摘" 要:在分層注聚過(guò)程中,滿足分層配壓的同時(shí)降低聚合物溶液的黏度損失,是困擾配注器節(jié)流閥芯結(jié)構(gòu)優(yōu)化設(shè)計(jì)的難題。以流線形閥芯為研究對(duì)象,通過(guò)數(shù)值模擬驗(yàn)證了流線形閥芯的調(diào)壓與黏損機(jī)理。以節(jié)流壓差與平均剪切速率為性能指標(biāo),采用Plackett-Burman試驗(yàn)分析結(jié)構(gòu)因素的顯著性,利用響應(yīng)面法構(gòu)建其與響應(yīng)值的回歸模型。結(jié)合多目標(biāo)粒子群優(yōu)化算法和熵權(quán)法,確定了流線形閥芯的最優(yōu)結(jié)構(gòu)參數(shù)。研究結(jié)果表明,外徑、槽間距和后槽間角是影響節(jié)流壓差和平均剪切速率的顯著因素。節(jié)流壓差和平均剪切速率的指標(biāo)權(quán)重分別為0.502 2和0.497 8。優(yōu)化后流線形閥芯的外徑為18 mm、槽間距為12 mm、前槽間角為35°以及后槽間角為45°,對(duì)應(yīng)的節(jié)流壓差和平均剪切速率分別為45.68 kPa和1 731.32 s-1。與優(yōu)化前相比,節(jié)流壓差提高2.33%,平均剪切速率降低1.87%,流線形閥芯的應(yīng)用性能得到提高。研究成果為提升分層注聚技術(shù)中配注裝置的應(yīng)用性能提供了理論支撐,有助于推動(dòng)油田的高效開(kāi)發(fā)。
關(guān)鍵詞:分層注聚;流線形閥芯;結(jié)構(gòu)優(yōu)化;響應(yīng)面法;多目標(biāo)粒子群優(yōu)化算法
中圖分類號(hào):TE934.1" " " " "文獻(xiàn)標(biāo)志碼:A" " " doi:10.3969/j.issn.1001-3482.2025.02.007
Structural Optimization of Streamlined Valve Core in Layered Polymer Injection Based on Multi-Objective Particle Swarm Optimization Algorithm
ZHANG Shifan 1, JIA Deli 2, GONG Bin 1,3
(1.School of Future Technology, China University of Geosciences, Wuhan 430074, China;2.PetroChina Research Institute of Petroleum Exploration amp; Development, Beijing 100083, China;3.Key Laboratory of Theory and Technology of Petroleum Exploration and Development in Hubei Province, China University of Geosciences, Wuhan 430074, China)
Abstract: Meeting the requirements of layered pressure distribution while reducing the viscosity loss of the polymer solution is a bottleneck problem that plagues the optimal design of streamlined valve core structures in layered polymer injection. The pressure control and viscosity loss mechanism of the streamlined valve core was verified by numerical simulation. The throttling pressure difference and average shear rate were used as performance indicators, the Plackett-Burman test was used to analyze the significance of structural factors, and the response surface method was used to construct a regression model between them and the response value. The optimal structural parameters of the valve core were determined by combining the multi-objective particle swarm optimization algorithm and the entropy weight method. The results show that the outer diameter, groove spacing, and back groove angle are significant factors affecting the throttling pressure difference and average shear rate. The index weights of throttling pressure difference and average shear rate are 0.502 2 and 0.497 8, respectively. After optimization, the outer diameter is 18 mm, the groove pitch is 12 mm, the front groove angle is 35°, and the rear groove angle is 45° of the streamlined valve core. The corresponding throttling pressure difference and average shear rate are 45.68 kPa and 1 731.32 s-1, respectively. Compared with before optimization, the throttling pressure difference increases by 2.33% and the average shear rate decreases by 1.87%. The overall application performance of the valve core is improved. The research results provide theoretical support for improving the application performance of injection devices in layered polymer injection and promote the efficient development of oil fields.
