摘要:針對(duì)抗菌劑耐藥性問題,有效解決方案是研發(fā)新型的高效且低副作用的抗菌劑。硒作為一種必需微量元素,具有抗氧化、抗炎和抗菌等生物活性。研究表明,硒的抗菌機(jī)制主要包括影響細(xì)胞內(nèi)氧化還原狀態(tài)、破壞細(xì)胞膜完整性以及對(duì)細(xì)胞遺傳物質(zhì)的作用等。目前硒及其衍生物在抗菌領(lǐng)域的研究仍在不斷進(jìn)行,未來有望開發(fā)出更廣泛應(yīng)用的抗菌劑。本綜述將關(guān)于硒的抗菌機(jī)制及其作為抗菌劑的研究進(jìn)展做簡要總結(jié),旨在為相關(guān)領(lǐng)域研究提供參考。
關(guān)鍵詞:硒;抗菌作用;抗菌機(jī)制;納米粒子;氧化還原狀態(tài)
中圖分類號(hào):R978.1+9, R151 文獻(xiàn)標(biāo)志碼:A" " " " "文章編號(hào):1001-8751(2025)01-0001-05
Research Advances on the Antimicrobial Effect of Selenium
Liu Quan-ying," "Li Jia-meng," "Bai Ya-zhi," "Zhang Shuang-qing
(National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention," "Beijing" "100050)
Abstract: An effective solution to the problem of antimicrobial resistance is the development of new antimicrobial agents with high efficiency and minimal adverse effects. An important trace element, selenium has several biological actions, such as anti-inflammatory, antibacterial, and antioxidant effects. It has been demonstrated that the antimicrobial mechanism of selenium primarily encompasses the modulation of the intracellular redox state, the disruption of the integrity of cell membranes, and the interaction with intracellular genetic material. Future discoveries in this sector are expected to result in the production of more extensively used antimicrobial agents. Research on the effects of selenium and its derivatives in the field of antimicrobial agents is still underway." This review briefly summarizes the research advances on the antimicrobial effects of selenium and its use as an antimicrobial agent, aiming to provide a reference for research in related fields.
Key words: selenium;" "antimicrobial effect;" "antimicrobial mechanism;" "nano particles;" "redox state
細(xì)菌和真菌感染是公共衛(wèi)生領(lǐng)域內(nèi)的重大挑戰(zhàn)之一,其有效防控因抗菌藥物耐藥性廣泛產(chǎn)生而面臨考驗(yàn),因此尋找抗菌效果良好且對(duì)人體副作用小的新抗菌藥物是當(dāng)前研究的熱點(diǎn)[1]。硒是一種維持人體正常生命活動(dòng)必需的微量元素,以多種形態(tài)存在于自然界中,硒獨(dú)特的生化特性賦予了其抗氧化、抗炎及抗菌等生物活性[2]。硒的多種化合物及人工合成的納米粒子被發(fā)現(xiàn)具有巨大抗菌潛力,可作為有前景的抗菌劑。
