摘要:與單一成分的納米流體相比,基于碳納米管(CNT)的混合納米流體具有更高的導(dǎo)熱性,換熱效果更佳。分別從CNT混合納米流體的合成方法、穩(wěn)定性評價及其熱導(dǎo)率和黏度等方面進(jìn)行綜述?,F(xiàn)階段研究結(jié)果表明:CNT混合流體熱性能隨著納米顆粒濃度、溫度的升高而增強(qiáng),但同一類型納米流體的熱導(dǎo)率和黏度特性在不同文獻(xiàn)中存在差異,應(yīng)標(biāo)準(zhǔn)化混合納米流體的制備流程。
關(guān)鍵詞:碳納米管;混合納米流體;熱物性;穩(wěn)定性分析
中圖分類號:TK124 文獻(xiàn)標(biāo)志碼: A 文章編號: 1004-0935(2025)02-0299-05
納米流體是一種混合液,由常用冷卻液中加入不同材質(zhì)、尺寸及濃度的納米顆粒構(gòu)成。常用納米顆粒有金屬、金屬氧化物、石墨烯、碳納米管等,基液有水、乙二醇、PAO油、熱油等[1-4]。
研究人員對不同納米顆粒及添加劑對納米流體的熱物性影響進(jìn)行了大量研究。翟鄭佳等[5]用兩步法制備了Fe2O3/水納米流體,研究了磁場對磁性納米流體傳熱的影響,結(jié)果表明,磁場條件下傳熱效率最大提高了35.1%。KIM等[6]使用液體脈沖激光燒蝕法制備了穩(wěn)定的Au/水納米流體,與純水相比,含有體積分?jǐn)?shù)0.018%Au/水納米流體的熱導(dǎo)率增加了9.38%。JAIN等[7]用一步法制備了Cu/乙二醇納米流體,研究結(jié)果表明,相較于純水,室溫下納米流體的導(dǎo)熱系數(shù)提高了9.4%。添加單一類型的納米顆粒已被證實可提高流體的導(dǎo)熱性能,當(dāng)添加2種或2種以上納米顆粒與基液混合所形成的混合納米流體也顯示出了優(yōu)良的熱物理性能,尤其是加入具有較高熱導(dǎo)率的碳納米管對納米流體換熱效果提升明顯。JIN等[8]的研究結(jié)果表明,Ag-CNT在水基和乙二醇基的混合納米流體中質(zhì)量分?jǐn)?shù)為0.05%、65 ℃時,導(dǎo)熱系數(shù)較基礎(chǔ)流體與純水分別提高了52.37%和40.42%。HEMMAT等[9]研究了ZnO和MWCNT的添加對流體導(dǎo)熱的影響,研究結(jié)果表明,ZnO-MWCNT/水納米流體較添加單一種類納米顆粒的納米流體的導(dǎo)熱性能有明顯提高,在體積分?jǐn)?shù)1%和50 ℃下熱導(dǎo)率提高28.1%。
綜上所述,含碳納米管混合納米流體較添加單一類型的納米流體換熱性能有所提高。因此,對含碳納米管混合納米流體進(jìn)行綜述,分別從制備方法、穩(wěn)定性評價、納米流體的熱物性幾方面對混合納米流體的基本性能進(jìn)行詳細(xì)介紹。
1納米流體的制備
目前,基于CNT的混合納米流體均使用二步法制備,具體分為2種形式[10-11],一種是將納米顆粒和CNT分散到基液中形成的混合納米流體。MUNKHBAYAR等[12]采用脈沖功率蒸發(fā)法將銀納米顆粒分散到MWCNT/水中,結(jié)果表明熱導(dǎo)率最高增加了14.5%。ASADIKIA等[13]研究了多壁碳納米管/Fe2O3混合納米流體在乙二醇/水中的熱物性,也證實了納米顆粒的添加對導(dǎo)熱的增強(qiáng)。另一種是由CNT和納米顆粒形成的納米復(fù)合材料。JHA等[14]通過化學(xué)還原法合成了一種在多壁碳納米管表面負(fù)載銅納米顆粒的復(fù)合材料,Cu/MWCNTs納米流體0.03%的體積分?jǐn)?shù)下,相對于蒸餾水和乙二醇,熱導(dǎo)率分別增加了35.3%和10.1%。這種負(fù)載有金屬納米顆粒的碳納米管由于其獨特的納米結(jié)構(gòu)受到廣泛研究,該納米顆粒同時具有主體CNT和客體填料的性質(zhì)。到目前為止,包括Cu、Fe、Co、Ni在內(nèi)的金屬或金屬氧化物納米顆粒填充的CNT已經(jīng)通過多種技術(shù)制成,如電弧放電、等離子體輔助化學(xué)氣相沉積(CVD)、熱CVD和超聲輔助浸漬等[15-21]。
