摘" " 要:【目的】分析澳洲堅(jiān)果雜交F1代果實(shí)相關(guān)性狀的變異程度及遺傳傾向,為澳洲堅(jiān)果果實(shí)性狀的遺傳規(guī)律研究和雜交親本的選配提供參考依據(jù)?!痉椒ā恳园闹迗?jiān)果品種O.C、863和344為親本的3個(gè)雜交組合F1代(n=275)為試材,觀測(cè)果實(shí)橫徑、果皮厚度,殼果橫徑等12個(gè)數(shù)量性狀,進(jìn)行雜種優(yōu)勢(shì)分析、概率分級(jí)和相關(guān)性分析。【結(jié)果】12個(gè)性狀的變異系數(shù)范圍為1.60%~27.10%。果實(shí)橫徑、果皮厚度、殼果橫徑、殼果縱徑和油酸含量等5個(gè)性狀表現(xiàn)為負(fù)向超親遺傳;出仁率、脂肪、蛋白質(zhì)和亞油酸含量等4個(gè)性狀表現(xiàn)為趨中偏低遺傳;棕櫚油酸含量為趨中偏高遺傳;總糖和亞麻酸含量表現(xiàn)為正向超親遺傳。正態(tài)檢驗(yàn)和概率分級(jí)結(jié)果顯示,除亞麻酸含量表現(xiàn)為雙態(tài)或偏態(tài)分布外,其余11個(gè)性狀均呈現(xiàn)正態(tài)分布;全部性狀的概率分級(jí)頻率的范圍為8.87%~42.14%。12個(gè)性狀間相關(guān)性存在顯著和極顯著相關(guān)的有34組,正相關(guān)和負(fù)相關(guān)的數(shù)量大致相同,果仁成分性狀多為中度或弱相關(guān)?!窘Y(jié)論】12個(gè)性狀在澳洲堅(jiān)果雜交F1代的變異程度相差較大,且表現(xiàn)出不同的遺傳傾向,多數(shù)性狀符合多基因控制的數(shù)量性狀特征。
關(guān)鍵詞:澳洲堅(jiān)果;雜交后代;果實(shí)性狀;遺傳傾向;相關(guān)性
中圖分類號(hào):S664.9 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)03-0498-10
Analysis of genetic tendencies in fruit traits of macadamia hybrid F1 generation
LI Zhiqiang, WU Chao, MA Jing, LI Tingyu, LI Yang, TAO Liang, GONG Lidan*
(Yunnan Institute of Tropical Crops/Macadamia Agricultural Engineering Research Center of Yunnan Province, Xishuangbanna 666100, Yunnan, China)
Abstract: 【Objective】 China has the largest area of macadamia cultivation. Extensive research on the genetic tendencies of key traits in the crop has been widely conducted. This study analyzed the variation and genetic tendencies of traits related to the fruits of hybrid F1 generation of macadamia, in order to offer valuable insights of the inheritance patterns of these traits and to select hybrid parent materials for hybridization. 【Methods】 Three hybrid combinations of macadamia varieties, O.C, 863 and 344 were utilized to create a total of 275 F1 individuals, including 89 offspring from the combination O.C (♀) × 344 (♂), 78 from O.C (♀) × 863 (♂), and 108 from 863 (♀) × O.C (♂). Cross pollination was carried out in 2011 and seedlings from the crosses were planted in 2012 at the seed selection nursery of the Yunnan Institute of Tropical Crops, and the trees have now all entered their peak production phase. Sixty mature fruit were selected from each lineage exhibiting normal growth, and 12 quantitative traits were measured, including fruit transverse diameter, husk thickness, nut transverse diameter, nut longitudinal diameter, kernel recovery, total sugar content, protein content, oil content, oleic acid content, linoleic acid content, alpha-linolenic acid content, and palmitoleic acid content. Phenotypic traits were measured using calipers, while nut quality traits were assessed using near-infrared grain analyzer (FOSS DS2500, USA). Raw data were recorded and processed using Office 2007. Statistical analysis and Pearson correlation analysis were conducted using SPSS 20 software. The statistical indicators included the coefficient of variation (CV), mid-parent heterosis (MPV), high-parent heterosis (BPH), low-parent heterosis (LPH), and the relative heritability of the male parent (af) and female parent (am). Frequency distribution and correlation plots of the fruit-related traits were treated using Origin 2021 and R, respectively. 