摘" " 要" " 目的" " 探討適應(yīng)于中國人的血友病骨關(guān)節(jié)早期超聲半定量評分系統(tǒng)(HEAD-US-C)聯(lián)合臨床指標預(yù)測A型血友病患者膝關(guān)節(jié)出血風險的臨床價值。方法 選取于成都市第三人民醫(yī)院就診的A型血友病患者78例,其中單側(cè)膝關(guān)節(jié)出血21例,膝關(guān)節(jié)未出血57例,采用最小絕對收縮與選擇算子(Lasso)回歸和十折交叉驗證法篩選關(guān)節(jié)出血的最佳預(yù)測因素,將其納入多因素Logistic回歸分析篩選預(yù)測A型血友病患者膝關(guān)節(jié)出血風險的獨立影響因素,基于此構(gòu)建預(yù)測模型并繪制列線圖;繪制受試者工作特征(ROC)曲線評價列線圖模型的區(qū)分度,并采用Bootstrap自助抽樣法(重復(fù)抽樣1000次)予以內(nèi)部驗證;采用Hosmer-Lemeshow擬合優(yōu)度檢驗評價列線圖模型的擬合度,并繪制校準曲線評價其校準度。結(jié)果 經(jīng)Lasso回歸和十折交叉驗證法共篩選出5個最佳預(yù)測因素,分別為按需治療劑量、首次出血年齡及HEAD-US-C評分中的關(guān)節(jié)積液/積血、滑膜增生和軟骨破壞;將其納入多因素Logistic回歸分析,結(jié)果顯示按需治療劑量、關(guān)節(jié)積液/積血、滑膜增生及軟骨破壞均為預(yù)測A型血友病患者膝關(guān)節(jié)出血風險的獨立影響因素(OR=1.213、4.388、5.334、0.509,均Plt;0.05)?;诖藰?gòu)建列線圖模型,ROC曲線分析顯示,列線圖模型預(yù)測A型血友病患者膝關(guān)節(jié)出血風險的曲線下面積為0.934(95%可信區(qū)間:0.879~0.990),Bootstrap自助抽樣法結(jié)果顯示其一致性指數(shù)為0.934,表明其區(qū)分度較好。Hosmer-Lemeshow擬合優(yōu)度檢驗結(jié)果顯示,列線圖模型擬合度較好(χ2=7.437,P=0.490)。校準曲線分析顯示,列線圖模型對A型血友病患者膝關(guān)節(jié)出血風險的預(yù)測概率與實際概率的一致性較好,表明其校準度較高。結(jié)論" " HEAD-US-C聯(lián)合臨床指標可用于預(yù)測A型血友病患者膝關(guān)節(jié)出血風險,具有一定的臨床指導(dǎo)價值。
關(guān)鍵詞" " 超聲檢查;A型血友??;膝關(guān)節(jié)出血;列線圖
[中圖法分類號]R445.1;R554.1" " " [文獻標識碼]A
Clinical value of HEAD-US-C combined with clinical indicators in predicting the risk of knee joint bleeding in patients with
type A hemophilia
WANG Hui1,2,YE Ming2,LI Mingxing1,ZHAO Yuxin2,ZHOU Hong2,CHEN Rong3,NIE Quanyu1,2,ZHOU Yang1,2
1.Department of Ultrasound,the Affiliated Hospital of Southwest Medical University,Luzhou 646000,China.2.Department of Ultrasound,3.Department of Hematology,the Third People’s Hospital of Chengdu,Chengdu 610031,China
ABSTRACT" " Objective" " To investigate the clinical value of haemophilic early arthropathy detection with ultrasound in China(HEAD-US-C) combined with clinical indicators in predicting the risk of knee joint bleeding in patients with type A hemophilia.Methods" " A total of 78 patients with type A hemophilia who from the Third People’s Hospital of Chengdu were selected,including 21 cases with unilateral knee joint bleeding