摘" " 要:【目的】探究施用精氨酸硅酸鹽肌醇絡(luò)合物(nitrosigine)對(duì)植物生長及果實(shí)品質(zhì)的影響,以期為農(nóng)業(yè)生產(chǎn)新型硅肥選擇提供理論依據(jù)?!痉椒ā恳云揭靥鸩瑁∕alus hupehensis Rehd.)幼苗、6年生嘎拉/M9(Gala/M9)和富士/M9(Fuji/M9)蘋果樹為試驗(yàn)材料,采用清水(對(duì)照)、硅酸鉀(K2SiO3)、精氨酸(Arginine)和精氨酸硅酸鹽肌醇絡(luò)合物分別對(duì)其進(jìn)行根施和噴施處理?!窘Y(jié)果】2 mmol·L-1和6 mmol·L-1 K2SiO3、Arginine、Nitrosigine處理比對(duì)照顯著促進(jìn)平邑甜茶幼苗生長,但nitrosigine處理比K2SiO3、Arginine處理能夠顯著提高幼苗葉片葉綠素含量和植株凈光合速率,促進(jìn)光合作用;促使葉片生物量增加;促進(jìn)株高、莖粗、地上部干鮮質(zhì)量增加,顯著促進(jìn)植株?duì)I養(yǎng)生長。使用Nitrosigine對(duì)6年生嘎拉/M9及富士/M9蘋果樹噴施處理,使嘎拉及富士果實(shí)花青苷含量顯著提高;嘎拉及富士果實(shí)可溶性固形物含量、果膠總量、果肉硬度均顯著提高。【結(jié)論】Nitrosigine處理可明顯提高平邑甜茶幼苗葉片硅含量,促進(jìn)蘋果幼苗生長;還可提高嘎拉及富士蘋果果實(shí)品質(zhì)。其中平邑甜茶幼苗較適宜施加濃度為6 mmol·L-1,過高濃度施用可能會(huì)導(dǎo)致幼苗脅迫。
關(guān)鍵詞:蘋果;精氨酸硅酸鹽肌醇絡(luò)合物;幼苗生長;果實(shí)品質(zhì)
中圖分類號(hào):S661.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)03-0543-12
Effects of nitrosigine on Malus hupehensis seedling growth and apple fruit quality
ZENG Yanxin1, ZHANG Shuai2, JING Xiuli1, YOU Chunxiang1, ZHANG Chunling3, QIN Xu3*, WANG Xiaofei1*
(1College of Horticulture Science and Engineering, Shandong Agricultural University/National Key Laboratory of Wheat Improvement, Tai’an 271018, Shandong, China; 2College of Chemistry and Material Science, Shandong Agricultural University, Tai’an 271018, Shandong, China; 3School of Agriculture Science and Technology, Shandong Agriculture and Engineering University, Jinan 250013, Shandong, China)
Abstract: 【Objective】 In order to explore the effects of nitrosigine applied to plants as a fertilizer on the plant growth and fruit quality, the experiment was undertaken so as to provide a theoretical basis for the selection of new silicon fertilizer in the agricultural production. 【Methods】 The experiment was conducted in 2023 at the National Key Laboratory of Wheat Improvement, Shandong Agricultural University (Cultivation environment temperature of Malus hupehensis Rehd. seedlings was 25 ℃; the photoperiod for plant growth was 14 hours light and 10 hours darkness) and the Modern Agricultural Science and Technology Demonstration Park of Nanma Town, Yiyuan county, Zibo City, Shandong province (117°54'-118°31', 35°55'-36°23', the region belongs to a warm temperate continental monsoon climate) respectively. M. hupehensis Rehd. seedlings as well as 6-year-old Gala/M9 and Fuji/M9 apple trees were used as experimental materials. Four kinds of substances (water, K2SiO3, Arginine and Nitrosigine) and two different concentrations (2 mmol·L-1 and 6 mmol·L-1) were applied to M. hupehensis Rehd. seedlings, respectively. After 28 days of treatments, various indicators, including plant height, above-ground and underground biomass, leaf growth, net photosynthetic rate, silicon content and other seedling growth related indexes were determined. Gala/M9 and Fuji/M9 apple trees were sprayed with water and 30 mmol·L-1 Nitrosigine respectively. The sprayed treatments were carried out from the beginning of full-blossom period to the end of fruit ripening, and the samples were treated once a month. After ripening, various indicators, including fruit mass, soluble solid content, soluble sugar content, hardness, pectin content and other fruit quality indexes were determined. 【Results】 The results showed that 2 mmol·L-1 and 6 mmol·L-1 K2SiO3, Arginine and Nitrosigine treatments could significantly promote the growth of M. hupehensis Rehd. seedlings compared with control treatment, and Nitrosigine treatment could improve the seedling growth better than K2SiO3 and Arginine treatment. Nitrosigine of 2 mmol·L-1 and 6 mmol·L-1 significantly increased the plant height of M. hupehensis Rehd. seedlings by 60.65% and 62.28% compared with control, respectively, and Nitrosigine could make the seedlings grow faster. The stem diameter of M. hupehensis Rehd. seedlings treated with 2 mmol·L-1 and 6 mmol·L-1 Nitrosigine significantly increased by 27.96% and 29.55% compared with control, respectively. The above ground fresh mass of M. hupehensis Rehd. seedlings treated with 2 mmol·L-1 and 6 mmol·L-1 Nitrosigine significantly increased by 146.76% and 167.72% respectively compared with control. The leaf chlorophyll a and chlorophyll b contents of M. hupehensis Rehd. seedlings with 2 mmol·L-1 Nitrosigine treated were significantly higher than those of control by 78.86% and 91.81%, respectively. The leaf chlorophyll a and chlorophyll b contents of M. hupehensis Rehd. seedlings with 6 mmol·L-1 Nitrosigine treated were significantly higher than those of control by 76.19% and 91.13%, respectively. The net photosynthetic rate, transpiration rate and stomatal conductance of seedlings treated with 6 mmol·L-1 Nitrosigine were significantly higher than control by 497.0%, 89.20% and 136.34%, respectively. In conclusion, on the one hand, Nitrosigine treatment could significantly increase the leaf silicon content and the chlorophyll content of M. hupehensis Rehd. seedlings, and also enhance their net photosynthetic rate, which promoted photosynthesis of M. hupehensis Rehd. seedlings. On the other hand, Nitrosigine treatment could increase the leaf biomass and promote leaf growth; It could significantly increase plant height, stem diameter, above-ground dry and fresh mass of M. hupehensis Rehd. seedlings, and promote plant vegetative growth. The results of seedling tests showed that Nitrosigine can significantly promote the growth of M. hupehensis Rehd. seedlings compared with K2SiO3 and Arginine. In order to verify its effect on apple fruits, we referred to the optimal concentration of K2SiO3 sprayed on Fuji apple trees. Nitrosigine was sprayed on 6-year-old Gala/M9 and Fuji/M9 apple trees. Nitrosigine can significantly increase the anthocyanin content of Gala and Fuji apples by 60.62% and 6.82%, which could promote fruit coloring. The soluble solid contents in Gala and Fuji fruits significantly increased by 3.66% and 5.82%; The total amount of pectin and flesh hardness of apples significantly increased. The silicon content in peel and pulp of Gala apples significantly increased by 103.32% and 167.88%, respectively, the silicon content in peel and pulp of Fuji fruits significantly increased by 95.94% and 172.49%, respectively. 【Conclusion】 Nitrosigine treatments could significantly increase the silicon content and promote the growth of M. hupehensis Rehd. seedlings. It can also improve the appearance and internal quality of Gala and Fuji fruits. Among them, the best concentration for M. hupehensis Rehd. seedlings was 6 mmol·L-1, and if excessive high dosage application may cause stress to the seedlings.
