的生長素(IAA)、赤霉素(GA3)含量在前期均低于有核沃柑,IAA含量在后期高于有核沃柑,第30天花果脫落酸(ABA)含量顯著高于有核沃柑,第50天葉片和花果茉莉酸(JA-me)含量顯著高于有核沃柑;無核沃柑春梢葉前期N、P、Mg含量低于有核沃柑,但后期高于有核沃柑,無核沃柑春梢葉的Ca含量較低,秋梢葉的Fe、Mn、Cu、Zn含量低于有核沃柑?!窘Y(jié)論】無核沃柑落花落果是IAA、GA3含量低和ABA、JA-me含量高共同作用的結(jié)果,其礦質(zhì)養(yǎng)分含量也有所差異。
關(guān)鍵詞:有核沃柑;無核沃柑;內(nèi)源激素;礦質(zhì)養(yǎng)分
中圖分類號:S666.1 文獻標志碼:A 文章編號:1009-9980(2025)03-0617-12
Differences in endogenous hormones levels and mineral nutrient contents between seedy and seedless Orah mandarins during the flower and fruit abscission stages
DONG Jianmei1, LI Jing1, YANG Di1, LI Jinxue2, LAI Xinpu1, LIU Hongming1, FU Xiaomeng1, YANG Hongxia1, DU Yuxia1*
(1Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, Yunnan, China; 2West Yunnan University, Lincang 677000, Yunnan, China)
Abstract: 【Objective】 The seedless Orah mandarin represents a novel cultivar derived from the seedy Orah mandarin via radiation-induced mutagenesis. This seedless variant exhibits a propensity for floral and fruit abscission, resulting in diminished yield during cultivation. The lack of clarity regarding the physiological alterations occurring throughout the flowering and fruiting phases of the seedless Orah mandarin complicates efforts to effectively preserve its flowers and fruits. This study sought to examine the variations in mineral nutrient and endogenous hormone contents between seedy and seedless Orah mandarins during the flowering and fruiting stages. Additionally, it aimed to identify the primary factors influencing flower and fruit drop in seedless Orah mandarins, with the objective of providing theoretical support for the protection of flowers and fruits in seedless Orah mandarins. 【Methods】 In this study, three-year-old Orah mandarin trees, both seedy and seedless, grafted onto Fragrant Citrus rootstocks, were utilized as experimental materials. Representative specimens exhibiting moderate and consistent tree size, growth vigor and flower amount were selected for analysis. Samples of flowers, fruits, spring leaves and fall leaves were collected at ten-day intervals commencing from the full bloom period. The spring and fall leaves were subsequently analyzed to determine their concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn). Flowers, fruits and spring leaves were analyzed to determine the contents of auxin (IAA), gibberellin (GA3), abscisic acid (ABA), zeaxanthin nucleoside (ZR) and jasmonic acid (JA-me). Subsequently, a correlation analysis was conducted. 【Results】 IAA content in seedless Orah mandarin leaves was significantly lower than that in seedy Orah mandarin leaves from 20 to 30 days post-flowering. Similarly, the IAA content in seedless Orah mandarin flowers and fruits were lower than those in seedy Orah mandarins from 10 to 40 days post-flowering, but higher on the 50th day. The GA3 content in the leaves of seedless Orah mandarin was observed to be lower than that in seedy Orah mandarin over the period of 10 to 40 days. Similarly, the GA3 content in the flowers and fruits of seedless Orah mandarin were found to be lower than those in seedy Orah mandarin between 20 and 50 days. Additionally, the ABA content in the leaves of seedless Orah mandarin consistently remained lower throughout the entire observation period. In the context of flowers and fruits, ABA levels in seedless Orah mandarins exhibited a significant increase on the 30th day, surpassing the levels recorded in the same cultivar on earlier days. Conversely, no significant variation was detected in the ZR content of flowers and fruits between seedy and seedless Orah mandarins. Furthermore, the JA-me content in leaves, flowers and fruits showed a gradual decline starting from the full-bloom period. There was no statistically significant difference in JA-me content between seedy and seedless Orah mandarins from day 10 to day 40. The JA-me content in seedless Orah mandarin was notably higher than that in seedy Orah mandarin on the 50th day post full bloom. The (Zr+GA3+IAA)/ABA ratio demonstrated a progressive increase in leaves, flowers and fruits. However, a significantly lower ratio was recorded in seedless Orah mandarin compared to seedy Orah mandarin on the 30th day. During the early stages of development, the contents of nitrogen (N), phosphorus (P) and potassium (K) increased in both seedy and seedless Orah mandarin leaves. Conversely, a gradual decline in these nutrient levels was observed during the later stages of the flowering period. In the early growth stage, the contents of nitrogen, phosphorus, and magnesium (Mg) in the spring leaves of the seedless Orah mandarin were found to be lower compared to those in the seedy Orah mandarin. However, during the later growth stage, these nutrient levels were higher in the seedless variety. Conversely, the calcium (Ca) content in the autumn leaves of the seedless Orah mandarin exceeded that of the seedy variant, whereas in the spring leaves, the Ca concentration was lower in the seedless Orah mandarin compared to the seedy counterpart. The concentrations of phosphorus, potassium, calcium and magnesium in the autumn leaves of seedless Orah mandarin were higher than those observed in the same leaves of seedless Orah mandarin. In contrast, the concentrations of iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) were lower in the autumn leaves of seedless Orah mandarin compared to the same reference. Furthermore, a significant positive correlation was identified among the ABA, ZR and JA-me contents in the leaves, flowers and fruits of mandarins. Furthermore, a notable positive correlation was identified in the JA-me content of seedless Orah mandarin. A significant positive correlation was also observed among the concentrations of potassium, manganese and copper in the leaves during both spring and autumn. 【Conclusion】 The principal cause of flower and fruit drop was determined to be the low concentrations of IAA and GA3 observed during the early developmental stages. The initial physiological fruit drop can be attributed to the combined effects of reduced IAA and GA3 levels and increased ABA and JA-me concentrations. Furthermore, significant variations in mineral nutrient contents existed between seedless and seedy mandarin varieties. From a production standpoint, it is advisable to supplement nitrogen fertilizer before the flowering stage, while phosphorus and potassium fertilizers should be applied in appropriate amounts. For seedless Orah mandarins, it is recommended to apply calcium fertilizer and trace elements through foliar spraying during the flowering period.