2納米流體穩(wěn)定性評價方法
納米流體的穩(wěn)定性是影響納米流體的熱物性并有效利用的主要因素[22]。穩(wěn)定性是指顆粒在液體中均勻分散,不會因顆粒團(tuán)聚而沉淀[23]。如果粒子之間的排斥力比范德瓦耳斯力更大,那么溶液處于穩(wěn)定狀態(tài),與此相反則表明溶液處于不穩(wěn)定狀態(tài)。目前研究人員所使用的穩(wěn)定性評價方法主要有Zeta電位測量法、目測沉降法、紫外-可見光吸收法[24-25]。
2.1Zeta電位測量
當(dāng)Zeta電位接近0時,粒子往往會聚集。在電位值大于30 mV或小于-30 mV時,不會產(chǎn)生團(tuán)聚。GUPTA等[26]在不使用表面活性劑的情況下制備了Cu-CNT/水混合納米流體,通過測量Zeta電位來判斷其穩(wěn)定性,結(jié)果表明,Zeta電位值在-33 mV到-46.6 mV之間的納米流體穩(wěn)定性可達(dá)145天以上。JIN等[8]制備并比較了f-CNT、Cu-CNT、Ag-CNT 3種納米顆粒在質(zhì)量分?jǐn)?shù)為0.01%時的Zeta電位,結(jié)果表明,所有納米流體的Zeta電位均小于-30 mV,顯示出良好的分散穩(wěn)定性。
2.2目測沉降法
目測沉降法是納米流體穩(wěn)定性測試中廣泛使用的方法,當(dāng)納米顆粒均勻分散且不隨時間產(chǎn)生沉淀時,認(rèn)為納米流體是穩(wěn)定的。AL-ORAN等[27]用目測法記錄納米流體10 d的狀態(tài)變化,如圖1所示。由圖1可以看出,對于體積分?jǐn)?shù)0.2% 的納米流體,在7 d內(nèi)有較好的穩(wěn)定性,10 d內(nèi)穩(wěn)定性良好,沒有任何團(tuán)聚,10 d之后開始沉降;對體積分?jǐn)?shù)0.01%的納米流體,在10 d后仍然具有較好穩(wěn)定性。
2.3紫外-可見吸收光譜法
通過使用紫外-可見光譜,可以測量納米流體的穩(wěn)定性。如果懸浮液中的顆粒均勻分散,并且溶液處于高度穩(wěn)定的狀態(tài),則由于分散狀態(tài)下存在最大數(shù)量的顆粒,從而產(chǎn)生最大的光吸收率。如果懸浮液處于不穩(wěn)定狀態(tài),并且大多數(shù)顆粒都沉落在容器底部,那么由于以分散形式存在的顆粒數(shù)量最少,因此會產(chǎn)生最小的光吸收率。ARORA等[24]利用紫外-可見光譜法研究了MWCNT/水納米流體的穩(wěn)定性,結(jié)果如圖2所示。由圖2可以看出,靜置1 d,不同質(zhì)量分?jǐn)?shù)的納米流體均具有較好的穩(wěn)定性;靜置15 d后,只有質(zhì)量分?jǐn)?shù)0.3%的納米流體可以維持穩(wěn)定狀態(tài),其余質(zhì)量分?jǐn)?shù)的納米流體的吸光度接近0,穩(wěn)定性較差。
3混合納米流體的熱物性研究
對任何類型的納米流體來說,熱物理性質(zhì)都是影響其換熱效率的關(guān)鍵因素,能精準(zhǔn)評估納米流體在工業(yè)應(yīng)用中的性能。