Key words: Apple; Nitrosigine; Seedling growth; Fruit quality
蘋果(Malus pumila Mill.)屬多年生落葉喬木,是中國栽植較多的果樹之一[1]。由于蘋果樹具有多年種植且不可移動(dòng)的特點(diǎn),因此在果園連年栽培管理中提供良好的土肥水管理是獲得優(yōu)質(zhì)豐產(chǎn)的前提。但目前蘋果園生產(chǎn)肥水管理中存在著有機(jī)肥、復(fù)混肥和中微量元素肥投入不足、肥料結(jié)構(gòu)不平衡、肥料利用率低、土壤污染等各種問題[2-3],從而造成了果樹產(chǎn)量下降,果實(shí)品質(zhì)降低的現(xiàn)象。因此,科學(xué)合理施肥是實(shí)現(xiàn)蘋果高產(chǎn)和品質(zhì)優(yōu)良的基礎(chǔ),也是蘋果能夠連年生產(chǎn)的重要種植條件[4]。
硅(Si)是地殼中含量第二大豐富元素,在植物生長發(fā)育中發(fā)揮著有益作用,通常被認(rèn)為是植物的有益非必需元素[5]。適當(dāng)?shù)墓璺恃a(bǔ)充可使植物莖葉直挺,利于通風(fēng)透光,增強(qiáng)植物光合作用;還可提高植物抗逆性和果實(shí)品質(zhì)[6-8]。植物在生長中只能吸收溶于水的、少量的單分子硅酸[9],在農(nóng)業(yè)生產(chǎn)中大量施用其他元素肥會(huì)減少土壤中的有效硅[10],因此如果只依賴自然環(huán)境提供的硅補(bǔ)充營養(yǎng),即使施用氮、磷、鉀肥,作物也會(huì)出現(xiàn)生長發(fā)育不良,果實(shí)產(chǎn)量和品質(zhì)降低等問題,所以科學(xué)的硅肥施用在農(nóng)業(yè)生產(chǎn)中顯得尤其重要。硅肥在蘋果上的應(yīng)用已有較多前人研究,Wang等[11]研究表明,硅可以提高蘋果葉片葉綠素含量并促進(jìn)光合作用,還可以防治蘋果根腐病和樹體過早衰老,促進(jìn)蘋果樹生長和根系發(fā)育。唐巖等[12]發(fā)現(xiàn)對(duì)富士蘋果噴施K2SiO3可以促進(jìn)果實(shí)可溶性固形物和可溶性糖含量增加、揮發(fā)性物質(zhì)種類和含量增加、可滴定酸含量下降,提高了果實(shí)品質(zhì)。也有前人使用SiO2噴施不同品種蘋果,發(fā)現(xiàn)均可以提高不同品種果實(shí)產(chǎn)量和硅含量,還可以提高果實(shí)糖度、花青素含量、香氣成分含量等果實(shí)品質(zhì)[8,13-14]。
精氨酸(Arginine,Arg)作為功能最多樣的氨基酸之一,氮碳比最高,是多胺和一氧化氮等信號(hào)分子生物合成的前體[15]。近年來,精氨酸對(duì)植物的積極作用引起了研究者的較多關(guān)注。外源性精氨酸處理可有效激活內(nèi)源性精氨酸代謝,保持蘑菇的貯藏品質(zhì),延長蘑菇的保鮮期[16]。精氨酸處理可以通過改善氮積累提高番茄果實(shí)番茄紅素和維生素C含量,進(jìn)而提高番茄產(chǎn)量和品質(zhì)[17]。精氨酸噴施處理還可以提高草莓果實(shí)品質(zhì)及產(chǎn)量[18],但目前精氨酸在蘋果生產(chǎn)應(yīng)用中的效果尚未可知。
精氨酸硅酸鹽肌醇絡(luò)合物(Nitrosigine)以硅酸鉀水溶液、肌醇、精氨酸混合加熱制備而成。目前并無在正常生長條件下外源施加肌醇促進(jìn)植物生長的報(bào)道,該絡(luò)合物中肌醇的主要作用是作為增溶劑通過增強(qiáng)硅酸鉀與精氨酸之間的氫鍵使硅酸鉀與精氨酸絡(luò)合并提高水溶解能力[19]。先前有研究表明,此絡(luò)合物可作為藥物應(yīng)用于大鼠、母雞、鵪鶉等動(dòng)物以及人類,對(duì)動(dòng)物生長發(fā)育及人體的骨骼、血管及神經(jīng)都具有較多益處[20-22],但在植物中并無研究應(yīng)用。因此筆者在本研究中采用精氨酸硅酸鹽肌醇絡(luò)合物對(duì)平邑甜茶幼苗和嘎拉/M9、富士/M9蘋果樹進(jìn)行處理,探究精氨酸硅酸鹽肌醇絡(luò)合物對(duì)蘋果幼苗生長及蘋果果實(shí)品質(zhì)的影響,以期為蘋果生產(chǎn)中新型硅肥應(yīng)用提供理論依據(jù)。
1 材料和方法
1.1 試驗(yàn)地概況
試驗(yàn)于2023年在山東農(nóng)業(yè)大學(xué)小麥育種全國重點(diǎn)實(shí)驗(yàn)室(栽培環(huán)境溫度為25 ℃;光周期為14 h光照,10 h黑暗)和山東省淄博市沂源縣南麻鎮(zhèn)現(xiàn)代農(nóng)業(yè)科技示范園分別進(jìn)行,示范園屬暖溫帶季風(fēng)區(qū)域大陸性氣候。
1.2 試驗(yàn)材料及方案
試驗(yàn)材料為平邑甜茶蘋果幼苗,6年生嘎拉/M9和富士/M9蘋果樹。精氨酸硅酸鹽肌醇絡(luò)合物制備過程:將1.474 L 28%硅酸鉀水溶液加熱至60 ℃,保持60 ℃溫度加入205.8 g肌醇,攪拌溶解,溶解后加入417 g精氨酸,繼續(xù)攪拌,待全部溶解后升高溫度至95 ℃,加熱5 min,冷卻得到精氨酸硅酸鹽肌醇絡(luò)合物水溶液,干燥得其固體,干燥后得到的精氨酸硅酸鹽肌醇絡(luò)合物中精氨酸、硅酸鹽、肌醇的摩爾比約為1.8∶2.1∶1.2,處理前測(cè)定精氨酸硅酸鹽肌醇絡(luò)合物硅含量(w)為0.41%。