Key words: Seedy Orah mandarin; Seedless Orah mandarin; Endogenous hormone; Mineral nutrient
沃柑是坦普爾橘橙和丹西紅橘的雜交種,具有晚熟、高糖、高酸的特點,因其產(chǎn)量高、品質(zhì)佳、種植適宜區(qū)廣[1],近年來種植面積不斷攀升,截至2023年全國面積超過20萬hm2,其中云南產(chǎn)業(yè)發(fā)展規(guī)模較快,種植面積接近6.67萬hm2 [2]。沃柑雖然有優(yōu)質(zhì)豐產(chǎn)的優(yōu)點,但其種子數(shù)量多影響了商品價值。無核沃柑是中國柑桔研究所通過輻射育種方法從有核沃柑中選育出的新品種,保留了有核沃柑的優(yōu)良品質(zhì)特性,克服了有核沃柑多籽的缺點[3],在水果市場上深受廣大消費的喜愛,但在生產(chǎn)管理中,無核沃柑落花落果嚴重,保果技術(shù)困難,導致其產(chǎn)量較低。因此,結(jié)合沃柑落花落果的特點,深入研究落花落果關(guān)鍵時期理化性質(zhì)的差異,研究防止無核沃柑落花落果的措施,對無核沃柑的穩(wěn)定、可持續(xù)發(fā)展有著重要的意義。
柑橘花量大,但花果在蕾期、花期及幼果期容易大量脫落,導致其坐果率低。沃柑的落花落果主要發(fā)生在第一次生理落果期,落果率最高,超過59.00%[4],而生產(chǎn)中無核沃柑在第一次生理落果期的落花落果現(xiàn)象較有核沃柑更為嚴重[5]。目前,關(guān)于柑橘落花落果成因的研究較多,受精情況不佳、花器官發(fā)育不良、梢果矛盾、樹體營養(yǎng)失衡、內(nèi)源激素水平失調(diào)等都會導致落花落果。其中,樹體營養(yǎng)和內(nèi)源激素的失衡因直接影響柑橘的坐果情況而備受關(guān)注。植物內(nèi)源激素是植物體內(nèi)產(chǎn)生的一些微量而能調(diào)節(jié)自身生理過程的有機化合物,包括生長素(IAA)、赤霉素(GA3)、脫落酸(ABA)、細胞分裂素(CTK)、乙烯、油菜素甾醇六大類,在柑橘落花落果過程中發(fā)揮著重要的作用。生長素有抑制器官脫落的作用[6],董倩倩等[7]對處于采前落果期的柑橘進行不同組織部位內(nèi)源激素分析,發(fā)現(xiàn)果柄中的IAA含量可能對采前落果也有重要影響。GA3在促進細胞增長、形成無核果實及減少植物器官脫落等方面有重要作用[8-9],在甜橙[10]、沃柑[4]、臍橙[11]等柑橘上外施赤霉素能顯著提高坐果率。果實生長發(fā)育前期主要受到內(nèi)源赤霉素與生長素的影響,而脫落酸主要調(diào)控果實發(fā)育后期,W-默科特在幼果期產(chǎn)生生長類激素,避免了胚珠敗育,產(chǎn)生較多ABA,減少了生理落果[12]。ABA介導乙烯合成[13-14],促進花果脫落。礦質(zhì)養(yǎng)分的平衡對坐果也至關(guān)重要,開花掛果期柑橘樹需要消耗大量的營養(yǎng)元素,N、P、K、Ca、Mg、B的缺乏都會嚴重導致落花落果[15-16]。柑橘落果中大量元素N、P、K含量較高,Ca含量遠低于適宜值,微量元素Fe、Zn、B含量也較高[17],在幼花幼果期補充養(yǎng)分可以就近提供花果生長發(fā)育的養(yǎng)分,有效提高坐果率[18]。
雌性不育、受精受阻或胚早期敗育均可能是無核沃柑無核的成因[19],胚囊的敗育勢必會影響樹體內(nèi)源激素的變化,學者們對柑橘落花落果的原因做了大量的研究。有核沃柑和無核沃柑有著很近的親緣關(guān)系,與有核沃柑相比,尚不清楚無核沃柑內(nèi)源激素在落花落果關(guān)鍵期如何變化,以及是否影響到養(yǎng)分的吸收,從而導致無核沃柑大量落花落果,仍需進一步研究。筆者在本研究中以有核沃柑和無核沃柑為材料,通過在盛花期至第二次生理落果期,對比花、葉、果的礦質(zhì)養(yǎng)分和內(nèi)源激素變化動態(tài),旨在找出其變化的關(guān)鍵因子和關(guān)鍵時期,明確外施養(yǎng)分和生長調(diào)節(jié)劑的種類和時期,為制定無核沃柑的?;ū9夹g(shù)方案提供科學指導。
1 材料和方法
1.1 供試材料