Key words: layered polymer injection; streamlined valve core; structural optimization; response surface method; multi-objective particle swarm optimization algorithm
隨著油田的持續(xù)開(kāi)發(fā),國(guó)內(nèi)油田逐漸步入開(kāi)發(fā)中、后期。在二次開(kāi)采過(guò)程中,常用的注水驅(qū)油技術(shù)致使油田含水率高達(dá)90%以上,使得油藏剩余油氣資源無(wú)法繼續(xù)被有效開(kāi)采[1-3]。近年來(lái)以熱力驅(qū)[4-5]、注氣驅(qū)[6-7]、化學(xué)驅(qū)[8-9]為主的三次采油技術(shù)不斷涌現(xiàn)。聚合物驅(qū)油作為化學(xué)驅(qū)油技術(shù)中的一項(xiàng),因其適用于我國(guó)陸相非均質(zhì)油藏、成本相對(duì)較低,且相較于其他化學(xué)劑驅(qū)油對(duì)環(huán)境污染較小等優(yōu)勢(shì),已在大慶、勝利等油田得到推廣應(yīng)用[10-11]。然而,由于聚合物溶液屬于典型的非牛頓流體,其高分子鏈在剪切拉伸作用下易發(fā)生機(jī)械降解,造成黏度損失,影響驅(qū)油效果,降低原油采收率[12-13]。
分層注水技術(shù)經(jīng)過(guò)60多年的發(fā)展,形成了以固定式、鋼絲投撈式、電纜測(cè)調(diào)式、數(shù)字式為代表的第四代分層注水技術(shù)[14-16],在提高水驅(qū)采收率、支撐油田持續(xù)高產(chǎn)穩(wěn)產(chǎn)等方面發(fā)揮了重要作用。分層注聚技術(shù)也隨之得到快速發(fā)展[17]。在分層注聚系統(tǒng)中,配注器阻流段的節(jié)流閥芯不但是調(diào)節(jié)各層段間注入流量的關(guān)鍵部件,同時(shí)也是造成聚合物溶液因機(jī)械降解而黏度損失的重要部位,其結(jié)構(gòu)設(shè)計(jì)直接影響了聚合物溶液的驅(qū)油效果[18]。為了降低節(jié)流閥芯造成的聚合物溶液黏度損失,已提出了不同類型節(jié)流閥芯的結(jié)構(gòu)設(shè)計(jì),包括梭形桿閥芯、錐狀形梭形桿閥芯以及流線形閥芯等[19-20]。相比之下,流線形閥芯在分層配壓與降低聚合物溶液的黏度損失方面更具優(yōu)勢(shì)[21-22]。然而,在符合現(xiàn)場(chǎng)實(shí)際應(yīng)用情況條件下,滿足分層配壓的同時(shí)盡可能降低聚合物溶液的黏度損失,實(shí)現(xiàn)流線形閥芯的性能平衡,仍是困擾該類閥芯結(jié)構(gòu)優(yōu)化設(shè)計(jì)的難題[23]。
本文通過(guò)數(shù)值模擬方法對(duì)流線形閥芯流場(chǎng)的壓力與速度分布進(jìn)行分析,驗(yàn)證閥芯的調(diào)壓與黏損機(jī)理。以節(jié)流壓差和平均剪切速率作為性能指標(biāo),利用Plackett-Burman試驗(yàn)方法對(duì)流線形閥芯的結(jié)構(gòu)因素進(jìn)行顯著性分析,并采用響應(yīng)面方法建立顯著因素與響應(yīng)值的回歸模型。以“高節(jié)流壓差,低平均剪切速率”為優(yōu)化目標(biāo),在回歸模型的基礎(chǔ)上,通過(guò)多目標(biāo)粒子群優(yōu)化算法與熵權(quán)法對(duì)流線形閥芯結(jié)構(gòu)進(jìn)行優(yōu)化,獲取最優(yōu)結(jié)構(gòu)參數(shù),提升流線形閥芯的現(xiàn)場(chǎng)應(yīng)用性能。
1 仿真模型建立
1.1 仿真計(jì)算
建立流線形閥芯(3個(gè)降壓槽)與閥芯流道的物理模型,如圖1所示。圖1中:D為閥芯外徑,mm;L為槽間距,mm;α為前槽間角,(°);β為后槽間角,(°)。假設(shè)流場(chǎng)處在等溫環(huán)境中,由于RNG k-ε模型對(duì)閥芯流場(chǎng)中的流動(dòng)分離、渦流和二次流動(dòng)具有較高的計(jì)算精度,因此選擇其作為湍動(dòng)能方程,并與連續(xù)性方程式(1)和動(dòng)量方程式(2)耦合后求解[24-26]。