【Results】 The results indicated that the coefficient of variation for the 12 traits ranged from 1.60% to 27.10%. Among the average coefficients of variation across the three hybrid combinations, the highest variation was observed in linoleic acid content (23.37%), followed by total sugar (21.28%), alpha-linolenic acid (16.35%), kernel recovery (15.50%), husk thickness (13.32%), nut longitudinal diameter (8.03%), nut transverse diameter (7.05%), protein content (6.66%), palmitoleic acid (6.59%), fruit transverse diameter (6.31%), oleic acid (4.05%), and oil content (1.93%). The mid-parent heterosis for the 12 quantitative traits in the hybrid offspring ranged from -30.89% to 31.06%, while the high-parent heterosis varied from -33.75% to 27.94%, and the low-parent heterosis spanned from -29.49% to 34.33%. Analysis of genetic parameter revealed that five traits, including fruit diameter, shell thickness, shell diameter, shell length, and oleic acid content, exhibited negative high-parent heterosis, suggesting that these traits demonstrate negative super-parental inheritance in the hybrids. Conversely, four traits including kernel yield, oil content, protein content, and linoleic acid content, displayed negative mid-parent heterosis and positive low-parent heterosis, indicating that these traits manifest a tendency towards lower genetic characteristics in the hybrid offspring. Palmitoleic acid content exhibited negative high-parent heterosis but positive mid-parent heterosis, suggesting a trend towards higher genetic characteristics. Additionally, total sugar content and alpha-linolenic acid content both showed positive high-parent heterosis, indicating their positive super-parental inheritance characteristics. The relative heritability of the 12 quantitative traits across the three hybrid combinations indicated that five traits, including kernel yield, oil content, protein content, linoleic acid content, and palmitoleic acid content, exhibited positive heritability values, indicating these 5 traits exhibited partial dominance in the hybrid offspring. The remaining seven traits had a relative heritability greater than 1 in the parents, suggesting the presence of super-dominant inheritance. Additionally, when the parent 863 was used both as the maternal and paternal line, it demonstrated higher relative heritability. Among the nine