3.1導(dǎo)熱系數(shù)
碳納米管具有優(yōu)異的熱傳導(dǎo)性能,當(dāng)碳納米管被添加到流體中時,納米顆粒的布朗運動和周圍液體對納米顆粒的微對流提高了納米流體的熱導(dǎo)率[28]。通過使用納米流體進(jìn)行傳熱,可以在較小的空間內(nèi)實現(xiàn)高效的熱交換。相比于傳統(tǒng)流體,納米流體具有更高的熱傳導(dǎo)能力和更低的熱阻。這種高熱導(dǎo)率可以在熱管理應(yīng)用中發(fā)揮重要作用,如散熱器、導(dǎo)熱材料、電子器件等[29]。含CNT的混合納米流體的熱導(dǎo)率最大增強(qiáng)率如表1所示。由表1可以看出,CNT混合的納米顆粒主要有Cu、Ag、Al2O3、TiO2、Au、MgO和Fe3O4,且納米顆粒的添加量和溫度對混合納米流體的熱導(dǎo)率有明顯影響。
JIN等[8]通過改變納米顆粒的質(zhì)量分?jǐn)?shù)和不同種類的基液,研究了混合納米流體導(dǎo)熱性。結(jié)果表明,熱導(dǎo)率隨著納米顆粒質(zhì)量分?jǐn)?shù)的增加而增加,Ag-CNT水基和乙二醇基納米流體在0.05%質(zhì)量分?jǐn)?shù)時導(dǎo)熱系數(shù)較基礎(chǔ)流體分別提高了52.37%和40.42%。GUPTA等[26]研究不同質(zhì)量分?jǐn)?shù)的Cu-CNT/水混合納米流體的熱物性,結(jié)果表明隨著納米顆粒的質(zhì)量分?jǐn)?shù)及Cu負(fù)載量的增加,Cu-CNT 納米流體的熱導(dǎo)率呈現(xiàn)先增加后降低的趨勢。
表面活性劑主要用于改善納米顆粒在基液中的穩(wěn)定性,降低基液的表面張力來防止納米顆粒團(tuán)聚。ALI等[30]研究發(fā)現(xiàn),表面活性劑具有比基液更低的熱導(dǎo)率,會使納米流體的導(dǎo)熱率降低。KHAIRUL等[31]研究了表面活性劑添加量對熱導(dǎo)率的影響,結(jié)果表明,CuO納米流體內(nèi)添加SDBS在0.1%~0.15%質(zhì)量分?jǐn)?shù)時,熱導(dǎo)率緩慢增加,然后在0.15%~0.2%質(zhì)量分?jǐn)?shù)時開始降低。過多表面活性劑會導(dǎo)致熱導(dǎo)率迅速降低,因此表面活性劑的添加量需要適量。但有研究者得出了不同結(jié)論,ALMANASSRA等[32]研究了3種不同類型表面活性阿拉伯膠(GA)、聚乙烯吡咯烷酮(PVP)和十二烷基硫酸鈉(SDS)對碳納米管(CNTs)/水納米流體熱物理性能的影響。結(jié)果表明,表面活性劑類型不會影響納米流體的熱性能。GLORY等[33]用不同比例的表面活性劑阿拉伯樹膠制備MWCNT/水納米流體,研究了納米流體熱導(dǎo)率在15~75 ℃的變化。結(jié)果表明,阿拉伯樹膠的添加沒有改變納米流體樣品的熱導(dǎo)率[36,38]。
大多數(shù)研究人員認(rèn)為納米流體導(dǎo)熱性能隨著納米顆粒質(zhì)量分?jǐn)?shù)的增加和溫度的升高而提高[43]。但同一類型的納米流體的熱導(dǎo)率和流變性能在不同研究人員的測試下存在差異,今后應(yīng)對混合納米流體制備流程進(jìn)行標(biāo)準(zhǔn)化,獲取熱性能最優(yōu)的納米流體。
3.2黏度