模型網(wǎng)格劃分中,由于流線形閥芯流體域模型為軸對(duì)稱結(jié)構(gòu),故只取模型軸對(duì)稱面作為二維網(wǎng)格劃分對(duì)象,以減少計(jì)算量。以網(wǎng)格質(zhì)量參數(shù)Skewness作為評(píng)價(jià)指標(biāo),Skewness最大值為0.52,網(wǎng)格質(zhì)量得到保證。邊界條件設(shè)置中,入口面設(shè)置為Velocity-inlet,出口面設(shè)置為Pressure-outlet,其余面設(shè)置為Wall,并采用非平衡壁面函數(shù)。求解方法選擇,壓力-速度耦合,方法選用Simplec,采用 Least squares cell計(jì)算梯度,湍流動(dòng)能和湍流耗散率采用Second order upwind。以上設(shè)置旨在提高計(jì)算的精度和穩(wěn)定性。
1.2 仿真分析
流線形閥芯流場(chǎng)壓力沿閥芯長(zhǎng)度變化的曲線如圖2所示。閥芯流場(chǎng)壓力呈現(xiàn)“上下浮動(dòng)型”下降,節(jié)流壓差為44.64 kPa。結(jié)合圖2中閥芯流場(chǎng)壓力與速度分布云圖可知,聚合物溶液從閥芯最大環(huán)隙流至最小環(huán)隙的過(guò)程中,環(huán)隙寬度逐漸減小,流體速度增大到最大值6.77 m/s,導(dǎo)致壓力下降。隨后流體從閥芯最小環(huán)隙流至最大環(huán)隙的過(guò)程中,環(huán)隙寬度逐漸增大,流體速度減小,導(dǎo)致壓力有小幅度上升。整個(gè)過(guò)程速度與壓力變化符合伯努利原理。
由圖2中閥芯流場(chǎng)速度分布云圖可知,流體在閥芯環(huán)隙內(nèi)會(huì)產(chǎn)生渦旋區(qū)域,與從最小環(huán)隙處流入流體發(fā)生內(nèi)摩擦,導(dǎo)致流體受到剪切作用。同時(shí),發(fā)現(xiàn)圖2中流體的剪切速率在25~1.53×105 s-1范圍內(nèi),隨著流體從閥芯最大環(huán)隙向最小環(huán)隙流動(dòng)的過(guò)程中,由于流體速度增大,流體與環(huán)隙壁面附近產(chǎn)生的剪切作用也會(huì)增強(qiáng),且主要集中于最小環(huán)隙處。這些剪切作用是造成聚合物溶液黏度損失的主要原因。上述研究驗(yàn)證了孫大興[27]關(guān)于節(jié)流閥芯調(diào)壓與黏損機(jī)理的研究結(jié)果。
流線形閥芯環(huán)隙寬度的變化會(huì)改變流體速度,從而導(dǎo)致流體的節(jié)流壓差與受到的剪切作用發(fā)生相同趨勢(shì)的變化。然而實(shí)際現(xiàn)場(chǎng)應(yīng)用中需要在滿足高節(jié)流壓差的同時(shí)盡可能減小受到的剪切作用,兩個(gè)指標(biāo)變化趨勢(shì)的一致性與設(shè)計(jì)要求相矛盾,故需平衡兩指標(biāo)的性能,尋找最優(yōu)化的流線形閥芯結(jié)構(gòu)。
2 Plackett-Burman試驗(yàn)
設(shè)計(jì)次數(shù)為12的Plackett-Burman試驗(yàn),探究流線形閥芯結(jié)構(gòu)的外徑、槽間距、前槽間角和后槽間角4個(gè)因素對(duì)節(jié)流壓差和聚合物溶液黏度損失的影響。由于平均剪切速率反映了聚合物溶液流經(jīng)降壓槽時(shí)受到的剪切作用程度,可采用平均剪切速率表征聚合物溶液的黏度損失[25],如表1所示。