2022年,以種植在云南省農(nóng)科院熱帶亞熱帶經(jīng)濟作物研究所瑞麗站示范園內(nèi)的3年生有核沃柑和無核沃柑為材料,均以香橙為砧木。每個品種選擇樹體大小、長勢、花量中等且一致的代表性植株,單株小區(qū),3次重復。果園種植株行距為3 m×4 m,土壤基本情況為:pH 6.29、有機質(zhì)含量(w,后同)1.04%、堿解氮含量149.70 mg·kg-1、速效磷含量58.40 mg·kg-1、速效鉀含量319.80 mg·kg-1、有效鈣含量1 982.00 mg·kg-1、速效鎂含量391.30 mg·kg-1、有效鐵含量170.30 mg·kg-1、有效銅含量4.10 mg·kg-1、有效鋅含量3.90 mg·kg-1、有效硼含量3.90 mg·kg-1,常規(guī)管理。供試沃柑的盛花期為3月14日至4月1日,謝花期為4月2日至4月18日,第一次生理落果期為4月12日至5月26日,無核沃柑第一次生理落果期結(jié)束后樹上沒有果實,有核沃柑第二次生理落果期為5月22日至6月25日。
1.2 采樣方法
于盛花期(3月14日)后每10 d為1次生長期,采集較一致花(花期采集)、果(待有幼果產(chǎn)生時采集,不再額外采集花)、春梢葉(當年2—3月抽發(fā)葉)、秋梢葉(上年8—10月抽發(fā)葉),花、果、部分春梢葉樣品采集后快速用液氮速凍,置于-80 ℃超低溫冰箱保存,用于內(nèi)源激素的測定;另一部分春梢葉以及秋梢葉參照莊伊美等[20]的方法經(jīng)過清洗、殺青、75 ℃恒溫烘干、粉碎后密封保存用于測定礦質(zhì)養(yǎng)分含量。
1.3 測定指標
1.3.1 葉片礦質(zhì)養(yǎng)分 葉片礦質(zhì)養(yǎng)分含量測定參照鮑士旦[21]的方法:葉片全氮含量使用自動凱氏定氮儀/SKD-200,采用H2SO4-H2O2消煮·凱氏定氮法測定;全磷含量使用紫外-可見光分光光度計/752自動,采用H2SO4-H2O2消煮后,使用鉬銻黃比色法測定;全鉀含量使用原子吸收分光光度計/990F,采用H2SO4-H2O2消煮·原子吸收法測定;鈣、鎂、銅、鐵、錳、鋅含量使用原子吸收分光光度計/990F,采用HNO3-HClO4消煮·原子吸收法測定。
1.3.2 葉片和花果激素含量 IAA、GA3、ABA、玉米素核苷(ZR)、茉莉酸(JA-me)的含量采用酶聯(lián)免疫吸附法(ELISA)測定[22],使用液氮冷凍、研磨葉片、花、果組織,按照步驟提取激素,在酶聯(lián)免疫分光光度計上用490 nm波長依次測定各樣品的吸光度,并根據(jù)標準曲線計算樣本的激素含量。
1.4 數(shù)據(jù)處理
使用Excel 2016對試驗數(shù)據(jù)進行統(tǒng)計和預處理;用SPSS 25.0中的獨立樣本T檢驗分別對有核沃柑和無核沃柑的葉片、花、果內(nèi)源激素含量數(shù)據(jù)進行差異顯著性分析(p<0.05),其他礦質(zhì)數(shù)據(jù)采用SPSS 25.0進行單因素方差分析,用Duncan檢驗法(p<0.05)分別檢驗不同處理間的差異顯著性,采用Pearson相關(guān)系數(shù)法進行相關(guān)性分析;使用Origin 2022軟件繪圖。
2 結(jié)果與分析
2.1 有核、無核沃柑內(nèi)源激素含量差異分析
2.1.1 有核、無核沃柑IAA含量差異 由圖1可知,有核沃柑和無核沃柑花果和葉片的IAA含量有明顯差異。在盛花后20~30 d無核沃柑葉片IAA含量極顯著低于有核沃柑;有核、無核沃柑花果IAA含量整體來說呈現(xiàn)出升高的趨勢,無核沃柑的IAA含量在花后10~40 d顯著或極顯著低于有核沃柑,在盛花期后第50天顯著高于有核沃柑。
2.1.2 有核、無核沃柑GA3含量差異 由圖2可以看出,有核沃柑和無核沃柑GA3含量存在明顯差異。在盛花后的10~40 d,無核沃柑葉片GA3含量均低于有核沃柑,其中在第10、30、40天顯著或極顯著低于有核沃柑,而在盛花后50 d,無核沃柑GA3含量極顯著高于有核沃柑;盛花后不同時期的有核沃柑和無核沃柑花果GA3含量均呈現(xiàn)出先升高后降低再升高的趨勢,盛花后20~50 d,無核沃柑的GA3含量均低于有核沃柑,并在花后第30天和第40天極顯著低于有核沃柑。
2.1.3 有核、無核沃柑ABA含量差異 由圖3可知,開花后不同時期的有核、無核沃柑葉片ABA含量整體上呈現(xiàn)下降的趨勢,無核沃柑葉片ABA含量在整個時期均低于有核沃柑,并在第20~40天顯著低于有核沃柑;有核沃柑和無核沃柑花果ABA含量均呈現(xiàn)出先升高后降低的趨勢,但在第30天無核沃柑花果ABA含量極顯著高于有核沃柑花果,在第40天無核沃柑花果ABA含量極顯著低于有核沃柑花果。
2.1.4 有核、無核沃柑ZR含量差異 由圖4可知,開花后有核、無核沃柑葉片ZR含量在整體上呈現(xiàn)出先升高后降低再增加的趨勢,在開花后第40天無核沃柑葉片的ZR含量顯著低于有核沃柑,在開花后第50天無核沃柑葉片的ZR含量極顯著高于有核沃柑。開花后有核、無核沃柑花果ZR含量變化幅度較大,但無核沃柑和有核沃柑花果的ZR含量并無顯著差異。