and 57 cases without knee joint bleeding.The least absolute shrinkage and selection operator(Lasso) regression and cross validation were used to obtain the optimal predictive factors for knee joint bleeding,which were incorporated by multivariate Logistic regression analysis to screen the independent influencing factors for knee joint bleeding in patients with type A hemophilia,and the prediction model was constructed and" a nomogram was drawn.Receiver operating characteristic(ROC) curve was drawn to evaluate the discrimination of the nomogram model,and the Bootstrap self-sampling method method(repeated sampling 1000 times) was used for internal validation.The Hosmer-Lemeshow goodness of fit test was used to evaluate the goodness of fit of the nomogram model,and the calibration curve was drawn to evaluate its calibration.Results" " Totally 5 predictive factors were screened out by Lasso regression and cross validation,namely on-demand treatment dose,age of first bleeding and joint effusion,synovial hyperplasia,cartilage destruction in the HEAD-US-C score.The above factors were included into a multivariate Logistic regression analysis,the results showed that on-demand treatment dose,joint effusion,synovial hyperplasia and cartilage destruction were independent influencing factors for knee joint bleeding in patients with type A hemophilia(OR=1.213,4.388,5.334,0.509,all Plt;0.05).The nomogram model was constructed based on the results of multivariate Logistic analysis,ROC curve analysis showed that the area under the curve of the nomogram model for predicting the risk of knee joint bleeding in patients with type A hemophilia was 0.934(95%CI:0.879~0.990),and the Bootstrap self-sampling method showed that C-index was 0.934,indicating that it had good discrimination.The results of the Homer-Lemeshow goodness of fit test showed that the nomogram model fit well(χ2=7.437,P=0.490).The calibration curve showed that the calibration degree was high,and the predicted probability of knee joint bleeding in patients with type A hemophilia predicted by the nomogram model was consistent with the actual probability.Conclusion" " HEAD-US-C combined with clinical indicators can be used to predict the risk of knee joint bleeding in patients with type A hemophilia,which has a certain clinical guidance value.