traits, including shell thickness, shell length, kernel yield, oil content, protein content, total sugar content, oleic acid content, linoleic acid content, and palmitoleic acid content, all showed a normal distribution across the three hybrid combinations (p>0.05). Traits such as fruit diameter and shell diameter in the combination O.C × 344 displayed extreme values and exhibited a skewed distribution, whereas the other two hybrid combinations showed normal distribution patterns. Alpha-linolenic acid content displayed a bimodal or skewed distribution across all three hybrid combinations. Among the five fruit phenotypic traits, fruit diameter, shell diameter, and shell length exhibited strong positive correlation with each other, while shell thickness demonstrated a negative correlation with kernel yield. Among the seven traits related to kernel components, oil content was positively correlated with linoleic acid content and alpha-linolenic acid content, yet negatively correlated with the other four traits. Protein content exhibited a moderate negative correlation with alpha-linolenic acid content. Oleic acid content was negatively correlated with palmitoleic acid content, while linoleic acid content was positively correlated with alpha-linolenic acid content but negatively correlated with palmitoleic acid content. 【Conclusion】 The variation among the 12 traits in the hybrid F1 population of macadamia varied significantly, and demonstrated different genetic tendencies. Most traits conformed to the characteristics of quantitative traits controlled by multiple genes. Notably, there were 34 pairs of traits exhibiting significant or extremely significant correlations among the 12 traits, with the numbers of positive and negative correlations being approximately equal. Traits related to kernel composition generally displayed moderate or weak correlations.
Key words: Macadamia; F1 hybrid; Fruit trait; Genetic tendency; Correlation analysis
澳洲堅(jiān)果(Macadamia spp.)是澳大利亞本土唯一被馴化并在世界范圍內(nèi)廣泛種植的作物[1]。澳洲堅(jiān)果的馴化最早發(fā)生在美國(guó)夏威夷,距今僅有大約100年的時(shí)間[2]。目前全球澳洲堅(jiān)果的生產(chǎn)以夏威夷品種為主導(dǎo)[3]。商業(yè)栽培的品種主要源自澳洲堅(jiān)果屬中的兩個(gè)種M. integrifolia和M. tetraphylla,以及它們的雜交后代[4-5]。作為一種高營(yíng)養(yǎng)價(jià)值和經(jīng)濟(jì)價(jià)值的堅(jiān)果類作物,澳洲堅(jiān)果果仁含有多種益于身體健康的不飽和脂肪酸[6],2022年,全球澳洲堅(jiān)果市場(chǎng)規(guī)模為15.8億美元,預(yù)計(jì)2023年至2030年將以9.3%的復(fù)合年均增長(zhǎng)率擴(kuò)大(https://www.grandviewresearch.com/)。澳洲堅(jiān)果引入中國(guó)大陸的時(shí)間較短,但發(fā)展的速度極快[7]。基于引進(jìn)的種質(zhì)資源,國(guó)內(nèi)開(kāi)展了澳洲堅(jiān)果選育種工作,選育出了一些高產(chǎn)優(yōu)質(zhì)新品種,如桂熱1號(hào)、南亞1號(hào)和南亞3號(hào)通過(guò)了全國(guó)熱帶作物品種審定委員會(huì)的審定。目前,國(guó)內(nèi)登記及審(認(rèn))的澳洲堅(jiān)果品種多以實(shí)生選種的途徑獲得。澳洲堅(jiān)果選、育種工作促進(jìn)和保障了國(guó)內(nèi)澳洲堅(jiān)果產(chǎn)業(yè)的健康持續(xù)發(fā)展。