2.1.5 有核、無核沃柑JA-me含量差異 由圖5可知,開花后有核、無核沃柑葉片JA-me含量在10~40 d逐漸降低,到第50天又呈現(xiàn)升高的趨勢,而且在10~40 d有核沃柑葉片JA-me含量顯著或極顯著高于無核沃柑葉片,在第50天無明顯差異;開花后不同時期的有核、無核沃柑花果JA-me含量整體呈現(xiàn)出逐漸下降的趨勢,在10~40 d有核、無核沃柑花果JA-me含量無顯著差異,在第50天有核沃柑花果JA-me含量顯著低于無核沃柑花果。
2.1.6 有核、無核沃柑(Zr+GA3+IAA)/ABA差異 在盛花期后50 d內(nèi),沃柑葉片和花果內(nèi)的(Zr+GA3+IAA)/ABA比值持續(xù)上升;盛花后20~50 d無核沃柑葉片中(Zr+GA3+IAA)/ABA比值顯著高于有核沃柑,但有核沃柑花果中的(Zr+GA3+IAA)/ABA比值在盛花期后10~30 d高于無核沃柑,在40~50 d顯著低于無核沃柑(表1)。
2.2 有核、無核沃柑養(yǎng)分含量差異分析
2.2.1 有核、無核沃柑葉片N、P、K元素差異 由表2可以看出,在盛花后60 d內(nèi)葉片N元素含量總體表現(xiàn)為先下降后升高的趨勢;無核沃柑春梢葉片N元素含量在盛花后10~20 d顯著低于有核沃柑,但在盛花后60 d顯著高于有核沃柑;無核沃柑秋梢葉片N元素含量在盛花后10、50 d顯著高于有核沃柑。有核沃柑春梢葉片P元素含量表現(xiàn)為前期高后期低的特點;無核沃柑春梢葉的P元素含量在盛花后10~20 d顯著低于有核沃柑,而在開花后40~50 d顯著高于有核沃柑;無核沃柑秋梢葉片P元素含量在盛花后10~30 d、50 d均顯著高于有核沃柑。葉片的K元素含量在開花前期含量較高,但伴隨著花期推進,含量逐步降低;無核沃柑春梢葉片K元素含量在盛花后10~20 d、50~60 d顯著高于有核沃柑;無核沃柑秋梢葉片K元素含量在盛花后10~50 d顯著高于有核沃柑。
2.2.2 有核、無核沃柑Ca、Mg元素差異 由表3可知,秋梢葉的Ca元素含量高于春梢葉;無核沃柑春梢葉片Ca元素含量在盛花后10 d顯著高于有核沃柑,而在30~60 d,其Ca元素含量顯著低于有核沃柑春梢葉片,處于極度缺乏的狀態(tài),但無核沃柑的秋梢葉Ca元素含量在30~50 d卻顯著高于有核沃柑;無核沃柑春梢葉片Mg元素含量在盛花后50~60 d顯著高于有核沃柑春梢葉片;無核沃柑秋梢葉片Mg元素含量在盛花后20~50 d顯著高于有核沃柑。
2.2.3 有核、無核沃柑Fe、Mn、Cu、Zn元素差異 由表4可知,沃柑秋梢葉片的Fe、Mn、Cu元素含量高于春梢葉片。無核沃柑秋梢葉片的Fe、Mn、Cu、Zn元素含量除盛花后60 d Mn元素含量無差異外,其余各個時期均顯著低于有核沃柑;無核沃柑春梢葉片的Fe、Mn元素含量在第20、40天顯著低于有核沃柑,Cu含量在盛花后第10、40、60天顯著低于有核沃柑,無核沃柑在Fe、Mn、Cu、Zn元素的吸收和轉(zhuǎn)運上低于有核沃柑,在生產(chǎn)中更需要補充微量元素。
2.3 內(nèi)源激素、礦質(zhì)養(yǎng)分含量相關(guān)性分析
花果中的GA3、ABA和JA-me含量與葉片激素含量存在極顯著的相關(guān)性,若要提升花果內(nèi)的GA3、ABA和JA-me含量,可以通過在葉片中補充對應(yīng)的激素含量來實現(xiàn)(表5)。葉片中IAA含量與果實中ZR含量呈顯著負相關(guān),與JA-me含量呈顯著正相關(guān);葉片中的GA3含量與果實中的IAA和GA3含量呈顯著正相關(guān);葉片中的ABA含量與果實中的IAA、GA3、ZR含量呈極顯著負相關(guān),與ABA、JA-me含量呈極顯著正相關(guān);葉片中的ZR含量與果實中的IAA、GA3含量呈極顯著正相關(guān),與JA-me含量呈顯著負相關(guān);葉片中的JA-me含量與果實中的IAA、ZR含量呈顯著負相關(guān),與ABA、JA-me含量呈極顯著正相關(guān)。
葉片中的大量元素N、P、K主要影響IAA、ABA和JA-me含量,并且除N與IAA相關(guān)性不顯著外,其余均存在顯著或極顯著正相關(guān)關(guān)系;微量元素Mn、Cu與ABA、JA-me含量存在顯著或極顯著負相關(guān);微量元素Zn與IAA、ABA、JA-me含量呈極顯著正相關(guān)(表6)。
3 討 論