在本試驗(yàn)中蘋果幼苗共設(shè)7個(gè)處理:(1)清水空白為對(duì)照;(2)2 mmol·L-1硅酸鉀處理(2 mmol·L-1 K2SiO3);(3)6 mmol·L-1硅酸鉀處理(6 mmol·L-1 K2SiO3);(4)2 mmol·L-1精氨酸處理(2 mmol·L-1 Arg);(5)6 mmol·L-1精氨酸處理(6 mmol·L-1 Arg);(6)2 mmol·L-1精氨酸硅酸鹽肌醇絡(luò)合物處理(2 mmol·L-1 Nitrosigine);(7)6 mmol·L-1精氨酸硅酸鹽肌醇絡(luò)合物處理(6 mmol·L-1 Nitrosigine)。其中精氨酸硅酸鹽肌醇絡(luò)合物濃度均以硅濃度為基準(zhǔn),即2 mmol·L-1精氨酸硅酸鹽肌醇絡(luò)合物為2 mmol·L-1硅濃度的精氨酸硅酸鹽肌醇絡(luò)合物,6 mmol·L-1精氨酸硅酸鹽肌醇絡(luò)合物為6 mmol·L-1硅濃度的精氨酸硅酸鹽肌醇絡(luò)合物,為方便對(duì)比直接寫為其濃度。精氨酸對(duì)照濃度則根據(jù)精氨酸硅酸鹽肌醇絡(luò)合物精氨酸與硅酸鉀摩爾比等比換算得出。
平邑甜茶幼苗首先將種子4 ℃層積30 d后穴盤播種,長出兩片真葉后選取長勢(shì)一致的幼苗定植于種植盆中,供試土壤為蛭石+基質(zhì)(3∶1),長出5片真葉后根施處理,每隔一周處理1次,共處理4次。
在本試驗(yàn)中蘋果大樹共設(shè)2個(gè)處理:(1)清水空白對(duì)照;(2)30 mmol·L-1精氨酸硅酸鹽肌醇絡(luò)合物處理(30 mmol·L-1 Nitrosigine)。參考唐巖等[12]所篩選的蘋果樹K2SiO3最佳噴施濃度為0.5%,摩爾濃度計(jì)算約為30 mmol·L-1,由于精氨酸硅酸鹽肌醇絡(luò)合物以硅濃度為基準(zhǔn),因此選定30 mmol·L-1硅濃度的精氨酸硅酸鹽肌醇絡(luò)合物。
選取長勢(shì)基本一致的蘋果樹,插牌標(biāo)記,每處理各選取6株,于4月底開始噴施處理,每隔1月處理1次,直至蘋果果實(shí)成熟,其余果樹管理保持一致。
1.3 測(cè)定項(xiàng)目與方法
1.3.1 幼苗生長相關(guān)指標(biāo)測(cè)定 在處理28 d后,選擇晴朗無云天氣,于上午09:00使用CIRAS-3便攜式光合作用測(cè)定儀(PP Systems,Haverhill,Massachusetts,USA)分別測(cè)定各處理平邑甜茶幼苗葉片光合特性,各處理重復(fù)測(cè)定12株。測(cè)定指標(biāo):凈光合速率Pn(μmol·m-2·s-1)、胞間CO2濃度Ci(μmol·mol-1)、蒸騰速率Tr(mmol·m-2·s-1)、氣孔導(dǎo)度Gs(mmol·m-2·s-1)。
將各處理12株幼苗洗根后分別測(cè)定平邑甜茶幼苗株高、莖粗、葉面積、葉厚、葉鮮質(zhì)量、地上部及地下部干鮮質(zhì)量。使用鋼尺(范圍0~20 cm,精度±0.1 cm)測(cè)定株高;使用電子游標(biāo)卡尺(范圍0~150 mm,精度±0.02 mm)測(cè)定莖粗、葉厚;將葉片平鋪拍照,使用Image-J軟件測(cè)定葉面積;使用電子天平(范圍0~1500 g,精度±0.01 g)測(cè)定葉鮮質(zhì)量、地上部及地下部鮮質(zhì)量;采用95%乙醇浸提比色法測(cè)定新鮮葉片葉綠素含量[23]。幼苗地上部及地下部使用烘箱(上海一恒,China)105 ℃殺青30 min,80 ℃烘干至恒質(zhì)量,使用電子天平測(cè)定地上部及地下部干質(zhì)量。3次重復(fù)。
1.3.2 蘋果果實(shí)品質(zhì)測(cè)定 果實(shí)于坐果期套袋,著色期摘袋,8月初嘎拉果實(shí)成熟后和10月底富士果實(shí)成熟后各處理隨機(jī)均勻采摘蘋果20~30個(gè),取樣后帶回實(shí)驗(yàn)室(28 ℃左右)測(cè)定,每處理選取15個(gè)蘋果樣品,使用電子天平稱取單果質(zhì)量,游標(biāo)卡尺測(cè)定其縱橫徑,計(jì)算果形指數(shù);使用色差儀(CR-10,Konika-Minolta,Japan)測(cè)定蘋果色差(a*、b*、L*);采用鹽酸-乙醇浸提法測(cè)定果皮花青苷含量[24];使用手持式折光儀(TY/HTPTD-45,Tuya,China)測(cè)定果實(shí)可溶性固形物含量;采用蒽酮比色法測(cè)定可溶性糖含量;采用酸堿滴定法測(cè)定可滴定酸含量,計(jì)算固酸比[23];使用質(zhì)構(gòu)儀(TA,XT plus mass spectrometer,Stable Micro Systems,England)測(cè)定果實(shí)硬度;采用咔唑比色法測(cè)定果實(shí)原果膠及可溶性果膠含量[25],計(jì)算果膠總量。3次重復(fù)。