1 硒的抗菌機(jī)制
硒的抗菌作用機(jī)制復(fù)雜多樣,主要包括對(duì)細(xì)胞內(nèi)氧化還原狀態(tài)的影響、細(xì)胞膜完整性的破壞以及對(duì)細(xì)胞內(nèi)遺傳物質(zhì)的作用等。
1.1 硒對(duì)氧化還原狀態(tài)的影響
研究表明硒與細(xì)胞內(nèi)的氧化還原環(huán)境密切相關(guān)[3-4],對(duì)維持細(xì)胞內(nèi)氧化還原平衡和氧化防御等起到重要作用,主要體現(xiàn)在對(duì)氧化還原酶活性及細(xì)胞內(nèi)活性氧(ROS)含量的影響。硒在人體內(nèi)正常細(xì)胞中通過降低ROS的水平防止氧化損傷;而在有害微生物和異常細(xì)胞中,硒則增加ROS的產(chǎn)生來促進(jìn)細(xì)胞凋亡過程[5- 6]。
硒作為谷胱甘肽過氧化物酶(GPX)的一個(gè)重要組成部分,能夠催化過氧化氫和有機(jī)過氧化物的還原,減少氧化應(yīng)激,抑制細(xì)菌的生長[7]。此外,另一種含硒化合物硫氧還原酶(Trx)被認(rèn)為是抗菌靶標(biāo)之一,尤其在抵抗耐多藥革蘭陰性菌方面顯示出良好的前景[8]。有研究發(fā)現(xiàn)兩種活性金(I)硒N-雜環(huán)卡賓配合物 H7和H8通過靶向氧化還原活性基團(tuán)不可逆地抑制細(xì)菌Trx受體的活性,從而削弱其消除ROS的能力,通過氧化應(yīng)激影響細(xì)菌生存所需的包括氧化還原平衡、細(xì)胞膜完整性、氨基酸代謝和脂質(zhì)過氧化反應(yīng)在內(nèi)的各種功能,以達(dá)到殺菌的目的[8]。田倩倩[9]的研究結(jié)果也表明亞硒酸鈉可誘導(dǎo)銅綠假單胞菌胞內(nèi)ROS增加,進(jìn)而使細(xì)菌發(fā)生氧化應(yīng)激,同時(shí)增強(qiáng)其對(duì)抗生素的敏感性并有效降低了其致病性。
除影響ROS的含量外,硒與調(diào)控氧化還原的線粒體呼吸作用也與密切相關(guān)。一些有機(jī)硒化合物,如依布硒(Ebs)和二苯基二硒化可能與線粒體呼吸復(fù)合體,特別是與硫醇基相互作用,通過這種結(jié)構(gòu)修飾改變線粒體的功能,從而提高含硒化合物抗菌活性[10]。其中Ebs的殺菌作用為干擾質(zhì)膜高能磷酸化合物酶的質(zhì)子轉(zhuǎn)移功能和三磷酸腺苷酶(ATP)活性[11]。
1.2 硒對(duì)細(xì)胞膜完整性的破壞
硒的抗菌作用還與其對(duì)細(xì)胞膜完整性的影響密切相關(guān)。硒能夠通過增加胞內(nèi)ROS含量,導(dǎo)致細(xì)胞膜的損傷,進(jìn)而影響細(xì)胞的生理功能。研究顯示硒化鋅(ZnO-Se)的殺菌性能之所以得到增強(qiáng)[12],是因?yàn)樗哂懈鼜?qiáng)的“光捕獲”能力。光捕獲能力使得ZnO-Se能夠持續(xù)誘導(dǎo)ROS的生成,并使其具備主動(dòng)接觸殺菌的機(jī)制,進(jìn)而表現(xiàn)出顯著的殺菌活性。經(jīng)硒納米粒子(SeNP)處理后的細(xì)胞,其內(nèi)源性ATP濃度和抗氧化酶活性降低,ROS含量和丙二醛含量增加,這種變化導(dǎo)致脂質(zhì)過氧化反應(yīng)加劇,進(jìn)而對(duì)細(xì)胞膜完整性造成破壞[13]。滲漏試驗(yàn)結(jié)果顯示,細(xì)胞與生物SeNP反應(yīng)后,細(xì)胞外的蛋白質(zhì)和多糖含量顯著增加,表明蛋白質(zhì)和多糖的滲漏是由ROS介導(dǎo)的氧化損傷引起的細(xì)胞膜的通透性變化以及細(xì)胞壁的破壞所致[13-15]。此外,載硒腐植酸鈉高抗菌性也是通過改變細(xì)菌細(xì)胞膜的通透性、產(chǎn)生ROS和阻止生物膜的形成來實(shí)現(xiàn)的[16]。最后,亞硒酸鈉(Na2SeO3)通過降低細(xì)胞內(nèi)ATP濃度、使細(xì)胞膜去極化、降低細(xì)胞內(nèi)pH值和損害膜完整性來實(shí)現(xiàn)其抗菌作用[17]。
1.3 硒的其他抗菌機(jī)制
