摘 要:【目的】探究不同灌水量對基質(zhì)栽培模式下軟棗獼猴桃(中紅貝7號)生長動態(tài)的影響,篩選出適宜軟棗獼猴桃生長的水分管理方案,以提升軟棗獼猴桃的生長性能,為優(yōu)化軟棗獼猴桃基質(zhì)栽培提供科學(xué)供水依據(jù)和實(shí)用建議?!痉椒ā恳曰|(zhì)栽培的1年生中紅貝7號軟棗獼猴桃為試材,設(shè)置基質(zhì)持水量(saturated moisture content,SMC)的60%、70%、80%、90%、100%、110%、120%共7個(gè)處理,成活后測量其主干、主蔓、結(jié)果母蔓以及葉片相關(guān)生長指標(biāo),分析凈增長量與不同供水量的關(guān)聯(lián)性?!窘Y(jié)果】主干和主蔓隨基質(zhì)持水量的提高均顯著增加(p<0.05),基質(zhì)持水量為100%、110%、120%時(shí)效果明顯,主干粗度凈增長達(dá)極顯著水平(p<0.01),尤以基質(zhì)持水量110%處理的效果最佳。結(jié)果母蔓長度凈增長量與主干增長趨勢一致,但在基質(zhì)持水量60%與120%處理的無顯著差異。結(jié)果母蔓粗度凈增長量隨基質(zhì)持水量的提高而增加,低灌溉量處理(60%、70%、80%)與充足灌溉處理(100%、110%、120%)存在顯著差異。葉片面積凈增長量表明,低灌水量處理組的葉片表現(xiàn)優(yōu)于高灌水量處理組?!窘Y(jié)論】不同供水量對軟棗獼猴桃植株生長影響較大,綜合比較測量指標(biāo)的凈增長量,110%、120%兩種灌溉量效果明顯。研究結(jié)果為基質(zhì)栽培軟棗獼猴桃適宜的水分管理方案提供了參考。
關(guān)鍵詞:軟棗獼猴桃;水分供應(yīng);基質(zhì)栽培;生長特性
中圖分類號:S663.4 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2025)01-0207-09
Effect of different water supply on the growth of kiwiberry vine cultivated in substrate
LI Hao1, 2, 3, SUN Xiaoxu2, 3#, QI Xiujuan2, 3, GU Hong2, 3, LI Lan2, 3, CHENG Dawei2, 3, CHEN Jinyong2, 3*, YANG Yingjun1*
(1College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, Henan, China; 2Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences/National Key Laboratory for Germplasm Innovation amp; Utilization of Horticultural Crops/National Innovation Sub-Center for Digital Planting Industry (Orchard), Zhengzhou 450009, Henan, China; 3Zhongyuan Research Center, CAAS, Xinxiang 453000, Henan, China)
Abstract: 【Objective】 This study aimed to investigate the effects of different levels of irrigation on the growth dynamics of Zhong Hong Bei 7 hao kiwiberry (Actinidia arguta) vine under substrate cultivation. The primary goal was to identify the most suitable water management strategy to enhance the growth performance of the kiwiberry. By evaluating various irrigation strategies, the study sought to provide scientific recommendations and practical guidelines for optimizing substrate cultivation of kiwiberry. 【Methods】 One-year-old kiwiberry plants were selected for the experiment. On March 12, 2023, the kiwiberry plants grown from nursery bags were transplanted into a rain-shelter, using cylindrical nutrient bags with a diameter of 60 cm and a height of 60 cm for substrate cultivation. The planting density was 2 m × 3 m, and the plants were trained into a single main trunk with two lateral vines in a pinnate shape. The plants were subjected to seven irrigation treatments based on substrate maximum water holding capacity (saturated moisture content, SMC): 60%, 70%, 80%, 90%, 100%, 110%, and 120%. Each treatment was replicated three times to ensure statistical validity. The survival rates were recorded after planting, and growth metrics such as the length and thickness of the main trunk, primary vine, and fruiting branches, as well as leaves size, were measured 84 days after planting. The total net growth and growth increments between measurement intervals were compared across different treatments to assess the impact of irrigation levels on kiwifruit growth. The data analysis was conducted using One way ANOVA and LSD multiple comparison methods to determine the significant effects of different irrigation treatments on growth parameters. 