1.3.3 硅含量測(cè)定 取適量平邑甜茶葉片、嘎拉和富士果實(shí)果皮及果肉樣品分別裝入羊皮紙袋,使用烘箱105 ℃殺青30 min,80 ℃烘干。烘干樣品取適量使用研缽磨碎,隨后取25 mg樣品于100 mL坩堝內(nèi),加入混合溶液(HNO3、超純水體積比為4∶3)10 mL和2滴HF酸,電熱板200 ℃加熱30 min消解樣品,難消解樣品可適當(dāng)增加時(shí)間,直至消解完全,在加熱過程中混合溶液要及時(shí)補(bǔ)加。將消解完全的溶液冷卻至室溫后使用超純水稀釋至50 mL,使用0.22 μm有機(jī)系濾膜過濾樣品5 mL,使用電感耦合等離子體發(fā)射光譜儀(ICP-OES,Thermofisher,USA)測(cè)定樣品Si含量,3次重復(fù)。
1.4 數(shù)據(jù)處理與分析
使用Microsoft Excel.2019與DPS軟件對(duì)試驗(yàn)數(shù)據(jù)采用Duncan(D)新復(fù)極差法進(jìn)行差異顯著性檢驗(yàn),采用GraphPad Prism 8軟件作圖。
2 結(jié)果與分析
2.1 精氨酸硅酸鹽肌醇絡(luò)合物對(duì)蘋果幼苗生長的影響
如圖1和圖2所示,相比于對(duì)照,K2SiO3、Arginine和Nitrosigine處理均促進(jìn)幼苗生長,其中2 mmol·L-1、6 mmol·L-1 Nitrosigine顯著提高了平邑甜茶幼苗的株高、莖粗、地上部鮮質(zhì)量和地上部干質(zhì)量。2 mmol·L-1、6 mmol·L-1 Nitrosigine處理的幼苗株高比對(duì)照分別顯著增加了60.65%、62.28%(圖2-A),幼苗生長快;2 mmol·L-1、6 mmol·L-1 Nitrosigine處理的莖粗比對(duì)照分別顯著增加27.96%、29.55%(圖2-B);2 mmol·L-1、6 mmol·L-1 Nitrosigine處理的地上部鮮質(zhì)量比對(duì)照分別顯著提高146.76%、167.72%(圖2-C)。Nitrosigine處理幼苗的地上部干質(zhì)量雖高于Arginine處理,但無顯著差異,二者都顯著高于K2SiO3和對(duì)照,2 mmol·L-1 Nitrosigine比對(duì)照、2 mmol·L-1 K2SiO3分別顯著提高119.27%、63.38%,6 mmol·L-1 Nitrosigine比對(duì)照、6 mmol·L-1 K2SiO3分別顯著提高128.74%、92.02%(圖2-D);地下部鮮質(zhì)量和干質(zhì)量除精氨酸處理地下部鮮質(zhì)量較高外,其余均無顯著差異(圖2-E~F)。
2.2 精氨酸硅酸鹽肌醇絡(luò)合物對(duì)蘋果幼苗葉片生長的影響
如圖3所示,Nitrosigine處理蘋果幼苗可顯著影響葉片生長,外觀主要表現(xiàn)為葉面積增加,長勢(shì)旺盛,葉綠素含量顯著增加,葉片呈現(xiàn)深綠色,其中以6 mmol·L-1 Nitrosigine處理效果最好(圖3-A)。2 mmol·L-1 Nitrosigine處理的平邑甜茶幼苗葉面積比對(duì)照、2 mmol·L-1 K2SiO3及2 mmol·L-1 Arg顯著提高119.01%、68.38%、20.39%;6 mmol·L-1 Nitrosigine處理的葉面積比對(duì)照、6 mmol·L-1 K2SiO3、6 mmol·L-1 Arg及2 mmol·L-1 Nitrosigine顯著提高164.44%、83.89%、53.07%、20.74%(圖3-B)。葉鮮質(zhì)量以Nitrosigine處理顯著高于其余處理,且6 mmol·L-1 Nitrosigine比2 mmol·L-1 Nitrosigine處理顯著提高21.96%(圖3-C)。葉厚及葉綠素a、葉綠素b、類胡蘿卜素含量均為Nitrosigine處理高于其余處理,2 mmol·L-1 Nitrosigine處理的葉厚、葉片葉綠素a、b含量、類胡蘿卜素含量分別比對(duì)照顯著提高67.95%、78.86%、91.81%、54.53%;6 mmol·L-1 Nitrosigine處理的葉厚、葉片葉綠素a、b含量、類胡蘿卜素含量分別比對(duì)照顯著提高75.54%、76.19%、91.13%、45.26%(圖3-D~G)。
2.3 精氨酸硅酸鹽肌醇絡(luò)合物對(duì)蘋果幼苗光合特性的影響
如圖4所示,Nitrosigine、K2SiO3、Arginine處理可顯著提高平邑甜茶幼苗葉片凈光合速率、蒸騰速率(2 mmol·L-1 K2SiO3除外)、氣孔導(dǎo)度,并顯著降低了胞間CO2濃度(圖4-A~D),且Nitrosigine處理幼苗的凈光合速率、蒸騰速率、氣孔導(dǎo)度均高于其余處理,其中6 mmol·L-1 Nitrosigine處理幼苗的凈光合速率、蒸騰速率、氣孔導(dǎo)度比對(duì)照分別顯著提高497.00%、89.20%、136.34%(圖4-A、C、D);6 mmol·L-1 Nitrosigine處理幼苗的凈光合速率、蒸騰速率比2 mmol·L-1 Nitrosigine分別顯著提高30.22%、11.68%,氣孔導(dǎo)度無顯著差異。對(duì)照的平邑甜茶蘋果幼苗胞間CO2濃度顯著高于其他處理(圖4-B)。
2.4 精氨酸硅酸鹽肌醇絡(luò)合物對(duì)蘋果幼苗硅含量的影響
如圖5所示,Nitrosigine及K2SiO3處理顯著提高蘋果幼苗硅含量。2 mmol·L-1 K2SiO3、6 mmol·L-1 K2SiO3、2 mmol·L-1 Nitrosigine、6 mmol·L-1 Nitrosigine處理的平邑甜茶幼苗葉片硅含量分別比對(duì)照顯著提高了86.11%、122.35%、116.03%、116.77%,Nitrosigine處理與K2SiO3處理的葉片硅含量差異不顯著。