內(nèi)源激素水平在很大程度上影響果實坐果,駿棗中GA3、IAA含量的過低導致第一次生理落果,而第二次生理落果主要是ABA含量急劇上升[23],未授粉W-默科特ABA含量較高,但GA3、IAA含量明顯低于授粉柑橘[24],導致更易落果。Iglesias等[6]研究表明生長素在早期對器官脫落起抑制作用,一旦感知脫落信號后,就可以加速器官脫落。在本研究中無核沃柑花果、葉的IAA含量在花后30 d內(nèi)均顯著低于有核沃柑,但花果在IAA含量在后期高于有核沃柑,無核沃柑生長素含量的前期低后期高是導致前期落花的重要因素之一,生產(chǎn)中應(yīng)在開花前補充外源生長素。在擬南芥中受精激發(fā)了胚珠中IAA的生物合成,進而介導了GA的生物合成[25],在本研究中,無核沃柑的GA3含量低于有核沃柑,尤其在盛花后30~40 d,是第一次花果脫落的主要原因,因此在謝花期應(yīng)及時噴施外源赤霉素,此措施已廣泛應(yīng)用于沃柑[5]、棗[26]的保果。受精胚珠或幼嫩種子是合成植物生長促進類物質(zhì)的主要場所[27],無核沃柑在花期受精受阻、胚早期敗育,因此其促進類激素(IAA、GA3、ZR)含量在關(guān)鍵時期低于有核沃柑,導致更容易落花落果。ABA和JA-me是植物體內(nèi)的抑制類激素,ABA/IAA比值增加,促進ETH的生物合成,間接地誘導脫落發(fā)生[13,28],在桃[29]、砂糖橘[30]研究中ABA含量高時,落果率也相應(yīng)地升高。在本研究中第30天無核沃柑花果的ABA含量及第50天JA-me含量均顯著高于有核沃柑,是導致后期大量落果的因素之一。此外,正值無核沃柑第一次生理落果期,無核沃柑促進生長激素與抑制生長激素的比值在盛花后30 d明顯低于有核沃柑,說明了植物器官脫落是激素間共同調(diào)控的結(jié)果[31]。
除了內(nèi)源激素外,礦質(zhì)營養(yǎng)的豐缺也是落花落果的重要因素。柑橘開花期是結(jié)果樹對N、P需求最高的時候[32],花和幼果的形成需要消耗大量養(yǎng)分,在落花、落果中還會損耗Ca、Fe、B等元素[33],養(yǎng)分的不平衡會導致花果的脫落。本研究中有核和無核沃柑葉片中N、P、K含量都表現(xiàn)為前期較高,隨著花期的推進含量逐漸降低,推測后期葉片中的養(yǎng)分向花、果中轉(zhuǎn)移;琯溪蜜柚花的養(yǎng)分含量與生長發(fā)育進程密切相關(guān),N含量隨著花芽生長發(fā)育顯著下降,K含量則顯著上升,而P含量則呈現(xiàn)出先下降后升高的變化趨勢[16],與本試驗結(jié)果有所差異,這可能是取樣的部位和時間不同導致。有核沃柑春梢葉前期N、P、Mg含量高于無核沃柑,但后期低于無核沃柑,這和有核沃柑樹上可以保留更多的果實需要消耗更多養(yǎng)分有關(guān),因此在生產(chǎn)管理中需要在花前補充氮、磷、鉀肥,在果實坐穩(wěn)后還應(yīng)根據(jù)不同樹體的掛果量來確定施肥量。試驗中無核沃柑秋梢葉片中P、K、Ca、Mg含量高于有核沃柑,推測原因主要是無核沃柑在上一年掛果量較有核沃柑少,樹體整體養(yǎng)分消耗少。本研究中花蕾期沃柑春梢出現(xiàn)了缺Ca的現(xiàn)象,與王男麒等[33]在紐荷爾臍橙、興津溫州蜜柑和沙田柚上的研究結(jié)果一致。因此,在此時期要注意通過葉面噴施的方式重點補充鈣肥,同時注意補充Fe、Mn、Cu。此外,筆者在本研究中發(fā)現(xiàn)花果期無核沃柑老葉的Ca含量較高,但新葉的Ca含量較低,這是因為Ca和B的大量吸收需要受精作用的刺激[34],與彭抒昂等[35]在梨上研究結(jié)果相一致,因此在生產(chǎn)中無核沃柑在花果期更需要補充鈣肥。但Ca元素在幼果和葉片間的轉(zhuǎn)運特征、受精作用對Ca元素吸收的調(diào)控機制尚不清楚,需進一步研究。此外,后續(xù)將增大樣本量,通過建立坐果率與相關(guān)生理、生化指標之間的關(guān)系,更為準確地找出落果防控和?;ū9P(guān)鍵因子。
4 結(jié) 論
無核沃柑落果的主要原因是體內(nèi)激素的不平衡,前期落花落果的原因主要是IAA、GA3含量較低和ABA含量高共同作用,后期落果還與茉莉酸含量的升高有很大的關(guān)系;無核沃柑和有核沃柑的礦質(zhì)養(yǎng)分含量也有差異?;诒狙芯恐械陌l(fā)現(xiàn)以及結(jié)合生產(chǎn)經(jīng)驗,花前需重點補充氮肥,合理補充磷、鉀肥,花期應(yīng)通過葉面噴施的方式重點補充鈣肥,以及葉面噴施外源激素,如GA3,減少無核沃柑生理落果。
參考文獻References:
[1] 黃其椿,劉吉敏,何新華,黃克,冉志林,吳榮倫,羅捷,李初英. 晚熟雜柑‘沃柑’在廣西武鳴的栽培表現(xiàn)初報[J]. 中國南方果樹,2014,43(3):86-88.