有研究發(fā)現(xiàn),硒不僅通過增加細(xì)胞ROS含量和破壞細(xì)胞膜的完整性實(shí)現(xiàn)殺菌效果,還能通過破壞細(xì)胞內(nèi)遺傳物質(zhì)達(dá)到殺菌的目的。細(xì)胞凋亡檢測(cè)顯示,經(jīng)SeNP處理后,細(xì)胞內(nèi)的DNA發(fā)生斷裂。這種DNA斷裂導(dǎo)致細(xì)胞無法進(jìn)行正常的遺傳信息傳遞和復(fù)制增殖,從而影響細(xì)胞的生存和繁殖能力[18]。除如前所述抗菌機(jī)制外,SeNP還可通過改變真菌生理狀態(tài),抑制孢子萌發(fā)從而進(jìn)一步表現(xiàn)抗真菌活性[19]。值得注意的是,含硒化合物可通過協(xié)同作用增強(qiáng)某些抗生素的效力,進(jìn)而提升對(duì)耐藥菌的抑制效果[20]。
2 硒的抗菌作用研究進(jìn)展
近年來關(guān)于硒及其化合物的抗菌作用研究取得了顯著進(jìn)展,多種含硒化合物被證實(shí)具有抗菌作用,近期含硒化合物抗菌作用研究進(jìn)展簡要概括如下。
2.1 硒類化合物的抗菌作用研究進(jìn)展
在無機(jī)硒化合物中,Na2SeO3的抗菌作用被廣泛探索。有研究表明,Na2SeO3能夠通過誘導(dǎo)氧化應(yīng)激并抑制銅綠假單胞菌的群體效應(yīng)系統(tǒng),從而增強(qiáng)銅綠假單胞菌對(duì)抗生素的敏感性并降低其致病性[9, 21]。Zhang等[22]發(fā)現(xiàn),當(dāng)亞硒酸鈉附著于發(fā)音鈕時(shí),能夠顯著抑制由金黃色葡萄球菌、白色念珠菌和糞鏈球菌組成的成熟混合細(xì)菌生物膜,并有效破壞生物膜的空間結(jié)構(gòu)。
相比于無機(jī)物,硒的有機(jī)化合物種類更加豐富,且多種有機(jī)硒化合物被證明具有抗菌作用[23]。其中,有機(jī)硒氰酸酯是最具生物活性的硒物種之一,對(duì)哺乳動(dòng)物細(xì)胞和微生物具有明顯的細(xì)胞毒性,特別是硒氰酸芐酯對(duì)多種菌的抑制作用最為顯著[24]。Zimmerman等[25]證實(shí)了二苯基二硒化物在治療外陰陰道念珠菌病中的有效性。此外,Ribeiro等[26]通過體外試驗(yàn)發(fā)現(xiàn),源自甲萘醌的雜交化合物形式的硒酯有望成為克服結(jié)核病多藥耐藥性的新型抗結(jié)核藥物。EBs作為一種含硒有機(jī)化合物,不僅是典型的GPx模擬物,也是哺乳動(dòng)物Trx受體的底物,對(duì)谷胱甘肽陰性細(xì)菌如金黃色葡萄球菌有強(qiáng)大的抗菌活性[27-29]。此外,β-硒胺和二硒化物對(duì)耐甲氧西林金黃色葡萄球菌和大腸埃希菌也表現(xiàn)出良好的抗菌活性,并且經(jīng)鄰甲氧基和對(duì)甲基團(tuán)插入的結(jié)構(gòu)修飾后可進(jìn)一步提高抗菌效果[10]。張夢(mèng)圓[30]的研究表明,在同等劑量下,硒化烏拉爾甘草多糖的抗革蘭陽性菌作用和免疫增強(qiáng)作用相比于單獨(dú)使用烏拉爾甘草多糖顯著升高。
2.2 硒納米粒子的抗菌作用研究進(jìn)展
納米藥物憑借其獨(dú)特結(jié)構(gòu)實(shí)現(xiàn)高效跨細(xì)胞轉(zhuǎn)運(yùn)與溶酶體逃逸,可維持胞內(nèi)有效抗菌濃度,同時(shí)納米材料本身展現(xiàn)出的卓越抗菌性能可有效治療胞內(nèi)菌感染[31]。其中SeNP因具有低毒性、高生物利用度和高生物活性的特征,且可經(jīng)物理、化學(xué)及生物等多種途徑合成,在多種疾病治療領(lǐng)域應(yīng)用廣泛[32- 33]。
研究表明[35-36],SeNP對(duì)多種致病菌均具有顯著抗菌作用,且作用效果優(yōu)于其他合成化合物[34]。SeNP不僅可預(yù)防細(xì)菌對(duì)多種抗生素產(chǎn)生耐藥性而導(dǎo)致的感染,還被視為一種有前景的抗菌劑。通過與抗生素共軛[35]或被重組蛛絲蛋白eADF4(κ16)包覆[36],SeNP對(duì)多重耐藥菌可發(fā)揮更強(qiáng)的抑制作用。在骨科醫(yī)療器械中,SeNP涂層被認(rèn)為是一種潛在的抗多重耐藥菌感染屏障,體外有效濃度為0.5 ppm[37]。Afzal等[38]通過比色法(MTT)試驗(yàn)、臺(tái)盼藍(lán)(Trypan)試驗(yàn)和流式細(xì)胞術(shù)分析發(fā)現(xiàn),SeNP對(duì)金黃色葡萄球菌、大腸埃希菌、白色念珠菌、光滑念珠菌和熱帶念珠菌均具有良好的抗微生物活性,其中對(duì)金黃色葡萄球菌的生長抑制作用在Chung等[39]的研究中也被證實(shí)。此外,SeNP還可通過抑制群體效應(yīng)基因表達(dá)及減少細(xì)菌毒素相對(duì)表達(dá)含量,實(shí)現(xiàn)對(duì)銅綠假單胞菌繁殖的控制[40]。