雜交育種是果樹(shù)品種選育的主要途徑[8]。了解重要性狀的遺傳規(guī)律是雜交育種的基礎(chǔ)[9]。盧明艷等[10]以7個(gè)梨雜交組合的196株F1為材料,分析了梨果實(shí)性狀的遺傳傾向,發(fā)現(xiàn)多個(gè)果實(shí)性狀存在趨中遺傳傾向。徐銘等[11]對(duì)3個(gè)杏雜交組合共195株F1代主要經(jīng)濟(jì)性狀的遺傳趨勢(shì)進(jìn)行分析,結(jié)果表明金太陽(yáng)作為雜交育種親本時(shí),其經(jīng)濟(jì)性狀表現(xiàn)出較強(qiáng)的遺傳力。郭鑫淼等[12]調(diào)查分析了油茶雜交子代的8個(gè)花器官性狀,發(fā)現(xiàn)油菜雜交子代的遺傳變異程度較高,具有明顯的雜種優(yōu)勢(shì)。劉針杉等[13]探究了中國(guó)櫻桃雜交F1代果實(shí)主要性狀的遺傳規(guī)律,認(rèn)為中國(guó)櫻桃果實(shí)主要性狀均為多基因控制的數(shù)量性狀。目前,國(guó)內(nèi)外關(guān)于澳洲堅(jiān)果雜交后代性狀遺傳分析的研究鮮見(jiàn)報(bào)道。筆者在本研究中以3個(gè)澳洲堅(jiān)果雜交組合的275株雜交后代及其親本為試驗(yàn)材料,通過(guò)遺傳變異和雜種優(yōu)勢(shì)等分析,探討其果實(shí)橫徑和果皮厚度等12個(gè)果實(shí)相關(guān)性狀的遺傳規(guī)律,為澳洲堅(jiān)果果實(shí)性狀的遺傳規(guī)律研究及雜交育種親本的選配提供參考依據(jù)。
1 材料和方法
1.1 試驗(yàn)材料
以澳洲堅(jiān)果品種O.C、344和863為親本(圖1),通過(guò)雜交獲得的275株雜交F1代為試驗(yàn)材料。其中組合O.C(♀)× 344(♂)的雜交后代89株,組合O.C(♀)× 863(♂)的雜交后代78株,組合863(♀)× O.C(♂)的雜交后代108株。3個(gè)雜交組合均于2010年雜交授粉,當(dāng)年收獲播種,2012年定植于云南省熱帶作物科學(xué)研究所澳洲堅(jiān)果選種圃(100°46′ E,22°01′ N),株距2~3 m,行距4 m,土肥水管理參照澳洲堅(jiān)果栽培技術(shù)規(guī)程(NY/T 2809—2015)。目前全部株系已進(jìn)入盛產(chǎn)期。
1.2 試驗(yàn)方法
參考《澳洲堅(jiān)果種質(zhì)資源鑒定技術(shù)規(guī)范》(NY/T 1687—2009),根據(jù)果皮內(nèi)部的顏色判定果實(shí)的成熟度,于2023年9月,隨機(jī)選取父母本及雜交后代株系60個(gè)生長(zhǎng)正常的成熟果實(shí)。共測(cè)定12個(gè)數(shù)量性狀,其中5個(gè)果實(shí)表型性狀分別為果實(shí)橫徑、果皮厚度、殼果橫徑、殼果縱徑和出仁率,7個(gè)果仁成分性狀分別為總糖、蛋白質(zhì)、脂肪、油酸、亞油酸、亞麻酸和棕櫚油酸含量。
采樣后,果實(shí)橫徑、殼果橫徑、殼果縱徑3個(gè)性狀使用游標(biāo)卡尺測(cè)量,果皮厚度使用測(cè)厚儀測(cè)量。果實(shí)去青皮后,將殼果放置于烘箱中依次在38 ℃、45 ℃和60 ℃下分別干燥48 h。殼果稱質(zhì)量后破殼,稱取果仁質(zhì)量。計(jì)算出仁率,即果仁質(zhì)量與殼果質(zhì)量的比值(%)。前期委托云南省分析測(cè)試中心檢測(cè)50份澳洲堅(jiān)果果仁各成分含量,以建立FOSS DS2500型近紅外光譜分析儀(FOSS,USA)的澳洲堅(jiān)果果仁成分測(cè)定模型。將上述破殼后的果仁經(jīng)人工破碎,利用近紅外光譜分析儀掃描收集光譜(波長(zhǎng)400~2500 nm),通過(guò)已建立的模型,獲得果仁中總糖、蛋白質(zhì)、脂肪、油酸、亞油酸、亞麻酸和棕櫚油酸成分的含量數(shù)據(jù)。
利用Office2007進(jìn)行原始數(shù)據(jù)的記錄整理;采用SPSS20軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析及Pearson相關(guān)性分析;采用Origin 2021繪制果實(shí)相關(guān)性狀的頻率分布圖,采用R(4.4.1)繪制相關(guān)性熱圖。研究中的各分析指標(biāo)計(jì)算如下:變異系數(shù)CV/%=S/F×100;中親優(yōu)勢(shì)MPV/%=(F-MP)/MP×100;超高親優(yōu)勢(shì)BPH/%=(F-BP)/BP×100;超低親優(yōu)勢(shì)LPH/%=(F-LP)/LP×100;父本相對(duì)遺傳力af=(F-Pm)/(Pf-Pm);母本相對(duì)遺傳力am=(F-Pf)/(Pm-Pf)。其中,s為標(biāo)準(zhǔn)差;F為子代平均值;MP為親本平均值;BP為雙親中的高親值;LP為雙親中的低親值;Pf為父本值;Pm為母本值。對(duì)12個(gè)澳洲堅(jiān)果果實(shí)數(shù)量性狀參照劉孟軍[14]的方法進(jìn)行概率分級(jí),按(X-1.281 8S)、(X-0.524 6S)、(X+ 0.524 6S)、(X+1.281 8S)4個(gè)點(diǎn)共分為5個(gè)等級(jí)。
2 結(jié)果與分析
2.1 澳洲堅(jiān)果雜交后代果實(shí)性狀的變異信息
3個(gè)澳洲堅(jiān)果雜交組合后代果實(shí)性狀的變異信息見(jiàn)表1。12個(gè)數(shù)量性狀的變異系數(shù)區(qū)間為1.60%~27.10%,亞油酸含量變異系數(shù)最大,說(shuō)明該性狀雜交后代中出現(xiàn)極值的概率較大。另一個(gè)果仁成分性狀脂肪含量變異系數(shù)最小,表明相較于澳洲堅(jiān)果果實(shí)表型性狀,果仁成分性狀間的差異更為明顯。在3個(gè)雜交組合各性狀變異系數(shù)的平均值中,亞油酸含量的變異系數(shù)最大(23.37%),隨后是總糖含量(21.28%)、亞麻酸含量(16.35%)、出仁率(15.50%)、果皮厚度(13.32%)、殼果縱徑(8.03%)、殼果橫徑(7.05%)、蛋白質(zhì)含量(6.66%)、棕櫚油酸含量(6.59%)、果實(shí)橫徑(6.31%)、油酸含量(4.05%)和脂肪含量(1.93%)。