HUANG Qichun,LIU Jimin,HE Xinhua,HUANG Ke,RAN Zhilin,WU Ronglun,LUO Jie,LI Chuying. Preliminary report on cultivation performance of late-maturing hybrid citrus ‘Orah’ in Wuming,Guangxi[J]. South China Fruits,2014,43(3):86-88.
[2] 吳雅諾,劉園,孔佳濤,胡哲輝,陳明華,吳俊琛,張紅艷,蔣友武,徐娟,陳嘉景. 基于模糊建模解析不同產(chǎn)地沃柑果實感官品質(zhì)差異[J]. 中國農(nóng)業(yè)科學,2024,57(10):2010-2022.
WU Yanuo,LIU Yuan,KONG Jiatao,HU Zhehui,CHEN Minghua,WU Junchen,ZHANG Hongyan,JIANG Youwu,XU Juan,CHEN Jiajing. Basing fuzzy modeling to evaluate sensory quality differences of ‘Orah’ mandarin fruits from various production regions[J]. Scientia Agricultura Sinica,2024,57(10):2010-2022.
[3] 黃其椿,江唐鑫,覃陽,李德光,劉吉敏,張?zhí)m,施平麗,廖惠紅,劉要鑫,陳東奎. 091無核沃柑在廣西南寧的試種表現(xiàn)[J]. 中國南方果樹,2020,49(3):17-20.
HUANG Qichun,JIANG Tangxin,QIN Yang,LI Deguang,LIU Jimin,ZHANG Lan,SHI Pingli,LIAO Huihong,LIU Yaoxin,CHEN Dongkui. Performance of 091 seedless orha in Nanning,Guangxi[J]. South China Fruits,2020,49(3):17-20.
[4] 張社南,劉冰浩,賀申魁,梅正敏,唐燕玲,區(qū)善漢. 沃柑落花落果及果實生長發(fā)育規(guī)律觀察[J]. 南方園藝,2022,33(1):1-6.
ZHANG Shenan,LIU Binghao,HE Shenkui,MEI Zhengmin,TANG Yanling,OU Shanhan. Observation on flower and fruit drop and fruit growth and development of Orah mandarin[J]. Southern Horticulture,2022,33(1):1-6.
[5] 王煜軒. 噴施赤霉素和細胞分裂素對無核沃柑保果效果的研究[D]. 武漢:華中農(nóng)業(yè)大學,2022.
WANG Yixuan. Effects of spraying gibberellin and cytokinin on fruit preservation of seedless Orah mandarin[D]. Wuhan:Huazhong Agricultural University,2022.
[6] IGLESIAS D J,TADEO F R,PRIMO-MILLO E,TALON M. Carbohydrate and ethylene levels related to fruitlet drop through abscission zone A in citrus[J]. Trees,2006,20(3):348-355.
[7] 董倩倩,龔桂芝,彭祝春,李一兵,侯艷紅,洪棋斌. 柑橘采前落果與果實不同部位內(nèi)源激素含量關(guān)系分析[J]. 植物生理學報,2018,54(10):1569-1575.
DONG Qianqian,GONG Guizhi,PENG Zhuchun,LI Yibing,HOU Yanhong,HONG Qibin. Analysis on the relationship between pre-harvest fruit drops and content of endogenous hormone in different parts of fruit in citrus[J]. Plant Physiology Journal,2018,54(10):1569-1575.
[8] HEDDEN P,SPONSEL V. A century of gibberellin research[J]. Journal of Plant Growth Regulation,2015,34(4):740-760.
[9] MESEJO C,YUSTE R,REIG C,MARTíNEZ-FUENTES A,IGLESIAS D J,MU?OZ-FAMBUENA N,BERMEJO A,GERMANà M A,PRIMO-MILLO E,AGUSTí M. Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species[J]. Plant Science,2016,247:13-24.