除自身具有的抗菌作用外,SeNP還可增強(qiáng)其他具有抗菌效應(yīng)的物質(zhì)的抗菌能力。Mao等[20]以細(xì)菌纖維素、明膠和SeNP為基礎(chǔ),構(gòu)建了一系列具有顯著抗菌、抗氧化和抗炎能力的用于傷口愈合的多功能納米復(fù)合水凝膠,SeNP的裝飾賦予其抗氧化和抗炎能力,以及對(duì)臨床常見致病菌如大腸埃希菌和金黃色葡萄球菌及耐多藥細(xì)菌突出的抗菌活性。SeNP也可與金屬結(jié)合,例如Lin[41]通過一種氧化鋅和硒雜化制備氧化鋅—硒納米粒子的新方法,將氧化鋅納米粒子與SeNP的抗結(jié)核活性相結(jié)合,從而發(fā)揮更強(qiáng)的抗菌作用。此外,將納米級(jí)抗菌肽與硒化鎘(CdSe)結(jié)合,制備出的一種納米粒子復(fù)合材料,在體外和體內(nèi)對(duì)耐多藥大腸埃希菌和金黃色葡萄球菌都表現(xiàn)出很強(qiáng)的抗菌活性[42]。將SeNP摻雜到銀鍍層中形成的銀硒鍍層與其他銀表面相比,顯示出對(duì)金黃色葡萄球菌和大腸埃希菌的抗菌和抗生物膜特性,在3 d后該銀硒鍍層能顯著抑制金黃色葡萄球菌在其表面的生長及生物膜的形成[43]。
3 展望
綜上所述,硒及其化合物因具有調(diào)控氧化還原狀態(tài)、破壞細(xì)胞膜完整性等功能以及對(duì)人體副作用小、對(duì)多種菌均有抑制作用等特性,有望成為應(yīng)用范圍更廣泛的抗菌劑。未來研究應(yīng)進(jìn)一步聚焦于深入探討硒的抗菌機(jī)制,以便于更全面理解硒及其化合物的抗菌活性和作用路徑。同時(shí)尋找其他有抗菌作用的硒化合物及合成新型SeNP,為臨床治療提供更多選擇,使更多不同種類的含硒抗菌劑在實(shí)際應(yīng)用中發(fā)揮更加重要的作用。
參 考 文 獻(xiàn)
Coates A, Hu Y, Bax R, et al. The future challenges facing the development of new antimicrobial drugs[J]. Nat Rev Drug Discov, 2002, 1(11): 895-910.
Zhang S Q, Bai Y Z. Strategies for enhancing beneficial effects of selenium on cognitive function[J]. Metab Brain Dis, 2023, 38(6): 1857-1858.
Guillin O M, Vindry C, Ohlmann T, et al. Selenium, selenoproteins and viral infection[J]. Nutrients, 2019, 11(9): e2101.
Liu X, Sun J, Du J, et al. Encapsulation of selenium nanoparticles and metformin in macrophage-derived cell membranes for the treatment of spinal cord injury[J]. ACS Biomater Sci Eng, 2023, 9(10): 5709-5723.
Shang N, Wang X, Shu Q, et al. The functions of selenium and selenoproteins relating to the liver diseases[J]. J Nanosci Nanotechnol, 2019, 19(4): 1875-1888.
Huang Q, Liu Z, Yang Y, et al. Selenium nanodots (SENDs) as antioxidants and antioxidant-prodrugs to rescue islet β cells in type 2 diabetes mellitus by restoring mitophagy and alleviating endoplasmic reticulum stress[J]. Adv Sci (Weinh), 2023, 10(19): e2300880.