2.2 澳洲堅(jiān)果雜交后代果實(shí)性狀的遺傳分析
由表2可知,雜交后代12個(gè)數(shù)量性狀的中親優(yōu)勢(shì)在-30.89%~31.06%之間,超高親優(yōu)勢(shì)在-33.75%~27.94%之間,超低親優(yōu)勢(shì)在-30.00%~34.33%之間。取每個(gè)遺傳參數(shù)在3個(gè)雜交組合的平均值,其中,果實(shí)橫徑、果皮厚度、殼果橫徑、殼果縱徑和油酸含量等5個(gè)性狀的超親優(yōu)勢(shì)為負(fù)值,說(shuō)明上述5個(gè)性狀在雜交后代中表現(xiàn)為負(fù)向超親遺傳;出仁率、脂肪、蛋白質(zhì)和亞油酸含量等4個(gè)性狀的中親優(yōu)勢(shì)為負(fù)值,超低親優(yōu)勢(shì)為正值,表明該4個(gè)性狀在雜交后代中呈現(xiàn)為趨中偏低的遺傳特性;棕櫚油酸含量的超高親優(yōu)勢(shì)為負(fù)值,而中親優(yōu)勢(shì)為正值,說(shuō)明該性狀在雜交后代趨中偏高的遺傳特性;總糖和亞麻酸含量等2個(gè)性狀的超高親優(yōu)勢(shì)為正值,表明其在雜交后代的正向超親遺傳特性。
相對(duì)遺傳力可以對(duì)雜種后代的遺傳動(dòng)態(tài)作一定的估算和預(yù)測(cè)[15]。12個(gè)數(shù)量性狀在3個(gè)雜交組合中的相對(duì)遺傳力表明,出仁率、脂肪、蛋白質(zhì)、亞油酸和棕櫚油酸含量等5個(gè)性狀的相對(duì)遺傳力均為正值,表明此5個(gè)性狀在雜交后代中表現(xiàn)為部分顯性。其余7個(gè)性狀親本的相對(duì)遺傳力大于1,則表明有超顯性遺傳。O.C和863正反交的雜交后代的多個(gè)性狀相對(duì)遺傳力表明,親本863分別作為母本和父本時(shí)均表現(xiàn)出更高的相對(duì)遺傳力。
2.3 澳洲堅(jiān)果雜交后代果實(shí)性狀的頻次分布
根據(jù)圖2,果皮厚度、殼果縱徑、出仁率及脂肪、蛋白質(zhì)、總糖、油酸、亞油酸和棕櫚油酸含量等9個(gè)性狀在3個(gè)雜交組合中均表現(xiàn)正態(tài)分布(p>0.05)。果實(shí)橫徑和殼果橫徑2個(gè)性狀在組合O.C× 344中存在極值,呈現(xiàn)為偏態(tài)分布,但在其余2個(gè)雜交組合中均表現(xiàn)為正態(tài)分布。以上表明上述的11個(gè)澳洲堅(jiān)果果實(shí)性狀符合多基因控制的數(shù)量性狀特征。而亞麻酸含量在3個(gè)雜交組合中,均表現(xiàn)為雙態(tài)或偏態(tài)分布,說(shuō)明其可能存在主效基因的遺傳效應(yīng)。
2.4 澳洲堅(jiān)果雜交后代果實(shí)性狀的概率分級(jí)
對(duì)12個(gè)數(shù)量性狀進(jìn)行概率分級(jí)后統(tǒng)計(jì)各級(jí)分布頻率。根據(jù)表3所示,各性狀分級(jí)頻率在4.82%~46.24%之間。其中Ⅰ級(jí)頻率范圍為7.04%~12.17%,Ⅱ級(jí)頻率范圍為15.81%~26.90%,Ⅲ級(jí)頻率范圍為36.84%~46.24%,Ⅳ級(jí)頻率范圍為15.31%~22.53%,Ⅴ級(jí)頻率范圍為4.82%~12.22%。各等級(jí)頻率的平均值中,Ⅲ級(jí)比例最大(42.14%),其次為Ⅱ級(jí)(20.12%)、Ⅳ級(jí)(19.52%)、Ⅰ級(jí)(9.48%)和Ⅴ級(jí)(8.74%)。
2.5 澳洲堅(jiān)果雜交后代果實(shí)性狀的相關(guān)性分析
澳洲堅(jiān)果雜交后代的12個(gè)果實(shí)相關(guān)性狀的相關(guān)性分析如圖3。其中,12個(gè)性狀間呈極顯著相關(guān)(p<0.01)的有26組,顯著相關(guān)(p<0.05)的有8組。性狀間表現(xiàn)為正相關(guān)的共31組,表現(xiàn)為負(fù)相關(guān)的共35組。5個(gè)果實(shí)表型相關(guān)性狀中,果實(shí)橫徑、果殼橫徑和果殼縱徑等3個(gè)性狀兩兩之間均表現(xiàn)為高度正相關(guān);果皮厚度與出仁率表現(xiàn)為負(fù)相關(guān)。7個(gè)果仁成分相關(guān)性狀中,脂肪含量與出仁率、亞麻酸含量表現(xiàn)為正相關(guān),與油酸、蛋白質(zhì)、總糖含量為負(fù)相關(guān);蛋白質(zhì)含量與亞麻酸含量為中度負(fù)相關(guān);油酸含量與棕櫚油酸含量表現(xiàn)為負(fù)相關(guān);亞油酸含量與亞麻酸含量表現(xiàn)為正相關(guān),與棕櫚油酸含量呈負(fù)相關(guān)。各果仁成分相關(guān)性狀多為中度和弱相關(guān)。
3 討 論
出仁率是澳洲堅(jiān)果育種工作中一個(gè)重要目標(biāo)性狀。本次研究結(jié)果顯示,在3個(gè)澳洲堅(jiān)果雜交組合后代中,出仁率性狀變異系數(shù)的平均值為15.50%,變異程度在5個(gè)果實(shí)表型性狀中最為豐富。此外,出仁率表現(xiàn)為趨中偏低的遺傳特性,表明雜交后代受低出仁率親本的影響較大。因此,在開(kāi)展以出仁率為主要育種目標(biāo)的雜交育種時(shí),應(yīng)選擇高出仁率的雙親組合。果實(shí)橫徑在5個(gè)果實(shí)表型性狀中的變異系數(shù)最小,選擇的潛力較小,且表現(xiàn)為超低親遺傳,即雜交后代趨小果型,這與前人在梨[10,16]、櫻桃[13,17]、杏[11]等作物上的研究結(jié)果一致。所以,在選育大果型的澳洲堅(jiān)果品種時(shí)應(yīng)適當(dāng)加大后代群體的數(shù)量。澳洲堅(jiān)果生產(chǎn)實(shí)踐中青睞果皮較薄,即高出果率的品種,而果皮厚度性狀表現(xiàn)出的超低親遺傳傾向,表明實(shí)現(xiàn)薄果皮育種目標(biāo)的難度較小。