KEY WORDS" " Ultrasonography;Type A hemophilia;Knee joint bleeding;Nomogram
A型血友病是因缺乏凝血因子Ⅷ(FⅧ)導(dǎo)致的一種罕見X染色體隱性遺傳的先天性疾病[1]。血友病性關(guān)節(jié)病是該類患者晚期嚴重的并發(fā)癥,而膝關(guān)節(jié)作為人體最大、負擔最重的關(guān)節(jié),是最易發(fā)生出血的部位。若膝關(guān)節(jié)反復(fù)出血,可能造成終身殘疾,嚴重影響患者日常生活[2]。如能早期預(yù)測膝關(guān)節(jié)的出血風險,及時制定預(yù)防措施,將降低不良事件發(fā)生率,提高患者生活質(zhì)量。目前臨床主要采用血友病關(guān)節(jié)健康評分(Hemophilia Joint Health Score,HJHS)、世界血友病聯(lián)盟體檢量表及放射學(xué)采用的Pettersson評分來評估患者膝關(guān)節(jié)的健康狀況及破壞程度,但這些方法對評估早期膝關(guān)節(jié)病變的靈敏度和特異度均仍有待提高,部分患者在出現(xiàn)臨床顯著膝關(guān)節(jié)破壞前已有影像學(xué)改變[3]。由Martinoli等[4]制定的血友病骨關(guān)節(jié)早期超聲半定量評分系統(tǒng)(haemophilic early arthropathy detection with ultrasound,HEAD-US)已被證實可提高早期血友病患者關(guān)節(jié)受累情況的檢出率,有助于提高超聲醫(yī)師的檢查效率,規(guī)范檢查標準。但該評分系統(tǒng)缺少對急性期關(guān)節(jié)病變的評估,且對亞臨床狀態(tài)的患者敏感度較低。為此,我國血友病專家楊仁池教授的團隊[5]在HEAD-US的基礎(chǔ)上提出了適用于中國人的血友病骨關(guān)節(jié)早期超聲半定量評分系統(tǒng)(haemophilic early arthropathy detection with ultrasound in China,HEAD-US-C),該評分系統(tǒng)增加了對急性出血期滑膜內(nèi)新生血管及關(guān)節(jié)積液/積血的評估,對檢測膝關(guān)節(jié)出血具有更高的靈敏度,更適用于我國人群。而臨床指標可為A型血友病患者膝關(guān)節(jié)出血的診斷、療效評估和病情變化提供參考。基于此,本研究旨在探討HEAD-US-C聯(lián)合臨床指標預(yù)測A型血友病患者膝關(guān)節(jié)出血風險的臨床價值,為臨床預(yù)防及治療A型血友病出血提供參考。
資料與方法
一、研究對象
選取2022年1~12月于成都市第三人民醫(yī)院就診的A型血友病患者78例,均為男性,年齡10~61歲,平均(27.9±12.6)歲;體質(zhì)量指數(shù)(BMI) 16.0~30.9 kg/m2,平均(22.18±3.5)kg/m2。其中單側(cè)膝關(guān)節(jié)出血21例,膝關(guān)節(jié)未出血57例,未出血患者隨機選擇一側(cè)膝關(guān)節(jié),共計78個膝關(guān)節(jié)納入研究。納入標準:①A型血友病診斷參考《血友病A診療指南(2022年版)》[6];②出血診斷參考文獻[7];③在我院接受治療且均使用同一種藥物[注射用重組人凝血因子Ⅷ(科躍奇),生產(chǎn)廠家:美國Bayer HealthCare" LLC,進口藥品注冊標準:S20180018];④定期進行臨床隨訪且資料齊全。排除標準:患有其他出血性疾病、膝關(guān)節(jié)接受過置換手術(shù)、其他原因?qū)е碌南リP(guān)節(jié)出血、雙側(cè)膝關(guān)節(jié)出血者。本研究經(jīng)醫(yī)院醫(yī)學(xué)倫理委員會批準(批準號:2018-S-21),所有患者均簽署知情同意書。
二、儀器與方法