Plackett-Burman試驗(yàn)結(jié)果如表2所示,采用Lenth法識(shí)別顯著效應(yīng)[28-29],得到因素標(biāo)準(zhǔn)化效應(yīng)的Pareto圖,如圖3所示。由圖3a可看出,外徑和后槽間角對(duì)節(jié)流壓差的影響效果顯著(t值>2.364 62);由圖3b可看出,外徑和槽間距對(duì)平均剪切速率的影響效果顯著(t值>2.364 62)??紤]到響應(yīng)面試驗(yàn)中考察因素超過(guò)3個(gè)會(huì)使試驗(yàn)次數(shù)顯著增加(3個(gè)因素為17次處理,4個(gè)因素為27次處理),因此本試驗(yàn)兼顧顯著因素對(duì)節(jié)流壓差和平均剪切速率的影響,以外徑、槽間距及后槽間角作為響應(yīng)面試驗(yàn)的考慮因素。
3 響應(yīng)面試驗(yàn)
Box-Behnken是一種常用的響應(yīng)面設(shè)計(jì)方法[30],利用其設(shè)計(jì)3因素3水平試驗(yàn),共設(shè)計(jì)17組試驗(yàn)。以外徑、槽間距和后槽間角為影響因素,節(jié)流壓差與平均剪切速率為響應(yīng)值,試驗(yàn)變量及水平如表3所示。
回歸模型的方差分析結(jié)果如表5所示。節(jié)流壓差與平均剪切速率模型均極顯著(Plt; 0.000 1),模型相關(guān)系數(shù)分別為0.999 9和1.000 0,模型校正系數(shù)分別為0.999 8和1.000 0,表明模型擬合度好,可利用此模型對(duì)節(jié)流壓差與平均剪切速率進(jìn)行分析預(yù)測(cè)。根據(jù)A、B、D三個(gè)影響因素的F值判斷各因素對(duì)節(jié)流壓差與平均剪切速率的影響顯著程度,F(xiàn)值越大,影響作用越強(qiáng)[31]。影響因素對(duì)節(jié)流壓差的影響程度依次為外徑gt;后槽間角gt;槽間距,對(duì)平均剪切速率的影響程度依次為外徑gt;槽間距gt;后槽間角。
3.2 參數(shù)交互作用
各影響因素間交互作用對(duì)節(jié)流壓差與平均剪切速率的影響如圖4所示。響應(yīng)面的斜率越大,影響因素的影響程度越大,表明節(jié)流壓差與平均剪切速率的效果越顯著[32]。由圖4a~4d可知,外徑與其他兩個(gè)影響因素交互作用的響應(yīng)面斜率較大,說(shuō)明外徑對(duì)節(jié)流壓差與平均剪切速率的影響較為顯著。由圖4e~4f可知,槽間距和后槽間角兩影響因素之間二元交互作用的響應(yīng)面斜率較為平緩,說(shuō)明兩影響因素之間二元交互耦合對(duì)節(jié)流壓差與平均剪切速率的影響較小。
3.3 回歸模型驗(yàn)證
設(shè)計(jì)5組不同結(jié)構(gòu)參數(shù)的流線型閥芯,并分別對(duì)其進(jìn)行數(shù)值模擬與回歸模型預(yù)測(cè),模擬與預(yù)測(cè)的節(jié)流壓差與平均剪切速率結(jié)果,如表6所示。結(jié)果表明,節(jié)流壓差與平均剪切速率的模擬值與預(yù)測(cè)值之間的相對(duì)誤差均小于1%,驗(yàn)證了回歸模型的準(zhǔn)確性和可靠性,可用于流線型閥芯結(jié)構(gòu)的優(yōu)化。
4 模型多目標(biāo)優(yōu)化
4.1 多目標(biāo)粒子群優(yōu)化方法
以節(jié)流壓差最大與平均剪切速率最小為優(yōu)化目標(biāo),采用多目標(biāo)粒子群優(yōu)化算法對(duì)流線型閥芯結(jié)構(gòu)進(jìn)行優(yōu)化。該算法的基本思想是通過(guò)模擬鳥群的行為,在解空間中搜索潛在解。每個(gè)解被表示為一個(gè)粒子,粒子根據(jù)其當(dāng)前位置和速度進(jìn)行更新,并通過(guò)與其他粒子進(jìn)行比較來(lái)調(diào)整其移動(dòng)方向,以尋找更好的解[33]。與傳統(tǒng)的粒子群優(yōu)化算法[34]不同,多目標(biāo)粒子群優(yōu)化算法在每一代中維護(hù)一個(gè)帕累托前沿的種群,并通過(guò)多樣性保持機(jī)制來(lái)確保種群的多樣性。