筆者在本研究中對(duì)雜交后代的7種果仁成分含量進(jìn)行了測(cè)定。7種果仁成分的遺傳特性包含了超低遺傳、趨中偏低遺傳、趨中偏高遺傳和超高遺傳,4種不飽和脂肪酸含量的變異系數(shù)差別較大,范圍為4.05%~23.37%。以上結(jié)果可為澳洲堅(jiān)果品質(zhì)性狀的遺傳改良提供參考。12個(gè)果實(shí)性狀的正態(tài)分布檢驗(yàn)結(jié)果表明,除亞麻酸含量外,其余性狀在雜交后代中均表現(xiàn)為正態(tài)分布。亞麻酸含量在雜交后代表現(xiàn)為多峰或偏態(tài)分布,表明可能存在控制亞麻酸含量的主效基因,這與王利民等[18]在胡麻中的研究結(jié)果一致。
以經(jīng)驗(yàn)等距為基礎(chǔ)的數(shù)量性狀分級(jí)方法,不能提供客觀的分級(jí)標(biāo)準(zhǔn)[19]。而利用概率分級(jí)在多種作物上都取得了理想的結(jié)果[20]。筆者在本研究中基于概率分級(jí)方法,將澳洲堅(jiān)果雜交后代的12個(gè)數(shù)量性狀劃分為5個(gè)等級(jí),發(fā)現(xiàn)研究性狀均大致符合該分級(jí)標(biāo)準(zhǔn),研究結(jié)果可為澳洲堅(jiān)果數(shù)量性狀的分級(jí)標(biāo)準(zhǔn)提供依據(jù)。
目前,關(guān)于澳洲堅(jiān)果果實(shí)性狀間相關(guān)性的研究較多。研究對(duì)象均為澳洲堅(jiān)果自然群體,研究結(jié)果之間略有差異。筆者在本研究中以遺傳群體為材料,性狀的相關(guān)性分析表明果實(shí)橫徑、殼果橫徑和殼果縱徑等3個(gè)性狀兩兩之間存在極顯著正相關(guān),這與以澳洲堅(jiān)果自然群體為材料的研究結(jié)果相同[21-23]。研究中的出仁率分別與果實(shí)橫徑、殼果橫徑和殼果縱徑等3個(gè)性狀存在正相關(guān),與譚秋錦等[23]的研究結(jié)果相符,卻與譚秋錦等[21]和萬(wàn)繼鋒等[22]的結(jié)果相反,這可能與出仁率性狀受環(huán)境影響較大有關(guān)。蛋白質(zhì)含量與果實(shí)橫徑、殼果橫徑和殼果縱徑為負(fù)相關(guān),這與萬(wàn)繼鋒等[22]的研究結(jié)果一致。張艷波等[24]分析了陸地棉遺傳群體棉籽中的脂肪酸含量,表明油酸與亞油酸含量存在極顯著負(fù)相關(guān),然而本次研究結(jié)果中油酸與亞油酸卻存在極顯著正相關(guān)。
4 結(jié) 論
在澳洲堅(jiān)果雜交F1代的12個(gè)果實(shí)性狀中,相對(duì)于果實(shí)表型性狀,果仁品質(zhì)性狀的變異更為豐富,表現(xiàn)出更大的選擇潛力。代表果型大小的果實(shí)橫徑和殼果橫、縱徑性狀均表明澳洲堅(jiān)果果實(shí)呈現(xiàn)趨于小果型的遺傳傾向。12個(gè)性狀在雜交后代群體的分布檢驗(yàn)表明,可能存在控制亞麻酸含量的主效基因,其余性狀符合多基因控制的數(shù)量性狀特征。
參考文獻(xiàn) References:
[1] ARADHYA M K,YEE L K,ZEE F T,MANSHARDT R M. Genetic variability in Macadamia[J]. Genetic Resources and Crop Evolution,1998,45(1):19-32.
[2] HARDNER C. Macadamia domestication in Hawai‘I[J]. Genetic Resources and Crop Evolution,2016,63(8):1411-1430.
[3] LIN J S,ZHANG W P,ZHANG X T,MA X K,ZHANG S C,CHEN S,WANG Y B,JIA H F,LIAO Z Y,LIN J,ZHU M T,XU X M,CAI M X,ZENG H,WAN J F,YANG W H,MATSUMOTO T,HARDNER C,NOCK C J,MING R. Signatures of selection in recently domesticated macadamia[J]. Nature Communications,2022,13(1):242.
[4] VITHANAGE V,WINKS C W. Isozymes as genetic markers for Macadamia[J]. Scientia Horticulturae,1992,49(1/2):103-115.
[5] STEIGER D L,PAUL P H,ZEE F,LIU Z Y,MING R. Genetic relationships of macadamia cultivars[J]. Euphytica,2003,132:269-277.
[6] HU W,F(xiàn)ITZGERALD M,TOPP B,ALAM M,O’HARE T J. A review of biological functions,health benefits,and possible de novo biosynthetic pathway of palmitoleic acid in macadamia nuts[J]. Journal of Functional Foods,2019,62:103520.
[7] 李志強(qiáng),吳超,賀熙勇,陶亮,耿建建,馬靜,宮麗丹. 基于SSR標(biāo)記的澳洲堅(jiān)果種質(zhì)資源DNA指紋圖譜的構(gòu)建[J]. 果樹(shù)學(xué)報(bào),2022,39(11):2028-2035.
LI Zhiqiang,WU Chao,HE Xiyong,TAO Liang,GENG Jianjian,MA Jing,GONG Lidan. Construction of DNA fingerprint of Macadamia germplasm based on SRR markers[J]. Journal of Fruit Science,2022,39(11):2028-2035.
[8] 鄧秀新,王力榮,李紹華,張紹鈴,張志宏,叢佩華,易干軍,陳學(xué)森,陳厚彬,鐘彩虹. 果樹(shù)育種40年回顧與展望[J]. 果樹(shù)學(xué)報(bào),2019,36(4):514-520.