Rana T. Prospects and future perspectives of selenium nanoparticles: An insight of growth promoter, antioxidant and anti-bacterial potentials in productivity of poultry[J]. J Trace Elem Med Biol, 2021, 68: e126862.
Chen X, Sun S, Huang S, et al. Gold(I) selenium N-heterocyclic carbene complexes as potent antibacterial agents against multidrug-resistant gram-negative bacteria via inhibiting thioredoxin reductase[J]. Redox Biol, 2023, 60: e102621.
田倩倩. 亞硒酸鈉對(duì)銅綠假單胞菌抗菌活性及作用機(jī)制研究[D]]. 西安:西北大學(xué), 2021.
Stefanello S T, Mizdal C R, Gon?alves D F, et al. The insertion of functional groups in organic selenium compounds promote changes in mitochondrial parameters and raise the antibacterial activity[J]. Bioorg Chem, 2020, 98: e103727.
Chan G, Hardej D, Santoro M, et al. Evaluation of the antimicrobial activity of ebselen: role of the yeast plasma membrane H+-ATPase[J]. J Biochem Mol Toxicol, 2007, 21(5): 252-264.
Ahmad A, Ullah S, Ahmad W, et al. Zinc oxide?selenium heterojunction composite: Synthesis, characterization and photo-induced antibacterial activity under visible light irradiation[J]. J Photochem Photobiol B, 2020, 203: e111743.
Xu Y, Zhang T, Che J, et al. Evaluation of the antimicrobial mechanism of biogenic selenium nanoparticles against Pseudomonas fluorescens[J]. Biofouling, 2023, 39(2): 157-170.
Zhang H, Li Z, Dai C, et al. Antibacterial properties and mechanism of selenium nanoparticles synthesized by Providencia sp. DCX[J]. Environ Res, 2021, 194: e110630.
Sahoo B, Leena Panigrahi L, Jena S, et al. Oxidative stress generated due to photocatalytic activity of biosynthesized selenium nanoparticles triggers cytoplasmic leakage leading to bacterial cell death[J]. RSC Adv, 2023, 13(17): 11406-11414.
Fan Y, Li J, Ren X, et al. Preparation, characterization, bacteriostatic efficacy, and mechanism of zinc/selenium-loaded sodium humate[J]. Appl Microbiol Biotechnol, 2023, 107(24): 7417-7425.
Yang X, Dai X, Jin H, et al. Physicochemical and transcriptomic responses of Lactobacillus brevis JLD715 to sodium selenite[J]. J Sci Food Agric, 2021, 101(10): 4332-4341.
Beheshti N, Soflaei S, Shakibaie M, et al. Efficacy of biogenic selenium nanoparticles against Leishmania major: in vitro and in vivo studies[J]. J Trace Elem Med Biol, 2013, 27(3): 203-207.
Mosallam F M, El-Sayyad G S, Fathy R M, et al. Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi[J]. Microb Pathog, 2018, 122: 108-116.
Mao L, Wang L, Zhang M, et al. In situ synthesized selenium nanoparticles-decorated bacterial cellulose/gelatin hydrogel with enhanced antibacterial, antioxidant, and anti-inflammatory capabilities for facilitating skin wound healing[J]. Adv Healthc Mater, 2021, 10(14): e2100402.
Kong W, Tian Q, Yang Q, et al. Sodium selenite enhances antibiotics sensitivity of Pseudomonas aeruginosa and deceases its pathogenicity by inducing oxidative stress and inhibiting quorum sensing system[J]. Antioxidants (Basel), 2021, 10(12): e1873.
Zhang Y, Niu Y, Huo H, et al. Inhibition and removal of mature mixed-bacteria biofilms on voice prostheses by sodium selenite[J]. Infect Drug Resist, 2022, 15: 7799-7810.
金小紅. 有機(jī)硒類化合物的合成及其生物活性[J]. 國外醫(yī)藥(抗生素分冊(cè)), 2018, 39(06): 562-568.
Sarfraz M, Nasim M J, Gruhlke M C H, et al. To cut the mustard: antimicrobial activity of selenocyanates on the plate and in the gas phase[J]. Antibiotics (Basel), 2023, 12(2): e290.