1.超聲檢查:使用佳能Aplio i700彩色多普勒超聲診斷儀,14L5線陣探頭,頻率5~14 MHz;采用肌骨超聲模式掃查?;颊呷∑脚P位,膝關(guān)節(jié)屈曲30°~40°,將探頭置于其正中矢狀面,探頭下緣位于髕骨上端可見髕上囊切面(K1);將探頭置于髕骨外和內(nèi)1/3處,然后于外側(cè)和內(nèi)側(cè)分別行橫斷面掃查可見髕骨旁隱窩外側(cè)切面(K2a)及髕骨旁隱窩內(nèi)側(cè)切面(K2b);保持膝關(guān)節(jié)過度屈曲,股骨滑車位于髕骨上方,將探頭置于髕骨頭側(cè)可見股骨滑車切面(K3);在保持膝關(guān)節(jié)屈曲20°~30°的情況下外旋,將探頭置于關(guān)節(jié)區(qū)域中間,可見骨邊緣,將探頭置于內(nèi)側(cè)半月板可見股脛關(guān)節(jié)切面(K4)。分別觀察K1~K4切面中關(guān)節(jié)積液/積血、滑膜增生、滑膜新生血管、軟骨及骨皮質(zhì)破壞并評分。
2.HEAD-US-C細化評分標準[6]:本研究最終參考評分為患者出現(xiàn)膝關(guān)節(jié)出血的前一次超聲評分結(jié)果,分別從關(guān)節(jié)積液/積血、滑膜增生、滑膜內(nèi)新生血管、軟骨及骨皮質(zhì)破壞5個方面進行評分。①關(guān)節(jié)積液/積血:關(guān)節(jié)積液/積血lt;3 mm計0分,3~10 mm計1分,≥10~20 mm計2分,≥20 mm計3分;②滑膜增生:滑膜厚度lt;2 mm計0分 ,2~3 mm計1分,≥3~5 mm計2分,≥5 mm 計3 分;③滑膜內(nèi)新生血管:無血流信號計0分,少于3處血流信號計1分,3處及以上血流信號計2分;④ 軟骨破壞:無軟骨破壞計0分,軟骨破壞lt;25%計1分,25%~50%計2分,gt;50%計3分,軟骨全層破壞計4分;⑤骨皮質(zhì)破壞: 無骨皮質(zhì)破壞計0分,軟骨下骨皮質(zhì)輕度不規(guī)則伴/不伴關(guān)節(jié)周圍小骨贅或破壞范圍lt;50%計1分,軟骨下骨皮質(zhì)明顯不規(guī)則和/或顯著的關(guān)節(jié)周圍骨贅形成,破壞范圍≥50%計2分。HEAD-US-C評分均由2名具有5年以上工作經(jīng)驗的超聲醫(yī)師采用雙盲法獨立完成,若意見不一致則與另一具有10年以上工作經(jīng)驗的超聲醫(yī)師討論確定。膝關(guān)節(jié)滑膜增生及關(guān)節(jié)積液/積血評分示意圖見圖1,2。
3.臨床資料收集:包括年齡、BMI、臨床分型、按需治療劑量及首次出血年齡。臨床分型診斷標準[7]:FⅧlt;1%為重型,1%~5%為中型,gt;5%~25%為輕型,gt;25%~45%為亞臨床型。
三、統(tǒng)計學(xué)處理
應(yīng)用SPSS 20.0統(tǒng)計軟件和R語言(4.0.2版本),采用最小絕對收縮與選擇算子(Lasso)回歸和十折交叉驗證法篩選膝關(guān)節(jié)出血風險的最佳預(yù)測因素,將其納入多因素Logistic回歸分析,篩選預(yù)測A型血友病患者膝關(guān)節(jié)出血風險的獨立影響因素并構(gòu)建列線圖模型。繪制受試者工作特征(ROC)曲線評價列線圖模型預(yù)測A型血友病患者膝關(guān)節(jié)出血風險的區(qū)分度,采用Bootstrap自助抽樣法(重復(fù)抽樣1000次)予以內(nèi)部驗證,計算一致性指數(shù)(C-index);采用Hosmer-Lemeshow擬合優(yōu)度檢驗評價列線圖模型的擬合度,并繪制校準曲線評價其校準度。Plt;0.05為差異有統(tǒng)計學(xué)意義。
結(jié)" 果
一、最佳預(yù)測因素篩選
本研究共收集10個可能導(dǎo)致A型血友病患者膝關(guān)節(jié)出血的影響因素,見表1和圖3,4。將10個影響因素納入Lasso回歸,十折交叉驗證法結(jié)果顯示當λ為0.026時,共篩選出5個最佳預(yù)測因素,分別為按需治療劑量、首次出血年齡及HEAD-US-C中關(guān)節(jié)積液/積血、滑膜增生和軟骨破壞。見圖5。
二、多因素Logistic回歸分析
將上述篩選出的5個最佳預(yù)測因素納入多因素Logistic回歸分析,結(jié)果顯示按需治療劑量、滑膜增生、關(guān)節(jié)積液/積血、軟骨破壞均為預(yù)測A型血友病患者膝關(guān)節(jié)出血風險的獨立影響因素(OR=1.213、4.388、5.334、0.509,均Plt;0.05)。見表2。
三、列線圖模型的構(gòu)建及驗證
1.基于上述獨立影響因素繪制列線圖,列線圖總分為240分,每小格代表5分。按需治療劑量40 U/kg時為100分,關(guān)節(jié)積液評分3分時為53分,滑膜增生評分3分時為60分,軟骨破壞評分0分時為27分,總分60~182分,對應(yīng)出血風險概率范圍為0.001~0.95。見圖6。