2.5 精氨酸硅酸鹽肌醇絡(luò)合物對(duì)蘋果果實(shí)外在品質(zhì)的影響
前期幼苗試驗(yàn)結(jié)果表明,Nitrosigine相比于K2SiO3和Arginine可顯著促進(jìn)平邑甜茶幼苗生長,為了驗(yàn)證其在不同品種蘋果果實(shí)的施用效果,筆者將Nitrosigine分別噴施于嘎拉/M9及富士/M9蘋果樹(圖6~7)。30 mmol·L-1 Nitrosigine噴施處理的嘎拉蘋果果實(shí)果形指數(shù)比對(duì)照顯著降低了3.65%(圖6-C)。30 mmol·L-1 Nitrosigine處理的嘎拉及富士蘋果花青苷含量比對(duì)照分別顯著提高了60.62%、6.82%;嘎拉蘋果紅色色差(a*)顯著提升(圖6-E);富士蘋果紅色色差(a*)顯著提升,黃色色差(b*)顯著降低(圖7-E~F)。
2.6 精氨酸硅酸鹽肌醇絡(luò)合物對(duì)蘋果果實(shí)內(nèi)在品質(zhì)的影響
如圖8~9所示,30 mmol·L-1 Nitrosigine處理的嘎拉蘋果果實(shí)原果膠含量、果膠總量、果肉硬度、果肉硅含量,分別比對(duì)照顯著提高了47.59%、41.26%、5.04%、167.88%(圖8-B、C、E、G),30 mmol·L-1 Nitrosigine處理的嘎拉蘋果可溶性果膠含量、果皮硅含量比對(duì)照分別增加了29.55%、103.32%(圖8-A、F)。同樣的,30 mmol·L-1 Nitrosigine處理的富士蘋果果實(shí)果肉硬度、果皮硅含量、果肉硅含量,分別比對(duì)照顯著提高了8.40%、95.94%、172.5%(圖9-E~G),30 mmol·L-1 Nitrosigine處理的富士蘋果可溶性果膠含量、原果膠含量、果膠總量比對(duì)照分別增加了34.8%、45.2%、39.84%(圖9-A~C)。30 mmol·L-1 Nitrosigine處理的嘎拉及富士蘋果可溶性固形物含量比對(duì)照分別顯著提高了3.36%、5.82%(圖8-H)。30 mmol·L-1 Nitrosigine處理的嘎拉蘋果果實(shí)可溶性糖、可滴定酸含量比對(duì)照分別顯著提高了12.75%、24.89%(圖8-J~K)。
3 討 論
硅作為植物生長的有益元素,能夠有效促進(jìn)植物生長、改善品質(zhì)、提高產(chǎn)量[26-27]。噴施硅肥可顯著促進(jìn)水稻營養(yǎng)生長,提高水稻分蘗期莖葉干質(zhì)量[28]。硅肥還可以顯著增加玉米硅含量,提高玉米生物量[29]。精氨酸在氨基酸中具有最高的氮碳比,在氮循環(huán)中起著重要作用,可為植物補(bǔ)充N營養(yǎng)。N/Si組合施加可增加植株株高、葉片硅濃度、氣體交換量、地上部生物量[30]。在本試驗(yàn)中,Nitrosigine施用于平邑甜茶幼苗可顯著提高幼苗株高、地上部生物量;并顯著增加葉面積、葉厚、葉鮮質(zhì)量,促進(jìn)葉片生長,進(jìn)而促進(jìn)蘋果苗營養(yǎng)生長。因此,相較于施用K2SiO3和Arginine,Nitrosigine可同時(shí)為植物補(bǔ)充N和Si,對(duì)植物生長促進(jìn)的效果更明顯。
光合作用是植物生長發(fā)育過程中重要的物質(zhì)和能量轉(zhuǎn)換途徑,負(fù)責(zé)植物的生物量生產(chǎn)和整體生長發(fā)育。硅可促進(jìn)植物生長、提高葉綠素和類胡蘿卜素含量、增強(qiáng)光合特性(凈光合速率、氣孔導(dǎo)度、蒸騰速率、水分利用效率)[31-32]。筆者在本試驗(yàn)中對(duì)平邑甜茶幼苗葉綠素含量及光合特性進(jìn)行了測(cè)定,K2SiO3、Arginine及Nitrosigine處理均可使葉片葉綠素含量增加并提高凈光合速率,其中Nitrosigine處理相較于K2SiO3和Arginine,葉片葉綠素含量、光合效率提升更明顯,顯著提高了植株光合效率。前人研究結(jié)果表明,Nitrosigine能夠顯著提高Arginine和Si的生物可利用度和吸收率,促進(jìn)一氧化氮(NO)的產(chǎn)生與循環(huán)[21],NO可以提高植物抗逆性、葉綠素含量與光合效率[33]。外源精氨酸施用可以通過在植物體內(nèi)轉(zhuǎn)化為氮,從而抑制CHL降解,提高光合能力和植物生長的效率[34],外源硅施加則可以增強(qiáng)光系統(tǒng)活性,促進(jìn)光合作用和生物固氮[35]。在本試驗(yàn)中,Nitrosigine可能促進(jìn)植物NO產(chǎn)生,且所含Arginine可為植物提供氮,所含Si可促進(jìn)生物固氮、增強(qiáng)光系統(tǒng)活性,以上協(xié)同作用共同提高植物光合速率,促進(jìn)植物生長,但Nitrosigine促進(jìn)植物生長的具體作用機(jī)制有待進(jìn)一步試驗(yàn)驗(yàn)證。