多目標(biāo)粒子群算法得到的Pareto前沿,是由100個(gè)非支配Pareto最優(yōu)解組成的點(diǎn)集,如圖5所示。Pareto前沿對(duì)應(yīng)的流線型閥芯結(jié)構(gòu)參數(shù),如表7所示。隨著節(jié)流壓差增大,平均剪切速率也隨之增大。當(dāng)外徑、槽間距、前槽間角、后槽間角分別為17 mm、11.99 mm、35°、43.01°時(shí),節(jié)流壓差為26.59 kPa,平均剪切速率達(dá)到最小值1 483.40 s-1。雖然平均剪切速率達(dá)到最小值,但節(jié)流壓差卻相對(duì)較小。為了平衡兩項(xiàng)指標(biāo)之間的矛盾,采用熵權(quán)法計(jì)算出節(jié)流壓差和平均剪切速率的指標(biāo)權(quán)重分別為0.502 2和0.497 8,線性加權(quán)求和得到最高綜合性能得分為0.502 2,此時(shí)外徑、槽間距、前槽間角、后槽間角分別為18 mm、12 mm、35°、45°,對(duì)應(yīng)的節(jié)流壓差和平均剪切速率分別為45.56 kPa和1 731.11 s-1。通過(guò)數(shù)值模擬得到最優(yōu)流線型閥芯結(jié)構(gòu)下的節(jié)流壓差和平均剪切速率分別為45.68 kPa和1 731.32 s-1,與算法優(yōu)化得到的結(jié)果相比,節(jié)流壓差和平均剪切速率的相對(duì)誤差分別
為0.26%和0.01%,進(jìn)一步證實(shí)了算法優(yōu)化結(jié)果的準(zhǔn)確性。
優(yōu)化前后流線型閥芯流場(chǎng)壓力與速度分布云圖如圖6所示。優(yōu)化后流線型閥芯的槽間距增大,聚合物溶液流經(jīng)環(huán)隙的路徑更長(zhǎng),能量損失更多,節(jié)流壓差由44.64 kPa增至45.68 kPa,閥芯的降壓能力提高2.33%。同時(shí),還可觀察到閥芯環(huán)隙處渦旋區(qū)域面積明顯減小,流入流體與渦旋區(qū)域之間的摩擦剪切作用減弱。閥芯流道內(nèi)流體速度與剪切速率也整體減小,流體受到集中于壁面附近的剪切作用減弱。綜合流體平均剪切速率由1 764.29 s-1降至1 731.32 s-1,降低1.87%,表明優(yōu)化后聚合物溶液的黏度損失有所減小。上述結(jié)果驗(yàn)證了優(yōu)化后流線型閥芯的應(yīng)用性能得到提高。
5 結(jié)論
以節(jié)流壓差與平均剪切速率為性能指標(biāo),結(jié)合響應(yīng)面法和多目標(biāo)粒子群算法對(duì)流線形閥芯結(jié)構(gòu)進(jìn)行了優(yōu)化,提高了閥芯的降壓和降黏損性能。研究結(jié)論如下:
1) 外徑、槽間距和后槽間角是顯著影響節(jié)流壓差與平均剪切速率的因素,對(duì)節(jié)流壓差的影響程度依次為外徑gt;后槽間角gt;槽間距,對(duì)平均剪切速率的影響程度依次為外徑gt;槽間距gt;后槽間角。
2) 節(jié)流壓差與平均剪切速率回歸模型的相關(guān)系數(shù)分別為0.999 9和1.000 0,校正后相關(guān)系數(shù)分別為0.999 8和1.000 0,模型擬合效果較好。設(shè)計(jì)5組不同結(jié)構(gòu)參數(shù)的流線形閥芯,模擬值與預(yù)測(cè)值之間的相對(duì)誤差均小于1%,驗(yàn)證了回歸模型的準(zhǔn)確性和可靠性。
3) 節(jié)流壓差和平均剪切速率的指標(biāo)權(quán)重分別為0.502 2和0.497 8,最高綜合得分為0.502 2時(shí)流線形閥芯結(jié)構(gòu)最優(yōu)。最優(yōu)結(jié)構(gòu)參數(shù)中外徑、槽間距、前槽間角、后槽間角分別為18 mm、12 mm、35°、45°,對(duì)應(yīng)節(jié)流壓差為45.68 kPa,平均剪切速率為1 731.32 s-1。與優(yōu)化前相比,節(jié)流壓差提高2.33%,平均剪切速率降低1.87%,流線形閥芯的應(yīng)用性能得到提高。
參考文獻(xiàn):
[1] YUAN Shiyi,WANG Qiang. New progress and prospect of oilfields development technologies in China[J].Petroleum Exploration and Development,2018,45(4):698-711.