納米流體與基液相比黏度更高,并隨著納米顆粒質(zhì)量分?jǐn)?shù)的增加而上升。盡管納米流體黏度高于基液,但大多數(shù)納米流體表現(xiàn)出比基礎(chǔ)流體更好的傳熱性能。PRASHER等[44]發(fā)現(xiàn),相對于熱導(dǎo)率的增加,黏度須增加4倍以上,納米流體的熱性能才會較基礎(chǔ)流體降低。這就說明,盡管納米流體表現(xiàn)出更高黏度,但由于其熱導(dǎo)率和傳熱系數(shù)的增強(qiáng),整體傳熱性能增強(qiáng)[43]。
JIN等[8]對Cu-CNT和Ag-CNT混合納米流體的研究發(fā)現(xiàn),與未添加納米顆粒相比,25 ℃下混合納米流體黏度隨著添加質(zhì)量分?jǐn)?shù)增加而升高,在0.01%時增加5%,0.05%時增加15%;與功能化CNT納米流體相比,混合納米流體黏度更低。
ALIREZAIE等[45]分別研究了剪切速率、溫度及體積分?jǐn)?shù)對MWCNT-MgO納米流體黏度的影響。結(jié)果表明:剪切速率對黏度有影響,說明MWCNT-MgO納米流體為非牛頓流體;納米流體的動態(tài)黏度隨溫度的升高而迅速下降;此外,納米顆粒體積分?jǐn)?shù)的增加會增加流體黏度,且在所有剪切速率下,黏度的增加速率和納米顆粒的體積分?jǐn)?shù)增加率幾乎保持一致。
GIWA等[46]制備了穩(wěn)定的MWCNT-Fe2O3/水納米流體,并對其在不同溫度和體積分?jǐn)?shù)下的黏度進(jìn)行了研究。結(jié)果表明,增加納米顆粒的體積分?jǐn)?shù)提高了MWCNT-Fe2O3/水納米流體的黏度,而溫度的升高可降低黏度。相對于基礎(chǔ)流體,MWCNT-Fe2O3/水納米流體黏度提高了35.7%。
CNT混合納米流體在黏度方面具有類似的特性,受剪切速率、納米顆粒濃度和尺寸、溫度、表面活性劑的影響。所有納米流體的黏度均高于基礎(chǔ)流體,并隨著納米顆粒濃度的增加而增加。
4結(jié) 論
基于CNT混合納米流體的研究現(xiàn)狀進(jìn)行了綜述,主要得到以下結(jié)論:
1)納米流體的制備首先需要選擇適當(dāng)?shù)幕?,根?jù)應(yīng)用要求選擇適當(dāng)?shù)募{米材料,使用一步法直接合成或二步法經(jīng)機(jī)械攪拌、超聲處理制備納米流體。通過控制納米顆粒的質(zhì)量來得到不同質(zhì)量分?jǐn)?shù)的混合納米流體。
2)納米流體應(yīng)具有良好的分散穩(wěn)定性,可根據(jù)Zeta電位測量、目測沉降法和紫外-可見吸收光譜法來判斷是否穩(wěn)定。可以通過選擇適當(dāng)?shù)谋砻婊钚詣?、調(diào)整納米顆粒的性質(zhì)以及優(yōu)化流體制備過程來實現(xiàn)分散穩(wěn)定性。
3)CNT混合納米流體具有較高的熱導(dǎo)率。導(dǎo)熱性能隨著基礎(chǔ)流體中納米顆粒濃度的增加和溫度的升高而提高。
4)CNT混合納米流體通常會顯示出高黏度。受剪切速率、納米顆粒濃度和尺寸、溫度、表面活性劑的影響,黏度隨著納米顆粒濃度的增加而增加。
參考文獻(xiàn):
[1]""" EBAID M S Y, GHRAIR A M, AL-BUSOUL M. Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water -polyethylene glycol mixture and (Al2O3) nanofluid in water- cetyltrimethylammonium bromide mixture[J]. Energy Conv Manag, 2018, 155:324-343.