增施硅肥和精氨酸不僅可以促進(jìn)植物生長,還可顯著改善水果果實(shí)品質(zhì)[36]。果園施用硅肥可以提高鱷梨果實(shí)產(chǎn)量和品質(zhì)[37];提高桃與富士蘋果的花青素、可溶性固形物含量,降低可滴定酸含量[12,38];還可以通過提高甜瓜糖代謝關(guān)鍵酶NI、SPS、SS活性,從而提高果實(shí)糖含量及維生素C含量[39]。施用精氨酸可增加甜櫻桃硬度和可溶性固形物含量,提高果實(shí)品質(zhì)[40-41]。本試驗(yàn)中的Nitrosigine均可顯著提高富士及嘎拉果實(shí)花青苷含量及紅色色差,促進(jìn)果實(shí)著色,提升果實(shí)可溶性固形物及可溶性糖含量,從而提高果實(shí)品質(zhì)。果膠是細(xì)胞壁初生壁和中膠層的主要成分,可增加果肉細(xì)胞壁穩(wěn)定性及強(qiáng)度[42],果實(shí)果膠含量與果實(shí)硬度呈正相關(guān),果膠含量和硬度可影響果實(shí)貯藏品質(zhì)[43],在本試驗(yàn)中,施用Nitrosigine提高了蘋果果皮及果肉硅含量、果肉可溶性果膠及原果膠含量,提高了果肉硬度,對(duì)耐貯運(yùn)性有一定的提升。
4 結(jié) 論
精氨酸硅酸鹽肌醇絡(luò)合物處理平邑甜茶幼苗可以顯著提高葉片硅含量、葉綠素含量及葉片凈光合速率等;提高株高、莖粗、葉面積、地上部生物量等生長指標(biāo),促進(jìn)幼苗生長,以6 mmol·L-1施用濃度效果最好。精氨酸硅酸鹽肌醇絡(luò)合物葉面噴施處理蘋果樹可顯著提高嘎拉和富士果皮花青苷含量,使果實(shí)更紅;提高了果實(shí)可溶性固形物含量、硅含量、果肉可溶性果膠及原果膠含量、果肉硬度等內(nèi)在品質(zhì)指標(biāo),顯著提高蘋果果實(shí)品質(zhì)。
參考文獻(xiàn) References:
[1] 楊安,程存剛,李壯,李燕青,車升國. 雞糞部分替代化肥改善嘎拉蘋果外觀品質(zhì)和風(fēng)味[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2023,29(10):1956-1965.
YANG An,CHENG Cungang,LI Zhuang,LI Yanqing,CHE Shengguo. Partial replacement of chemical nitrogen fertilizer with chicken manure improves fruit appearance quality and taste of Gala apples[J]. Journal of Plant Nutrition and Fertilizers,2023,29(10):1956-1965.
[2] 陳毅凡,吳天昊,韓熙睿,俞紅,于喜濤,王承國. 山東煙臺(tái)蘋果施肥現(xiàn)狀調(diào)查[J]. 中國果樹,2021(7):91-95.
CHEN Yifan,WU Tianhao,HAN Xirui,YU Hong,YU Xitao,WANG Chengguo. Investigation of fertilization status of apples in Yantai,Shandong province[J]. China Fruits,2021(7):91-95.
[3] 姜遠(yuǎn)茂,葛順峰,毛志泉,陳學(xué)森. 我國蘋果產(chǎn)業(yè)節(jié)本增效關(guān)鍵技術(shù)Ⅳ:蘋果高效平衡施肥技術(shù)[J]. 中國果樹,2017(4):1-4.
JIANG Yuanmao,GE Shunfeng,MAO Zhiquan,CHEN Xuesen. Balanced fertilization technology of apple[J]. China Fruits,2017(4):1-4.
[4] 李磊,張強(qiáng),閆敏,馮悅晨,聶督,孫捷. 山西省蘋果施肥現(xiàn)狀調(diào)查[J]. 北方園藝,2018(24):177-185.
LI Lei,ZHANG Qiang,YAN Min,F(xiàn)ENG Yuechen,NIE Du,SUN Jie. Evaluation of the situation of fertilization in apple fields in Shanxi province[J]. Northern Horticulture,2018(24):177-185.
[5] LIANG Y C,HUA H X,ZHU Y G,ZHANG J,CHENG C M,R?MHELD V. Importance of plant species and external silicon concentration to active silicon uptake and transport[J]. New Phytologist,2006,172(1):63-72.
[6] 王永剛,康懷啟,王會(huì)海,程兆東. 硅肥的研究及其在農(nóng)業(yè)生產(chǎn)上的應(yīng)用[J]. 中國果菜,2018,38(8):48-50.
WANG Yonggang,KANG Huaiqi,WANG Huihai,CHENG Zhaodong. Research and application of silicon fertilizer in agriculture production[J]. China Fruit amp; Vegetable,2018,38(8):48-50.