[2] ZHENG Xinquan,SHI Junfeng,CAO Gang,et al.Progress and prospects of oil and gas production engineering technology in China[J].Petroleum Exploration and Development,2022,49(3):644-659.
[3] SONG Zuchang,LIU Yang,ZHANG Yongtao,et al.Application of remote wireless intelligent layered water injection technology in Dagang oilfield[C]//Journal of Physics:Conference Series.IOP Publishing,2023,2594(1):012074.
[4] MOKHEIMER Esmail M A,HAMDY M, ABUBAKAR Zubairu,et al.A comprehensive review of thermal enhanced oil recovery:techniques evaluation[J].Journal of Energy Resources Technology,2019,141(3):030801.
[5] DONG Xiaohu,LIU Huiqing,CHEN Zhangxin,et al.Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection[J].Applied Energy,2019,
239:1190-1211.
[6] BAYAT" Mehdi,LASHKARBOLOOKI Mostafa,HEZAVE Ali Zeinolabedini,et al.Investigation of gas injection flooding performance as enhanced oil recovery method[J].Journal of Natural Gas Science and Engineering,2016,29:37-45.
[7] 袁士義,王強(qiáng),李軍詩(shī),等.注氣提高采收率技術(shù)進(jìn)展及前景展望[J].石油學(xué)報(bào),2020,41(12):1623-1632.
[8] POGAKU Ravindra,MOHD FUAT Nur Hanisah,SAKAR S,et al.Polymer flooding and its combinations with other chemical injection methods in enhanced oil recovery[J].Polymer Bulletin,2018,75:1753-1774.
[9] POTHULA G K,VIJ R K,BERA A.An overview of chemical enhanced oil recovery and its status in India[J].Petroleum Science,2023,20(4):2305-2323.
[10] GUO Hu, SONG Kaoping, LIU Shaopeng, et al.Recent advances in polymer flooding in China:lessons learned and continuing development [J]. SPE Journal, 2021, 26(4):2038-2052.
[11] ZHU Youyi. Recent Progress in the Field Practice of Chemical Enhanced Oil Recovery Technologies in China[R].World Petroleum Congress,2021:D031S002R002.
[12] SKAUGE A,ZAMANI N,JACOBSEN J G,et al.Polymer flow in porous media:Relevance to enhanced oil recovery[J].Colloids and Interfaces,2018,2(3):27.
[13] AL-SHAKRY B,SKAUGE T,SHIRAN B S,et al.Polymer injectivity:Investigation of mechanical degradation of enhanced oil recovery polymers using in-situ rheology[J].Energies,2018,12(1):49.
[14] JIA Deli,ZHANG Jiqun,LI Yanchun,et al.Recent development of smart field deployment for mature waterflood reservoirs [J].Sustainability,2023,15(1):784.
[15] LIU He,PEI Xiaohan,JIA Deli,et al.Connotation,pplication and prospect of the fourth-generation separated layer water injection technology[J]. Petroleum exploration and development,2017,44(4):668-614.
[16] CHENG Hanlie,YANG Dong,LU Changsong,et al.Intelligent oil production stratified water injection technology[J].Wireless Communications and Mobile Computing,2022:1-7.
[17] WANG Yingying, GE Dangke, SONG Zuchang,et al. Research and Experiment on Supporting Technology of Cable-Controlled Intelligent Iayered Polymer Injection [C]//International Field Exploration and Development Conference.Singapore:Springer Nature Singapore,2023:
4274-4284.