Zimmermann E S, Ferreira L M, Denardi L B, et al. Mucoadhesive gellan gum hydrogel containing diphenyl diselenide-loaded nanocapsules presents improved anti-candida action in a mouse model of vulvovaginal candidiasis[J]. Eur J Pharm Sci, 2021, 167: e106011.
Ribeiro R C B, de Marins D B, Di Leo I, et al. Anti-tubercular profile of new selenium-menadione conjugates against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain and multidrug-resistant clinical isolates[J]. Eur J Med Chem, 2021, 209: e112859.
Wang P, Wang J, Xie Z, et al. Depletion of multidrug-resistant uropathogenic Escherichia coli BC1 by ebselen and silver ion[J]. J Cell Mol Med, 2020, 24(22): 13139-13150.
Albrakati A, Alsharif K F, Al Omairi N E, et al. Neuroprotective efficiency of prodigiosins conjugated with selenium nanoparticles in rats exposed to chronic unpredictable mild stress is mediated through antioxidative, anti-inflammatory, anti-apoptotic, and neuromodulatory activities[J]. Int J Nanomedicine, 2021, 16: 8447-8464.
Thangamani S, Younis W, Seleem M N. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections[J]. Sci Rep, 2015, 5: e11596.
張夢(mèng)圓. 硒化烏拉爾甘草多糖及其聯(lián)合抗菌藥物對(duì)革蘭陽性菌的抗菌作用及其機(jī)制的研究[D]. 石河子:石河子大學(xué), 2023.
李朔, 陳鑫, 吳昊, 等. 納米抗菌藥物治療胞內(nèi)菌感染的研究進(jìn)展[J]. 國外醫(yī)藥(抗生素分冊(cè)), 2023, 44(03): 211-216.
Chen D, Lu H, Ma Y, et al. Trends and recent progresses of selenium nanoparticles as novel autophagy regulators for therapeutic development[J]. Front Nutr, 2023, 10: e1116051.
Xiao X, Deng H, Lin X, et al. Selenium nanoparticles: Properties, preparation methods, and therapeutic applications[J]. Chem Biol Interact, 2023, 378: e110483.
Alnassar H S, Helal M H, Askar A A, et al. Pyridine azo disperse dye derivatives and their selenium nanoparticles (SeNPs): synthesis, fastness properties, and antimicrobial evaluations[J]. Int J Nanomedicine, 2019, 14: 7903-7918.
Ridha D M, Al-Awady M J, Abd Al-Zwaid A J, et al. Antibacterial and antibiofilm activities of selenium nanoparticles-antibiotic conjugates against anti-multidrug-resistant bacteria[J]. Int J Pharm, 2024, 658: e124214.
Huang T, Kumari S, Herold H, et al. Enhanced antibacterial activity of Se nanoparticles upon coating with recombinant spider silk protein eADF4(κ16)[J]. Int J Nanomedicine, 2020, 15: 4275-4288.
Tran P A, O’Brien-Simpson N, Palmer J A, et al. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment[J]. Int J Nanomedicine, 2019, 14: 4613-4624.
Afzal B, Naaz H, Ahmedi S, et al. Biosynthesis, characterization and biomedical potential of Arthrospira indica SOSA-4 mediated SeNPs[J]. Bioorg Chem, 2022, 129: e106218.
Chung S, Zhou R, Webster T J. Green synthesized BSA-coated selenium nanoparticles inhibit bacterial growth while promoting mammalian cell growth[J]. Int J Nanomedicine, 2020, 15: 115-124.
Elshaer S L, Shaaban M I. Inhibition of quorum sensing and virulence factors of Pseudomonas aeruginosa by biologically synthesized gold and selenium nanoparticles[J]. Antibiotics (Basel), 2021, 10(12): e1461.
Lin W, Fan S, Liao K, et al. Engineering zinc oxide hybrid selenium nanoparticles for synergetic anti-tuberculosis treatment by combining Mycobacterium tuberculosis killings and host cell immunological inhibition[J]. Front Cell Infect Microbiol, 2022, 12: e1074533.
Li W, Song P, Xin Y, et al. The effects of luminescent CdSe quantum dot-functionalized antimicrobial peptides nanoparticles on antibacterial activity and molecular mechanism[J]. Int J Nanomedicine, 2021, 16: 1849-1867.
Liang X, Zhang S, Gadd G M, et al. Fungal-derived selenium nanoparticles and their potential applications in electroless silver coatings for preventing pin-tract infections[J]. Regen Biomater, 2022, 9(1): rbac013.