[7] DU J F,LIU B Y,ZHAO T F,XU X N,LIN H,JI Y T,LI Y,LI Z W,LU C C,LI P G,ZHAO H P,LI Y,YIN Z Y,DING X H. Silica nanoparticles protect rice against biotic and abiotic stresses[J]. Journal of Nanobiotechnology,2022,20(1):197.
[8] ?WIERCZY?SKI S,ZYDLIK Z,KLEIBER T. The influence of foliar nutrition of apple trees with silicon on growth and yield as well as mineral content in leaves and fruits[J]. Agronomy,2022,12(7):1680.
[9] MANDLIK R,THAKRAL V,RATURI G,SHINDE S,NIKOLI? M,TRIPATHI D K,SONAH H,DESHMUKH R. Significance of silicon uptake,transport,and deposition in plants[J]. Journal of Experimental Botany,2020,71(21):6703-6718.
[10] GREGER M,LANDBERG T,VACULíK M. Silicon influences soil availability and accumulation of mineral nutrients in various plant species[J]. Plants,2018,7(2):41.
[11] WANG M,WANG X D,WANG J J. Effect of silicon application on silicon contents in “Fuji” apple in Loess Plateau[J]. Communications in Soil Science and Plant Analysis,2016,47(20):2325-2333.
[12] 唐巖,宋來慶,孫燕霞,劉美英,姜中武. 葉面噴施硅酸鉀對(duì)富士蘋果品質(zhì)的影響[J]. 落葉果樹,2014,46(4):11-13.
TANG Yan,SONG Laiqing,SUN Yanxia,LIU Meiying,JIANG Zhongwu. Effect of foliar potassium silicate sprays on the quality of Fuji apples[J]. Deciduous Fruits,2014,46(4):11-13.
[13] KARAGIANNIS E,MICHAILIDIS M,SKODRA C,MOLASSIOTIS A,TANOU G. Silicon influenced ripening metabolism and improved fruit quality traits in apples[J]. Plant Physiology and Biochemistry,2021,166:270-277.
[14] MUSACCHI S,SERRA S. Apple fruit quality:Overview on pre-harvest factors[J]. Scientia Horticulturae,2018,234:409-430.
[15] MORRIS J S M. Arginine metabolism:Boundaries of our knowledge[J]. The Journal of Nutrition,2007,137(6):1602S-1609S.
[16] LI B B,DING Y,TANG X L,WANG G Y,WU S J,LI X X,HUANG X F,QU T T,CHEN J F,TANG X M. Effect of L-arginine on maintaining storage quality of the white button mushroom (Agaricus bisporus)[J]. Food and Bioprocess Technology,2019,12(4):563-574.
[17] WANG T Q,LIU Q Q,WANG N Q,DAI J,LU Q F,JIA X,LIN L,YU F T,ZUO Y M. Foliar arginine application improves tomato plant growth,yield,and fruit quality via nitrogen accumulation[J]. Plant Growth Regulation,2021,95(3):421-428.
[18] MOHSENI G,OSTADHADI S,IMRAN-KHAN M,NOROUZI-JAVIDAN A,ZOLFAGHARI S,HADDADI N S,DEHPOUR A R. Agmatine enhances the antidepressant-like effect of lithium in mouse forced swimming test through NMDA pathway[J]. Biomedecine amp; Pharmacotherapie,2017,88:931-938.
[19] 麥卡蒂·M,茲林斯基·J. 精氨酸硅酸鹽肌醇絡(luò)合物及其應(yīng)用:CN1182873C[P]. 美國:2005-01-05.
MCCARTY M,ZIELINSKI J. Arginine-silicate- inositol complex and its application[P]. America:CN1182873C. 2005-01-05.
[20] SAHIN K,PEREZ OJALVO S,AKDEMIR F,ORHAN C,TUZCU M,SAHIN N,OZERCAN I H,SYLLA S,KOCA S S,YILMAZ I,KOMOROWSKI J R. Effect of inositol-stabilized arginine silicate on arthritis in a rat model[J]. Food and Chemical Toxicology,2019,125:242-251.
[21] GILLS J L,CAMPITELLI A,JONES M,PAULSON S,MYERS J R,MADERO E N,GLENN J M,KOMOROWSKI J,GRAY M. Acute inositol-stabilized arginine silicate improves cognitive outcomes in healthy adults[J]. Nutrients,2021,13(12):4272.
[22] SAHIN K,ORHAN C,TUZCU M,HAYIRLI A,KOMOROWSKI J R,SAHIN N. Effects of dietary supplementation of arginine-silicate-inositol complex on absorption and metabolism of calcium of laying hens[J]. PLoS One,2018,13(1):e0189329.
[23] 王冠珠. 鈣包覆碳量子點(diǎn)提高蘋果果實(shí)鈣吸收及果實(shí)品質(zhì)的研究[D]. 泰安:山東農(nóng)業(yè)大學(xué),2023.
WANG Guanzhu. Study on calcium-encapsulated carbon dots to enhance calcium uptake and fruit quality in apple[D]. Tai’an:Shandong Agricultural University,2023.
[24] 安建平. 激素和環(huán)境信號(hào)調(diào)控蘋果花青苷生物合成的機(jī)理研究[D]. 泰安:山東農(nóng)業(yè)大學(xué),2020.
AN Jianping. Study on the mechanism of hormonal and environmental signals regulating anthocyanin biosynthesis in apple[D]. Tai’an:Shandong Agricultural University,2020.
[25] 楊文政. 果樹生理研究技術(shù)[M]. 鄭州:河南科學(xué)技術(shù)出版社,1984.
YANG Wenzheng. Research techniques of fruit physiology[M]. Zhengzhou:Henan Science and Technology Press,1984.
[26] 范春麗,趙奇. 硅處理對(duì)水分脅迫下的蘋果幼樹生理特性的影響[J]. 北方園藝,2016(5):30-33.
FAN Chunli,ZHAO Qi. Effect of silicon on physiological characteristics of apple young trees under drought stress[J]. Northern Horticulture,2016(5):30-33.