DENG Xiuxin,WANG Lirong,LI Shaohua,ZHANG Shaoling,ZHANG Zhihong,CONG Peihua,YI Ganjun,CHEN Xuesen,CHEN Houbin,ZHONG Caihong. Retrospection and prospect of fruit breeding for last four decades in China[J]. Journal of Fruit Science,2019,36(4):514-520.
[9] 陳學(xué)森,張晶,劉大亮,冀曉昊,張宗營(yíng),張芮,毛志泉,張艷敏,王立霞,李敏. 新疆紅肉蘋果雜種一代的遺傳變異及功能型蘋果優(yōu)株評(píng)價(jià)[J]. 中國(guó)農(nóng)業(yè)科學(xué),2014,47(11):2193-2204.
CHEN Xuesen,ZHANG Jing,LIU Daliang,JI Xiaohao,ZHANG Zongying,ZHANG Rui,MAO Zhiquan,ZHANG Yanmin,WANG Lixia,LI Min. Genetic variation of F1 population between Malus sieversii f. neidzwetzkyana and apple varieties and evaluation on fruit characters of functional apple excellent strains[J]. Scientia Agricultura Sinica,2014,47(11):2193-2204.
[10] 盧明艷,王強(qiáng),閆興凱,武春昊,趙瀅,張茂君. 梨雜交F1果實(shí)性狀遺傳傾向分析[J]. 植物遺傳資源學(xué)報(bào),2024,25(2):294-302.
LU Mingyan,WANG Qiang,YAN Xingkai,WU Chunhao,ZHAO Ying,ZHANG Maojun. Analysis of fruit trait genetics in F1 plants of Pyrus species[J]. Journal of Plant Genetic Resources,2024,25(2):294-302.
[11] 徐銘,劉威生,王愛(ài)德,章秋平,劉寧,張玉萍,張玉君,馬小雪,劉碩. 杏主要經(jīng)濟(jì)性狀遺傳分析[J]. 果樹(shù)學(xué)報(bào),2020,37(1):1-10.
XU Ming,LIU Weisheng,WANG Aide,ZHANG Qiuping,LIU Ning,ZHANG Yuping,ZHANG Yujun,MA Xiaoxue,LIU Shuo. Inheritance analysis of the main economic characters of apricot[J]. Journal of Fruit Science,2020,37(1):1-10.
[12] 郭鑫淼,袁迎春,胡觀興,姜毅,李楠昕,龔文芳. 油茶雜交子代花器官性狀的遺傳分析[J]. 植物遺傳資源學(xué)報(bào),2023,24(6):1649-1658.
GUO Xinmiao,YUAN Yingchun,HU Guanxing,JIANG Yi,LI Nanxin,GONG Wenfang. Genetic analysis of floral organ traits in hybrid progenioes of Camellia oleifera[J]. Journal of Plant Genetic Resources,2023,24(6):1649-1658.
[13] 劉針杉,涂紅霞,周荊婷,馬艷,柴久鳳,王旨意,楊鵬飛,楊小芹,ABBAS K,王浩,王燕,王小蓉. 中國(guó)櫻桃正反交F1代果實(shí)主要性狀的遺傳分析[J]. 中國(guó)農(nóng)業(yè)科學(xué),2023,56(2):345-356.
LIU Zhenshan,TU Hongxia,ZHOU Jingting,MA Yan,CHAI Jiufeng,WANG Zhiyi,YANG Pengfei,YANG Xiaoqin,ABBAS K,WANG Hao,WANG Yan,WANG Xiaorong. Genetic analysis of fruits characters in reciprocal cross progenies of Chinese cherry[J]. Scientia Agricultura Sinica,2023,56(2):345-356.
[14] 劉孟軍. 棗樹(shù)數(shù)量性狀的概率分級(jí)研究[J]. 園藝學(xué)報(bào),1996,23(2):105-109.
LIU Mengjun. Studies on the variations and probability gradings of major quantitative characters of Chinese jujube[J]. Acta Horticulturae Sinica,1996,23(2):105-109.
[15] 裴新澍. 相對(duì)遺傳力理論及其在作物育種上的意義[J]. 作物學(xué)報(bào),1964,8(2):195-216.
PEI Xinshu. A preliminary account on a theory of relative heritability[J]. Acta Agronomica Sinica,1964,8(2):195-216.
[16] 崔艷波,陳慧,樂(lè)文全,張樹(shù)軍,伍濤,陶書(shū)田,張紹鈴. ‘京白梨’與‘鴨梨’正反交后代果實(shí)性狀遺傳傾向研究[J]. 園藝學(xué)報(bào),2011,38(2):215-224.
CUI Yanbo,CHEN Hui,LE Wenquan,ZHANG Shujun,WU Tao,TAO Shutian,ZHANG Shaoling. Studies on genetic tendency of fruit characters in reciprocal crosses generation between ‘Jingbaili’ and ‘Yali’ pear cultivars[J]. Acta Horticulturae Sinica,2011,38(2):215-224.