[2]""" MOHAMMADPOOR M, SABBAGHI S, ZERAFAT M M, et al. Investigating heat transfer properties of copper nanofluid in ethylene glycol synthesized through single and two-step routes[J]. Int J Refrig-Rev Int Froid, 2019, 99:243-250.
[3]""" WANG C, ZHANG X, SU M. Synthesis and thermal stability of Field’s alloy nanoparticles and nanofluid [J]. Materials Letters, 2017, 205:6-9.
[4]""" QIN J H, LIU Z Q, LI N, et al. A facile way to prepare CuS-oil nanofluids with enhanced thermal conductivity and appropriate viscosity [J]. J Nanopart Res, 2017, 19(2): 1-8.
[5]""" 翟鄭佳,李國龍,朱恒宣,等. 磁場對Fe3O4-水納米流體傳熱特性的影響 [J]. 遼寧石油化工大學(xué)學(xué)報,2020,40(2):22-29.
[6]""" KIM H J, BANG I C, ONOE J. Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids [J]. Optics Lasers in Engineering, 2009, 47(5): 532-538.
[7]""" JAIN S, BORAH R, SAIKIA N, et al. The effect of stability on the thermal conductivity of copper nanofluid at low particle loadings [J]. Materials Today: Proceedings, 2018, 5(9): 20652-20659.
[8]""" JIN C, WU Q B, YANG G Q, et al. Investigation on hybrid nanofluids based on carbon nanotubes filled with metal nanoparticles: Stability, thermal conductivity, and viscosity [J]. Powder Technology, 2021, 389:1-10.
[9]""" HEMMAT E M, ESFANDEH S, SAEDODIN S, et al. Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications [J]. Applied Thermal Engineering, 2017, 125:673-685.
[10]" FARBOD M, AHANGARPOUR A. Improved thermal conductivity of Ag decorated carbon nanotubes water based nanofluids[J]. Physics Letters A, 2016, 380(48): 4044-4048.
[11]" CHOI S U S. Nanofluids: From vision to reality through research[J]. Journal of Heat Transfer, 2009, 131(3): 033106.
[12]" MUNKHBAYAR B, TANSHEN M R, JEOUN J, et al. Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics[J]. Ceramics International, 2013, 39(6): 6415-6425.
[13]" ASADIKIA A, MIRJALILY S A A, NASIRIZADEH N, et al. Characterization of thermal and electrical properties of hybrid nanofluids prepared with multi-walled carbon nanotubes and Fe2O3 nanoparticles [J]. International Communications in Heat and Mass Transfer, 2020, 117: 104603.
[14]" JHA N, RAMAPRABHU S. Synthesis and Thermal conductivity of copper nanoparticle decorated multiwalled carbon nanotubes based nanofluids[J]. The Journal of Physical Chemistry C, 2008, 112(25): 9315-9319.
[15]" WANG D,YANG G, MA Q,et al. Confinement effect of carbon nanotubes: Copper nanoparticles filled carbon nanotubes for hydrogenation of methyl acetate [J]. ACS Catalysis, 2012, 2(9): 1958-1966.