[18] WANG Yingying,CHEN Jianguang,QIAO Zhixue,et al. Structural Optimization Design of Throttle Valve Core for Intelligent Layered Polymer Injection String Controlled By Cable[C]//Journal of Physics:Conference Series IOP Publishing,2023,2594(1):012076.
[19] HUANG Bin,HU Xinyu,F(xiàn)U Cheng,et al.Experimental and numerical simulation study on the flow characteristics and optimization of structural parameters of displacement agent in partial pressure tools [J].Energy Science amp; Engineering,2020,8(4):1309-1329.
[20] HUSVEG R,STOKKA M,HUSVEG T,et al.Field Testing a Low Shear Valve Suitable for Polymer Flooding in a Mother Solution Injection Scheme[C]//European Association of Geoscientists amp; Engineers,2021(1):1-19.
[21] 尤波,鄒天洋,賈德利.分層注聚節(jié)流閥芯結(jié)構(gòu)優(yōu)化設(shè)計(jì)[J].哈爾濱理工大學(xué)學(xué)報(bào),2017,22(5):13-17.
[22] 王晶.大慶油田二類油層聚合物驅(qū)分注工藝對(duì)比評(píng)價(jià)[J].石油礦場(chǎng)機(jī)械,2015,44(5):63-67.
[23] CLARKE A,HOWE A M,MITCHELL J,et al.How viscoelastic-polymer flooding enhances displacement efficiency[J].SPE Journal,2016,21(3):675-687.
[24] YANG Ting, HONG Yi, WANG Aijun, et al.Failure Mechanism and Optimization of Throttle Valve Based on Computational Fluid Dynamics[J].International Journal of Heat amp; Technology,2021,39(3):906-912.
[25] 黃斌,徐德奎,蔡萌,等.基于正交試驗(yàn)法和數(shù)值仿真的環(huán)形降壓槽結(jié)構(gòu)優(yōu)化[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2014,44(22):96-102.
[26] 韓文強(qiáng),劉興斌,劉昭,等.聚合物驅(qū)分層注入井節(jié)流裝置的壓損規(guī)律研究[J].石油機(jī)械,2023,51(12):93-98.
[27] 孫大興.油藏聚驅(qū)配注液的粘損機(jī)制及調(diào)配技術(shù)研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2020.
[28] MCGRATH Richard N, XU Yuhang, TAYLOR Anna.Screening main and interaction effects in a Plackett-Burman" design[G].Communications in Statistics-Simulation and Computation,2023:1-21.
[29] 葛松濤,壽泉洪,韓文鳳,等.響應(yīng)面法優(yōu)化酸溶蛋白發(fā)酵工藝[J].飼料工業(yè),2023,44(13):14-20.
[30] ZHAO Guochao, ZHOU Guoqiang, WANG Hui, et al.Groove parameters optimization of rotary excitation control valve using computational fluid dynamics coupled with response surface method [J].Ain Shams Engineering Journal,2023,14(12):102575.
[31] KHALIL Ibrahim,AZIZ A Rashid A,YUSUP Suzana,et al.Response surface methodology for the optimization of the production of rubber seed/palm oil biodiesel,IDI diesel engine performance,and emissions[J].Biomass Conversion and Biorefinery,2017,7:37-49.
[32] WANG Xuexia, BU Xiangning, NI Chao, et al. Effect of scrubbing medium’s particle size on scrubbing flotation performance and mineralogical characteristics of microcrystalline graphite[J].Minerals Engineering,2021,
163:106766.
[33] MIRJALILI Seyedali, DONG Jinsong. Multi-objective Particle Swarm Optimization[G]. Multi-Objective Optimization using Artificial Intelligence Techniques,2020:21-36.
[34] GAD A G.Particle swarm optimization algorithm and its applications:a systematic review[J]. Archives of computational methods in engineering,2022,29(5):2531-2561.
[35] ZHU Kongchao,ZHAO Yuan,XU Xin,et al. Measuring the natural gas supply security performance of China′s natural gas suppliers:A comprehensive framework using FAHP-Entropy-PROOTHEE method[J]. Journal of Cleaner Production,2022,345:131093.
(編輯:馬永剛)