2.ROC曲線分析顯示,列線圖模型預(yù)測A型血友病患者膝關(guān)節(jié)出血風險的曲線下面積為0.934(95%可信區(qū)間:0.879~0.990)。見圖7。采用Bootstrap法重復(fù)抽樣1000次對該模型進行驗證,結(jié)果顯示C-index為0.934,表明其具有較好的區(qū)分度。Hosmer-Lemeshow擬合優(yōu)度檢驗結(jié)果顯示,列線圖模型擬合度較好(χ2=7.437,P=0.490);校準曲線分析顯示,列線圖模型對A型血友病患者膝關(guān)節(jié)出血風險的預(yù)測概率與實際概率的一致性較好,表明其校準度較高。見圖8。
討" 論
據(jù)我國血友病治療中心協(xié)作網(wǎng)絡(luò)統(tǒng)計,我國約有14萬血友病患者[8],其中約50%未進行有效替代治療的血友病患者于30歲前會出現(xiàn)不同程度的關(guān)節(jié)畸形,導(dǎo)致血友病性關(guān)節(jié)病 (hemophilic arthropathy,HA),及時診斷和治療可以顯著降低這種致畸率[8]。HA是患者關(guān)節(jié)出血導(dǎo)致的最嚴重并發(fā)癥,晚期將進展至慢性滑膜炎,導(dǎo)致軟骨和骨皮質(zhì)破壞,這些過程相互影響,造成關(guān)節(jié)尤其膝關(guān)節(jié)更易出血的惡性循環(huán),導(dǎo)致終身殘疾[9]。因此,早期預(yù)測患者出血風險對改善其預(yù)后極其重要,成為當前研究的熱點。本研究中,出血患者分別有17例(81.0%)出現(xiàn)關(guān)節(jié)積液/積血,21例(100%)出現(xiàn)滑膜增生,顯著高于未出血患者(21.1%、56.1%),說明關(guān)節(jié)積液/積血和滑膜增生可能為膝關(guān)節(jié)出血風險的影響因素,二者均為HEAD-US-C中的檢查項目。已有研究[10]證實HEAD-US-C與臨床血友病關(guān)節(jié)健康評分呈顯著正相關(guān)(r=0.825,Plt;0.001),可有效評估血友病患者關(guān)節(jié)損傷[11]。故本研究基于HEAD-US-C聯(lián)合臨床指標構(gòu)建模型,以期準確預(yù)測A型血友病患者膝關(guān)節(jié)出血風險。
A型血友病為罕見病,影響出血的因素復(fù)雜,近期有研究[12]基于機器學(xué)習模型預(yù)測A型血友病兒童積極參與體育活動導(dǎo)致出血風險,提出需綜合多種因素才能準確預(yù)測體力活動相關(guān)的出血風險。本研究基于以往研究[13-16]收集了可能影響血友病患者膝關(guān)節(jié)出血的10個因素,包括年齡、BMI、臨床分型、按需治療劑量、首次出血年齡及HEAD-US-C評分中關(guān)節(jié)積液/積血、滑膜增生、新生血管、骨皮質(zhì)及軟骨破壞。采用Lasso回歸篩選出最佳預(yù)測因素,再將其納入多因素Logistic回歸分析,結(jié)果顯示滑膜增生和關(guān)節(jié)積液/積血均為預(yù)測A型血友病膝關(guān)節(jié)出血風險的獨立危險因素(OR=5.334、4.388,均Plt;0.05)。提示滑膜增生和關(guān)節(jié)積液/積血的超聲評分每增加1分,患者發(fā)生膝關(guān)節(jié)出血的風險將分別增加約4.3倍和3.4倍。分析原因可能為關(guān)節(jié)反復(fù)出血后,滑膜增生并伴隨溶解酶和炎癥因子(如白介素-1β、白介素-6、腫瘤壞死因子-α等)產(chǎn)生,這些炎癥因子可誘導(dǎo)慢性炎癥,驅(qū)動滑膜血管翳生長[17]。然而,滑膜中的新生血管由于結(jié)構(gòu)不完善、通透性高、炎癥反應(yīng)強烈及機械刺激等因素,易誘發(fā)出血。Foppen等[18]研究也表明滑膜增生為關(guān)節(jié)出血風險的獨立預(yù)測因素(OR=10.1,Plt;0.01)。此外,關(guān)節(jié)積液作為疾病活動期的標志物,由紅細胞、白細胞、纖維蛋白及代謝產(chǎn)物組成,可介導(dǎo)炎癥因子的擴散,并與滑膜增生共同形成促炎環(huán)境[19]。同時,積液/積血將增加關(guān)節(jié)腔的壓力,影響血管通透性,導(dǎo)致血液循環(huán)受阻,從而影響藥物的輸送,降低治療效果,增加出血風險。軟骨破壞在超聲圖像上表現(xiàn)為關(guān)節(jié)間隙變窄,當軟骨完全被破壞時,將導(dǎo)致關(guān)節(jié)面塌陷。