[16]" DONG L X, TAO X Y, ZHANG L, et al. Nanorobotic spot welding: Controlled metal deposition with attogram precision from copper-filled carbon nanotubes [J]. Nano Letters, 2007, 7(1): 58-63.
[17]" TESSONNIER J P, ERSEN O, WEINBERG G, et al. Selective deposition of metal nanoparticles inside or outside multiwalled carbon nanotubes[J]. ACS Nano, 2009, 3(8): 2081-2089.
[18]" LI X, ZHAO D L, SHEN Z M. Microstructure and formation mechanism of carbon nanotubes filled with metallic silver nanowires [J]. Advanced Materials Research, 2006, 11-12:587-590.
[19]" ZHOU X S, YU L, YU X Y, et al. Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties [J]. Advanced Energy Materials, 2016, 6(22): 1601177.
[20]" WATTS P C P, HSU W K, RANDALL D P, et al. Fe-filled carbon nanotubes: nano-electromagnetic inductors[J]. Chemistry of Materials, 2002, 14(11): 4505-4508.
[21]" 王雪,建偉偉,陸毅,等. Cu和Sn改性多壁碳納米管對VOCs氣體的吸附 [J]. 遼寧石油化工大學(xué)學(xué)報,2021,41(5):44-49.
[22]" ZHU H T, ZHANG C Y, TANG Y M, et al. Novel synthesis and thermal conductivity of CuO nanofluid[J]. The Journal of Physical Chemistry C, 2007, 111(4): 1638-1645.
[23]" ZHU D, LI X, WANG N, et al. Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids [J]. Current Applied Physics, 2009, 9(1): 131-139.
[24]" ARORA N, GUPTA M. An experimental analysis of CTAB surfactant on thermo-physical properties and stability of MWCNT/water nanofluids [J]. Appl Nanosci, 2022, 12(6): 1941-1966.
[25]" HASAN NIA M, REZAEI-TAVIRANI M, NIKOOFAR A R, et al. Stabilizing and dispersing methods of TiO2 nanoparticles in biological studies [J]. Archives of Advances in Biosciences, 2015, 6(2): 96-105.
[26]" GUPTA N, GUPTA S M, SHARMA S K. Synthesis, characterization and dispersion stability of water-based Cu-CNT hybrid nanofluid without surfactant[J]. Microfluid Nanofluid, 2021, 25(2): 14.
[27]" AL-ORAN O, LEZSOVITS F. Experimental study of thermal conductivity and viscosity of water-based MWCNT-Y2O3 hybrid nanofluid with surfactant[J]. Journal of Engineering Thermophysics, 2022, 31(1): 98-110.
[28]" SYAM S L, SINGH M K, SOUSA A C M. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications [J]. International Communications in Heat and Mass Transfer, 2013, 44:7-14.
[29]" 孫恩博,陳今茂,熊春華,等. 納米流體穩(wěn)定性及其導(dǎo)熱性能研究 [J]. 熱能動力工程,2021,36(5):61-65.
[30]" ALI A R I, SALAM B. A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application [J]. SN Applied Sciences, 2020, 2(10): 1636.
[31]" KHAIRUL M A, SHAH K, DOROODCHI E, et al. Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids [J]. Int J Heat Mass Transf, 2016, 98:778-787.
[32]" ALMANASSRA I W, MANASRAH A D, AL-MUBAIYEDH U A, et al. An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study [J]. Journal of Molecular Liquids, 2020, 304:111025.
[33]" GLORY J, BONETTI M, HELEZEN M, et al. Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes[J]. Journal of Applied Physics, 2008, 103(9): 094309-1-094309-7.
[34]" ABBASI S M, RASHIDI A, NEMATI A, et al. The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina[J]. Ceramics International, 2013, 39(4): 3885-3891.