[27] 王承業(yè),鄭姍姍,李新苗,姜立娜,翟于菲,周俊國. 外源硅處理對(duì)不同南瓜砧木苗期生長的影響[J]. 中國瓜菜,2024,37(6):104-110.
WANG Chengye,ZHENG Shanshan,LI Xinmiao,JIANG Li’na,ZHAI Yufei,ZHOU Junguo. Effect of exogenous silicon treatment on seedling growth of different pumpkin rootstocks[J]. China Cucurbits and Vegetables,2024,37(6):104-110.
[28] FALLAH A,NOORI S,NIKNEJADE Y. Investigation of effects of environment and silicon spray on vegetative growth of rice cultivars in autumn season[J]. Applied Research of Plant Ecophysiology,2016.
[29] VASUDEVAN V,THIYAGARAJAN C. Screening maize hybrids for silicon efficiency to improve the growth and yield on silicon deficient soils[J]. Silicon,2022,14(15):9711-9720.
[30] XU D H,GAO X G,GAO T P,MOU J,LI J H,BU H Y,ZHANG R Y,LI Q X. Interactive effects of nitrogen and silicon addition on growth of five common plant species and structure of plant community in alpine meadow[J]. CATENA,2018,169:80-89.
[31] 徐當(dāng)會(huì),李秋霞,張仁懿. 硅氮添加對(duì)高寒草甸優(yōu)勢(shì)物種披針葉黃華生長及凈光合速率的影響[J]. 草業(yè)科學(xué),2020,37(9):1681-1687.
XU Danghui,LI Qiuxia,ZHANG Renyi. Effects of silicon and nitrogen fertilization on the growth and net photosynthetic rate of Thermopsis lanceolata in an alpine meadow[J]. Pratacultural Science,2020,37(9):1681-1687.
[32] RASTOGI A,YADAV S,HUSSAIN S,KATARIA S,HAJIHASHEMI S,KUMARI P,YANG X H,BRESTIC M. Does silicon really matter for the photosynthetic machinery in plants…?[J]. Plant Physiology and Biochemistry,2021,169:40-48.
[33] 于肇端,王麗娜,曹辰興,胡向陽. 外源一氧化氮對(duì)鎘脅迫下黃瓜幼苗生長、活性氧代謝和光合特性的影響[J]. 云南植物研究,2009,31(6):486-492.
YU Zhaoduan,WANG Li’na,CAO Chenxing,HU Xiangyang. The effects of exogenous nitric oxide on growth,active oxygen metabolism and photosynthetic characteristics in cucumber (Cucumis sativus) seedlings under cadmium stress[J]. Acta Botanica Yunnanica,2009,31(6):486-492.
[34] CHEN Q,WANG Y P,ZHANG Z J,LIU X M,LI C,MA F W. Arginine increases tolerance to nitrogen deficiency in Malus hupehensis via alterations in photosynthetic capacity and amino acids metabolism[J]. Frontiers in Plant Science,2022,12:772086.
[35] WANG B,XIAO L,XU A C,MAO W C,WU Z,HICKS L C,JIANG Y L,XU J J. Silicon fertilization enhances the resistance of tobacco plants to combined Cd and Pb contamination:Physiological and microbial mechanisms[J]. Ecotoxicology and Environmental Safety,2023,255:114816.
[36] DANN E K,LE D P. Effects of silicon amendment on soilborne and fruit diseases of avocado[J]. Plants,2017,6(4):51.
[37] ABIDI W,AKRIMI R,HAJLAOUI H,REJEB H,GOGORCENA Y. Foliar fertilization of potassium silicon improved postharvest fruit quality of peach and nectarine [Prunus persica (L.) Batsch] cultivars[J]. Agriculture,2023,13(1):195.
[38] 劉月,劉海河,張彥萍,李艷超,王亞倫. 外源硅對(duì)厚皮甜瓜果實(shí)品質(zhì)及相關(guān)酶活性的影響[J]. 中國瓜菜,2021,34(12):28-32.
LIU Yue,LIU Haihe,ZHANG Yanping,LI Yanchao,WANG Yalun. Effects of exogenous silicon on fruit quality and related enzyme activities of muskmelon[J]. China Cucurbits and Vegetables,2021,34(12):28-32.
[39] MATYSIAK K,KIERZEK R,SIATKOWSKI I,KOWALSKA J,KRAWCZYK R,MIZINIAK W. Effect of exogenous application of amino acids L-arginine and glycine on maize under temperature stress[J]. Agronomy,2020,10(6):769.
[40] PAKKISH Z,MOHAMMADREZAKHANI S. The effect of preharvest application of arginine on the postharvest quality of sweet cherry fruits during storage[J]. International Journal of Fruit Science,2022,22(1):837-851.
[41] NAROUEI Z,SEDAGHATHOOR S,KAVIANI B,ANSARI M H. Effects of irrigation intervals and foliar application of amino acids and humic acid on the physiological traits of strawberries under colored shading nets[J]. Journal of Berry Research,2022,12(2):187-208.
[42] 趙文哲,陳修德,鄧文鵬,吳琦杰,杜桂英,和華杰,王偉,周濤,肖偉,李玲. 外源硅處理對(duì)草莓果實(shí)果膠物質(zhì)降解的影響[J]. 植物生理學(xué)報(bào),2021,57(10):1926-1936.
ZHAO Wenzhe,CHEN Xiude,DENG Wenpeng,WU Qijie,DU Guiying,HE Huajie,WANG Wei,ZHOU Tao,XIAO Wei,LI Ling. Effect of exogenous silicon treatment on pectin degradation of strawberry[J]. Plant Physiology Journal,2021,57(10):1926-1936.
[43] 葉素銀,徐陽春,董彩霞. 鈣和硅葉面肥對(duì)‘黃冠’梨果實(shí)發(fā)育期間生理生化變化的影響[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,38(5):824-829.
YE Suyin,XU Yangchun,DONG Caixia. Effect of foliar calcium and silicon fertilizers on the physiological and biochemical changes in‘Huangguan’pear fruit during the fruit development[J]. Journal of Nanjing Agricultural University,2015,38(5):824-829.