本研究結(jié)果顯示,軟骨破壞為預(yù)測A型血友病患者膝關(guān)節(jié)出血風險的獨立保護因素(OR=0.509,Plt;0.05),提示軟骨破壞的超聲評分每增加1分,患者發(fā)生膝關(guān)節(jié)出血的風險將減少49.1%。分析原因為復(fù)發(fā)性關(guān)節(jié)積血導(dǎo)致滑膜巨噬細胞積聚血液分解產(chǎn)物,當超過滑膜的代謝能力時,滑液和滑膜形成的促炎環(huán)境可能誘導(dǎo)鐵離子在軟骨中的沉積,導(dǎo)致鐵離子積聚,進而對軟骨產(chǎn)生持續(xù)的毒性作用,最終導(dǎo)致關(guān)節(jié)畸形,被動減少關(guān)節(jié)活動量,從而降低出血風險[20-21]。然而,關(guān)節(jié)畸形的出現(xiàn)標志著關(guān)節(jié)已經(jīng)發(fā)生不可逆改變,患者的生活質(zhì)量將受到嚴重影響,因此,早期預(yù)測并干預(yù)出血風險顯得尤為重要。
本研究還發(fā)現(xiàn),按需治療劑量為預(yù)測A型血友病膝關(guān)節(jié)出血風險的獨立危險因素(OR=1.213,Plt;0.05),提示患者按需治療劑量每增加1 U,出血風險將增加21.3%。為了及時止血,按需治療藥物的劑量通常較大,但過量的凝血因子可能會增加疾病負擔,并導(dǎo)致較低的凝血酶生成譜[15]。此外,部分患者可能會產(chǎn)生“抑制性抗體”,干擾凝血因子療效,導(dǎo)致治療效果無法達到預(yù)期[22]。同時,按需治療的滯后性、藥物波動性及患者的依從性也可能影響療效,進而增加出血風險。
本研究基于上述獨立影響因素構(gòu)建列線圖模型,嘗試將HEAD-US-C應(yīng)用于預(yù)測模型的構(gòu)建,并細化了不同病變類型對膝關(guān)節(jié)出血風險的影響,結(jié)果顯示列線圖模型預(yù)測A型血友病患者膝關(guān)節(jié)出血的曲線下面積為0.934(95%可信區(qū)間:0.879~0.990);且采用Bootstrap法重復(fù)抽樣1000次對其驗證,結(jié)果顯示C-index為0.934;表明列線圖模型具有較好的區(qū)分度。Hosmer-Lemeshow擬合優(yōu)度檢驗結(jié)果顯示,列線圖模型擬合度較好(χ2=7.437,P=0.490);校準曲線分析顯示,列線圖模型的預(yù)測概率與實際概率的一致性較好,表明其校準度較高。提示列線圖模型具有較好的預(yù)測效能,能夠輔助臨床進行有針對性的綜合評估,做出精準的臨床決策。
綜上所述,HEAD-US-C聯(lián)合臨床指標可用于預(yù)測A型血友病患者膝關(guān)節(jié)出血風險,具有一定的臨床指導(dǎo)價值。但本研究為單中心研究,且樣本量較小,尤其是納入亞臨床和輕癥的血友病患者少,可能會存在選擇偏倚,待今后擴大樣本量進行多中心研究深入探討。
參考文獻
[1] Srivastava A,Santagostino E,Dougall A,et al.WFH Guidelines for the management of hemophilia,3rd edition[J].Haemophilia,2020,26 Suppl 6:1-158.
[2] Zhao L,Yang H,Li Y,et al.Joint status and related risk factors in patients with severe hemophilia A:a single-center cross-sectional study[J].Hematology,2022,27(1):80-87.
[3] Mabrouk AG,Abbas M,Ezzat DA,et al.Hemophilia joint health score,functional independence score in hemophilia,and pettersson score in pediatric patients with severe hemophilia A[J].J Pediatr Hematol Oncol,2023,45(6):344-348.
[4] Martinoli C,Della Casa Alberioghi O,Di Minno G,et al.Development and definition of a simplified scanning procedure and scoring method for haemophilia early arthropathy detection with ultrasound(HEAD-US)[J].Thromb Haemost,2013,109(6):1170-1179.