[10] CHEN H Q,DEKKERS K L,CAO L H,BURNS J K,TIMMER L W,CHUNG K R. Evaluation of growth regulator inhibitors for controlling postbloom fruit drop (PFD) of citrus induced by the fungus Colletotrichum acutatum[J]. HortScience,2006,41(5):1317-1321.
[11] EMAN A A,EL-MONEIM A,ABD E M M M,OMAYMA A,ISMAIL M M. GA3 and zinc sprays for improving yield and fruit quality of Washington navel orange trees grown under sandy soil condition[J]. Research Journal of Agriculture and Biological Sciences,2007,3(5):498-503.
[12] 董倩倩. 柑橘生理落果與果實各部位4種內(nèi)源激素含量關(guān)系分析[D]. 重慶:西南大學,2019.
DONG Qianqian. Analysis on the relationship between physiological fruit drop and content of four endogenous hormones in different parts of fruit in citrus[D]. Chongqing:Southwest University,2019.
[13] MISHRA A,KHARE S,TRIVEDI P K,NATH P. Effect of ethylene,1-MCP,ABA and IAA on break strength,cellulase and polygalacturonase activities during cotton leaf abscission[J]. South African Journal of Botany,2008,74(2):282-287.
[14] WILMOWICZ E,F(xiàn)RANKOWSKI K,KU?KO A,?WIDZI?SKI M,DE DIOS ALCHé J,NOWAKOWSKA A,KOPCEWICZ J. The influence of abscisic acid on the ethylene biosynthesis pathway in the functioning of the flower abscission zone in Lupinus luteus[J]. Journal of Plant Physiology,2016,206:49-58.
[15] 譚祖國,萬蜀淵,張月娟. 臍橙葉片施用15N和32P同位素的運轉(zhuǎn)分配規(guī)律和坐果機制的研究[J]. 湖北農(nóng)業(yè)科學,1998,37(3):46-48.
TAN Zuguo,WAN Shuyuan,ZHANG Yuejuan. Study on interrelation between mineral distribution and fruit set when apply 15N and 32P isotopes to leaves of orange[J]. Hubei Agricultural Sciences,1998,37(3):46-48.
[16] 劉俊松,張上隆. 柑橘花芽分化期結(jié)果和未結(jié)果樹礦質(zhì)元素和碳水化合物含量變化[J]. 西南大學學報(自然科學版),2010,32(2):26-32.
LIU Junsong,ZHANG Shanglong. Variation in mineral element and carbohydrate contents in bearing and non-bearing mandarin trees during flower-bud differentiation[J]. Journal of Southwest University (Natural Science Edition),2010,32(2):26-32.
[17] 張利軍,羅自威,王玉雯,王曉華,徐凱悅,許修柱,吳良泉,李延,郭九信. 琯溪蜜柚落花落果特性及養(yǎng)分損失定量化研究[J]. 果樹學報,2021,38(4):520-529.
ZHANG Lijun,LUO Ziwei,WANG Yuwen,WANG Xiaohua,XU Kaiyue,XU Xiuzhu,WU Liangquan,LI Yan,GUO Jiuxin. A study on the characteristics of dropped flower and fruit and their nutrient loss in Guanximiyou pomelo[J]. Journal of Fruit Science,2021,38(4):520-529.
[18] ABD-ALLAH A. Effect of spraying some macro and micro nutrients on fruit set,yield and fruit quality of Washington navel orange trees[J]. Journal of Applied Sciences Research,2006,2(11):1059-1063.
[19] 陳傳武,牛英,付慧敏,劉冰浩,范七君,蔣海蘭. “無核沃柑” 無核成因研究[J]. 中國南方果樹,2022,51(2):1-7.
CHEN Chuanwu,NIU Ying,F(xiàn)U Huimin,LIU Binghao,F(xiàn)AN Qijun,JIANG Hailan. Studies on the seedless mechanism of seedless orha tangor[J]. South China Fruits,2022,51(2):1-7.
[20] 莊伊美,王仁璣,謝志南,許文寶. 柑桔、龍眼、荔枝營養(yǎng)診斷標準研究[J]. 福建果樹,1995(1):6-9.
ZHUANG Yimei,WANG Renji,XIE Zhinan,XU Wenbao. Study on nutritional diagnostic criteria of citrus,longan and litchi[J]. Fujian Fruits,1995(1):6-9.
[21] 鮑士旦. 土壤農(nóng)化分析[M]. 3版. 北京:中國農(nóng)業(yè)出版社,2000:257-282.
BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing:China Agriculture Press,2000:257-282.
[22] 何鐘佩. 農(nóng)作物化學控制實驗指導[M]. 北京:北京農(nóng)業(yè)大學出版社,1993:60-68.
HE Zhongpei. Guidelines for crop chemical control experiments[M]. Beijing:Beijing Agricultural University Press,1993:60-68.
[23] 于婷,李建貴,侍瑞,張俊,王娜,曹玉江. 駿棗果實中的內(nèi)源激素含量與其生理落果的關(guān)系[J]. 經(jīng)濟林研究,2016,34(2):45-49.
YU Ting,LI Jiangui,SHI Rui,ZHANG Jun,WANG Na,CAO Yujiang. Relationship between endogenous hormone content in Jun jujube and physiological fruit drop[J]. Nonwood Forest Research,2016,34(2):45-49.