[35]" DEVARAJAN M, PARASUMANNA K N, BALASUBRAMANIAN M, et al. Thermophysical properties of CNT and CNT/Al2O3 hybrid nanofluid[J]. MICRO amp; NANO LETTERS, 2018, 13(5): 617-621.
[36]" AKHGAR A, TOGHRAIE D. An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: Developing a new correlation [J]. Powder Technology, 2018, 338:806-818.
[37]" LI Y, MORADI I, KALANTAR M, et al. Synthesis of new dihybrid nanofluid of TiO2/MWCNT in water-ethylene glycol to improve mixture thermal performance: preparation, characterization, and a novel correlation via ANN based on orthogonal distance regression algorithm [J].Journal of Thermal Analysis and Calorimetry,2020, 144:2587-2603.
[38]" JHA N, RAMAPRABHU S. Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids [J].Journal of Applied Physics, 2009, 106(8):084317.
[39]" DU C, QUYEN N, MALEKAHMADI O, et al. Thermal conductivity enhancement of nanofluid by adding multiwalled carbon nanotubes: Characterization and numerical modeling patterns[J]. Mathematical Methods in the Applied Sciences, 2020(1):218935431.
[40]" KARIMIPOUR A, MALEKAHMADI O, KARIMIPOUR A, et al. Thermal conductivity enhancement via synthesis produces a new hybrid mixture composed of copper oxide and multi-walled carbon nanotube dispersed in water: Experimental characterization and artificial neural network modeling [J]. International Journal of Thermophysics, 2020, 41(8): 116.
[41]" HEMMAT ESFE M, ALIREZAIE A, REJVANI M. An applicable study on the thermal conductivity of SWCNT-MgO hybrid nanofluid and price-performance analysis for energy management[J]. Applied Thermal Engineering, 2017, 111:1202-1210.
[42]" MANASRAH A D, ALMANASSRA I W, MAREI N N, et al. Surface modification of carbon nanotubes with copper oxide nanoparticles for heat transfer enhancement of nanofluids [J]. Rsc Advances, 2018, 8(4): 1791-1802.
[43] 楊勇,閆玉麟,劉文盛,等.混合納米流體余熱回收裝置強(qiáng)化換熱機(jī)理綜述研究[J].遼寧化工,2023,52(5):756-760.
[44]" PRASHER R, SONG D, WANG J, et al. Measurements of nanofluid viscosity and its implications for thermal applications[J]. Appl Phys Lett, 2006, 89(13): 133108.
[45]" ALIREZAIE A, SAEDODIN S, HEMMAT ESFE M, et al. Investigation of rheological behavior of MWCNT (COOH- functionalized)/MgO-engine oil hybrid nanofluids and modelling the results with artificial neural networks[J]. Journal of Molecular Liquids, 2017, 241:173-181.
[46]" GIWA S O, SHARIFPUR M, AHMADI M H, et al. Experimental investigation on stability, viscosity, and electrical conductivity of water-based hybrid nanofluid of MWCNT-Fe2O3[J]. Nanomaterials, 2021, 11(1):136.
Research Progress in Thermal Properties of Hybrid Nanofluids Containing Carbon Nanotubes
LI Jiao, FAN Xuyang, JIAN Weiwei, MENG Lingguo
(Liaoning Petrochemical University, Fushun Liaoning 113001, China)
Abstract: Compared with single component nanofluids, CNT based hybrid nanofluids have higher thermal conductivity and better heat transfer performance. In this article, synthesis methods, stability evaluation, thermal conductivity, and viscosity of CNT mixed nanofluids were reviewed. The results showed that the thermal performance of mixed fluids containing carbon nanotubes increased with the increase of nanoparticle concentration and temperature. However, the thermal conductivity and viscosity characteristics of the same type of nanofluid varied in different literature, and the preparation process of mixed nanofluids should be standardized.
Key words: Carbon nanotubes; Hybrid nanofluids; Thermophysical properties; Stability analysis