[5] Li J,Guo XJ,Ding XL,et al.Clinical application and optimization of HEAD-US quantitative ultrasound assessment scale for hemophilic arthropath[J].Zhonghua Xue Ye Xue Za Zhi,2018,39(2):132-136.
[6] 中華人民共和國國家衛(wèi)生健康委員會.血友病A診療指南(2022年版)[J].全科醫(yī)學(xué)臨床與教育,2022,20(7):579-583.
[7] 丁秋蘭,王學(xué)鋒,王鴻利,等.血友病診斷和治療的專家共識[J].臨床血液學(xué)雜志,2010,23(1):49-51.
[8] Tran H,Yang R,F(xiàn)ischer K,et al.The importance and evolution of bleeding disorder registries[J].Haemophilia,2024,30 Suppl 3:21-28.
[9] Pulles AE,Mastbergen SC,Schutgens RE,et al.Pathophysiology of hemophilic arthropathy and potential targets for therapy[J].Pharmacol Res,2017,115:192-199.
[10] Fang Y,Guo Y,Qin T,et al.The correlation between the HEAD-US-C score and HJHS in hemophilic arthropathy of the knee[J].J Ultrasound Med,2023,42(4):859-868.
[11] Li J,Liu W,Guo XJ,et al.HEAD-US-C quantitative ultrasound assessment scale in evaluation of joint damage in patients with moderate or severe hemophilia A received on-demand versus prophylaxis replacement therapy[J].Zhonghua Xue Ye Xue Za Zhi,2018,39(10):817-821.
[12] Ai D,Cui C,Tang Y,et al.Machine learning model for predicting physical activity related bleeding risk in Chinese boys with haemophilia A[J].Thromb Res,2023,232:43-53.
[13] Cuesta-Barriuso R,Donoso-úbeda E,Mero?o-Gallut J,et al.Hemophilic arthropathy:barriers to early diagnosis and management[J].J Blood Med,2022,13:589-601.
[14] van Leeuwen FHP,van Bergen EDP,Timmer MA,et al.Magnetic resonance imaging evidence for subclinical joint bleeding in a Dutch population of people with severe hemophilia on prophylaxis[J].J Thromb Haemost,2023,21(5):1156-1163.
[15] Verhagen MTA,van Balen EC,Blijlevens NWA,et al.Patients with moderate hemophilia A and B with a severe bleeding phenotype have an increased burden of disease[J].J Thromb Haemost,2024,22(1):152-162.
[16] Chang CY,Li TY,Cheng SN,et al.Obesity and overweight in patients with hemophilia:prevalence by age,clinical correlates,and impact on joint bleeding[J].J Chin Med Assoc,2019,82(4):289-294.
[17] Goker B,Caglar O,Kinikli GI,et al.Postoperative bleeding adversely affects total knee arthroplasty outcomes in hemophilia[J].Knee,2022,39:261-268.
[18] Foppen W,van der Schaaf IC,Beek FJA,et al.MRI predicts 5-year joint bleeding and development of arthropathy on radiographs in hemophilia[J].Blood Adv,2020,4(1):113-121.
[19] Di Minno MND,Napolitano M,Giuffrida AC,et al.Diagnosis and treatment of chronic synovitis in patients with haemophilia:consensus statements from the Italian Association of Haemophilia Centres[J].Br J Haematol,2022,196(4):871-883.
[20] Gualtierotti R,Solimeno LP,Peyvandi F.Hemophilic arthropathy:current knowledge and future perspectives[J].J Thromb Haemost,2021,19(9):2112-2121.
[21] von Drygalski A,Barnes RFW,Jang H,et al.Advanced magnetic resonance imaging of cartilage components in haemophilic joints reveals that cartilage hemosiderin correlates with joint deterioration[J].Haemophilia,2019,25(5):851-858.
[22] Olasupo OO,Noronha N,Lowe MS,et al.Non-clotting factor therapies for preventing bleeds in people with congenital hemophilia A or B[J].Cochrane Database Syst Rev,2024,2(2):CD014544.
(收稿日期:2024-10-29)