[24] 董倩倩,龔桂芝,彭祝春,侯艷紅,羅艾,洪棋斌. W-默科特單性結(jié)實能力與果實不同部位四種內(nèi)源激素含量的關(guān)系[J]. 分子植物育種,2020,18(4):1326-1337.
DONG Qianqian,GONG Guizhi,PENG Zhuchun,HOU Yanhong,LUO Ai,HONG Qibin. Relation ship between parthenocarpy ability and content of 4 endogenous hormones in different fruit parts of W-Murcott tangor[J]. Molecular Plant Breeding,2020,18(4):1326-1337.
[25] DORCEY E,URBEZ C,BLáZQUEZ M A,CARBONELL J,PEREZ-AMADOR M A. Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis[J]. The Plant Journal,2009,58(2):318-332.
[26] 樊丁宇. GA3誘導棗坐果的調(diào)控機理研究[D]. 烏魯木齊:新疆農(nóng)業(yè)大學,2022.
FAN Dingyu. Study on the mechanism of gibberellin-induced fruit set in jujube (Ziziphus jujuba Mill.)[D]. Urumqi:Xinjiang Agricultural University,2022.
[27] GARCíA-MARTINEZ J L,SANTES C,CROKER S J,HEDDEN P. Identification,quantitation and distribution of gibberellins in fruits of Pisum sativum L. cv. Alaska during pod development[J]. Planta,1991,184(1):53-60.
[28] YUAN R C,KENDER W J,BURNS J K. Young fruit and auxin transport inhibitors affect the response of mature ‘Valencia’ oranges to abscission materials via changing endogenous plant hormones[J]. Journal of the American Society for Horticultural Science,2003,128(3):302-308.
[29] 楊波,車玉紅,郭春苗,龔鵬,徐葉挺,孫濤,劉河疆. 扁桃生理落果期不同組織激素濃度的動態(tài)變化及其對落果的影響[J]. 西北植物學報,2015,35(1):118-124.
YANG Bo,CHE Yuhong,GUO Chunmiao,GONG Peng,XU Yeting,SUN Tao,LIU Hejiang. Dynamic change of hormones in the different tissue of almond during the physiological fruit drop and its effect on fruit drop[J]. Acta Botanica Boreali-Occidentalia Sinica,2015,35(1):118-124.
[30] 黃永敬,馬培恰,吳文,陳杰忠,李娟,唐小浪,劉翔宇. 砂糖橘夏梢生長對果實糖代謝及脫落的影響[J]. 園藝學報,2013,40(10):1869-1876.
HUANG Yongjing,MA Peiqia,WU Wen,CHEN Jiezhong,LI Juan,TANG Xiaolang,LIU Xiangyu. Effects of summer shoot growth on sugar metabolism and abscission of fruitlet in ‘Shatangju’ Mandarin[J]. Acta Horticulturae Sinica,2013,40(10):1869-1876.
[31] 郝志超,溫玥,田嘉,邵白俊杰,楊丁花,張峰. 庫爾勒香梨萼片脫落與離區(qū)不同部位植物激素的關(guān)系[J]. 植物生理學報,2022,58(7):1369-1380.
HAO Zhichao,WEN Yue,TIAN Jia,SHAO Baijunjie,YANG Dinghua,ZHANG Feng. Relationship between sepal abscission and phytohormones in different parts of Korla fragrant pear[J]. Plant Physiology Journal,2022,58(7):1369-1380.
[32] 馬進川,王強,孫萬春,丁潮洪,周大云,陳照明,林輝,馬軍偉. ‘紅美人’柑橘結(jié)果樹的營養(yǎng)需求特征研究[J]. 上海農(nóng)業(yè)學報,2021,37(2):92-96.
MA Jinchuan,WANG Qiang,SUN Wanchun,DING Chaohong,ZHOU Dayun,CHEN Zhaoming,LIN Hui,MA Junwei. Nutrition demand characteristic of fruit-bearing tree of ‘Hongmeiren’ citrus[J]. Acta Agriculturae Shanghai,2021,37(2):92-96.
[33] 王男麒,彭良志,邢飛,周薇,曹立,黃翼,江才倫. 柑橘落花落果的營養(yǎng)元素含量及其脫落損耗[J]. 園藝學報,2013,40(12):2489-2496.
WANG Nanqi,PENG Liangzhi,XING Fei,ZHOU Wei,CAO Li,HUANG Yi,JIANG Cailun. Nutrient element content in dropped flowers and young fruits and nutrient losses caused by their drops in citrus[J]. Acta Horticulturae Sinica,2013,40(12):2489-2496.
[34] 肖家欣,彭抒昂. 柑橘開花前后子房(幼果)鈣、硼營養(yǎng)與IAA、GA1/3動態(tài)研究[J]. 果樹學報,2004,21(2):132-135.
XIAO Jiaxin,PENG Shu’ang. Studies on dynamics of calcium,boron nutrients and IAA,GA1/3 in ovary (fruitlet) around citrus flowering[J]. Journal of Fruit Science,2004,21(2):132-135.
[35] 彭抒昂,巖堀修一. 梨果實發(fā)育中Ca2+在果肉細胞的定位及變化研究[J]. 園藝學報,2001,28(6):497-503.
PENG Shu’ang,Iwahori Shuichi. Studies on localization and change of Ca2+ in fruit flesh cells during fruit development of pear[J]. Acta Horticulturae Sinica,2001,28(6):497-503.