[17] 王燕,劉針杉,張靜,楊鵬飛,馬藍(lán),王旨意,涂紅霞,楊紹鳳,王浩,陳濤,王小蓉. 中國(guó)櫻桃雜交F1代花和果實(shí)若干性狀遺傳傾向分析[J]. 園藝學(xué)報(bào),2022,49(9):1853-1865.
WANG Yan,LIU Zhenshan,ZHANG Jing,YANG Pengfei,MA Lan,WANG Zhiyi,TU Hongxia,YANG Shaofeng,WANG Hao,CHEN Tao,WANG Xiaorong. Inheritance trend of flower and fruit traits in F1 progenies of Chinese cherry[J]. Acta Horticulturae Sinica,2022,49(9):1853-1865.
[18] 王利民,黨照,趙瑋,李聞娟,謝亞萍,齊燕妮,張建平. 胡麻亞麻酸含量的遺傳分析[J]. 西北農(nóng)業(yè)學(xué)報(bào),2020,29(6):942-948.
WANG Limin,DANG Zhao,ZHAO Wei,LI Wenjuan,XIE Yaping,QI Yanni,ZHANG Jianping. Genetic analysis of linolenic acid content by using mixed major gene plus polygene inheritance model in linseed[J]. Acta Agriculturae Boreali-occidentalis Sinica,2020,29(6):942-948.
[19] 趙海娟,劉威生,劉寧,張玉萍,章秋平,劉碩. 普通杏(Armeniaca vulgaris)種質(zhì)資源果實(shí)主要數(shù)量性狀變異及概率分級(jí)[J]. 果樹(shù)學(xué)報(bào),2013,30(1):37-42.
ZHAO Haijuan,LIU Weisheng,LIU Ning,ZHANG Yuping,ZHANG Qiuping,LIU Shuo. Variation and probability grading of main quantitative traits of apricot (Armeniaca vulgaris) germplasm[J]. Journal of Fruit Science,2013,30(1):37-42.
[20] 杜慶鑫,慶軍,王璐,劉攀峰,何鳳,朱利利,杜紅巖. 杜仲種質(zhì)資源果實(shí)主要數(shù)量性狀變異及概率分級(jí)[J]. 植物研究,2019,39(3):387-394.
DU Qingxin,QING Jun,WANG Lu,LIU Panfeng,HE Feng,ZHU Lili,DU Hongyan. Variation and probability grading of main quantitative traits of fruits for Eucommia ulmoides germplasm[J]. Bulletin of Botanical Research,2019,39(3):387-394.
[21] 譚秋錦,王文林,韋媛榮,鄭樹(shù)芳,黃錫云,何銑揚(yáng),陳海生. 澳洲堅(jiān)果種質(zhì)果實(shí)產(chǎn)量相關(guān)性狀的多樣性分析[J]. 果樹(shù)學(xué)報(bào),2019,36(12):1630-1637.
TAN Qiujin,WANG Wenlin,WEI Yuanrong,ZHENG Shufang,HUANG Xiyun,HE Xianyang,CHEN Haisheng. Diversity analysis of fruit traits related to yield in Macadamia germplasms[J]. Journal of Fruit Science,2019,36(12):1630-1637.
[22] 萬(wàn)繼鋒,鄒明宏,陳菁,宋喜梅,楊倩,羅煉芳,曾輝. 澳洲堅(jiān)果種質(zhì)資源數(shù)量分類研究[J]. 果樹(shù)學(xué)報(bào),2022,39(10):1798-1812.
WAN Jifeng,ZOU Minghong,CHEN Jing,SONG Ximei,YANG Qian,LUO Lianfang,ZENG Hui. Study on numerical taxonomy of Macadamia spp. germplasm resources[J]. Journal of Fruit Science,2022,39(10):1798-1812.
[23] 譚秋錦,韋媛榮,潘貞珍,環(huán)秀菊,潘浩男,許鵬,韋哲君,鄭樹(shù)芳,王文林. 澳洲堅(jiān)果種質(zhì)果實(shí)數(shù)量性狀分析與綜合評(píng)價(jià)[J]. 植物遺傳資源學(xué)報(bào),2023,24(6):1615-1625.
TAN Qiujin,WEI Yuanrong,PAN Zhenzhen,HUAN Xiuju,PAN Haonan,XU Peng,WEI Zhejun,ZHENG Shufang,WANG Wenlin. Analysis and comprehensive evaluation of the fruit quantitative traits for Macadamia germplasms[J]. Journal of Plant Genetic Resources,2023,24(6):1615-1625.
[24] 張艷波,王袁,馮甘雨,段慧蓉,劉海英. 棉籽油分和3種主要脂肪酸含量QTL分析[J]. 作物學(xué)報(bào),2022,48(2):380-395.
ZHANG Yanbo,WANG Yuan,F(xiàn)ENG Ganyu,DUAN Huirong,LIU Haiying. QTLs analysis of oil and three main fatty acid contents in cottonseeds[J]. Acta Agronomica Sinica,2022,48(2):380-395.