【Results】 The substrate moisture levels significantly affected the growth performance of kiwiberry. The net growth of the main trunk and primary vine increased significantly with higher substrate moisture levels (p<0.05). Among the treatments, SMC-100%, SMC-110%, and SMC-120% significantly increased the net growth of the main stem’s diameter (p<0.01). The SMC-110% treatment yielded the best results. The net growth in the diameter of the main stem and primary vine showed significant increases during T2 (mid to late June), T4 (late July to mid-August), and T5 (late August to mid-September). The net growth in length of the fruiting branches showed a trend of initially increasing and then decreasing with the increase of substrate moisture levels. No significant differences were observed between the SMC-60% and SMC-120% treatments, indicating that the impact of irrigation levels on the length growth of the fruiting vine was quite complex. In contrast, the net growth in thickness of the fruiting vine increased significantly with the higher substrate moisture levels, with notable differences between the low irrigation treatments (e.g., SMC-60%, SMC-70%, SMC-80%) and sufficient irrigation treatments (e.g., SMC-100%, SMC-110%, SMC-120%) (p<0.05).The net growth in the diameter of the fruiting branch showed significant increase during T3 (early July) and T4 (July to mid-August). Regarding the leaf growth indicators, the lower irrigation treatments (e.g., SMC-60%, SMC-70%, SMC-80%) resulted in better leaf performance compared with the higher irrigation treatments (e.g., SMC-100%, SMC-110%, SMC-120%). The periods T2 and T6 were identified as phases of rapid growth for the leaves. The SPAD values and nitrogen content of the leaves were also affected to varying degrees by different substrate moisture levels. Within the same treatment, the trends in the leaf SPAD values and nitrogen content were generally consistent. Notably, leaves under low moisture treatments showed a more rapid response in changes to the SPAD values and nitrogen content. 【Conclusion】 The different irrigation levels had a significant impact on the growth of kiwiberry. SMC-110% and SMC-120% irrigation levels had biggest effect on the net growth compared with other treatments. SMC-110% or SMC-120% irrigation levels should be adopted as water management strategies in practical cultivation to optimize the growth of kiwiberry.
Key words: Kiwiberry; Water supply; Substrate cultivation; Growth characteristic
軟棗獼猴桃(Actinidia arguta Sieb. et Zucc.)為獼猴桃科獼猴桃屬的多年生雌雄異株藤本植物[1],其果實(shí)表皮光滑無毛、營養(yǎng)豐富、風(fēng)味獨(dú)特,具有較高的食用、藥用及經(jīng)濟(jì)價(jià)值,近年來已逐漸成為各國競相推廣的新興果樹種類。隨著產(chǎn)業(yè)快速發(fā)展,種苗質(zhì)量不高、栽植成活率低、管理水平低下、產(chǎn)量和品質(zhì)不高等問題日益成為軟棗獼猴桃生產(chǎn)中的限制因素[2]。另外,軟棗獼猴桃的根為肉質(zhì)根,根系較淺,對水分需求更為嚴(yán)苛[2-4],如何合理進(jìn)行水分管理、提高水分利用率、制定合理灌溉方案正在成為軟棗獼猴桃產(chǎn)業(yè)關(guān)注的熱點(diǎn)。
作為一個(gè)傳統(tǒng)農(nóng)業(yè)大國,中國農(nóng)業(yè)用水占全部用水總量的80%以上[5],但長期存在灌溉水分利用率偏低的問題,僅45%[6],造成水資源極大浪費(fèi),而且還有多地常因干旱缺水造成農(nóng)業(yè)大幅減產(chǎn)甚至絕收,可見科學(xué)精準(zhǔn)用水對保證作物正常生長、高產(chǎn)穩(wěn)產(chǎn)、穩(wěn)定品質(zhì)具有重要意義。
近年來興起的基質(zhì)栽培技術(shù)與傳統(tǒng)技術(shù)相比具有高水分利用率、高空間利用率、操作便捷等特點(diǎn)[7-8],該技術(shù)不僅大大減少了人力資源投入,還克服了土壤栽培引發(fā)的一系列環(huán)境問題[9];不但可根據(jù)作物特點(diǎn)對生長環(huán)境進(jìn)行合理調(diào)控、優(yōu)化生產(chǎn)環(huán)境、提高生產(chǎn)力[10],還可根據(jù)作物特點(diǎn)、生態(tài)環(huán)境等因素,精準(zhǔn)控制生長所需水量及時(shí)間[11-12]。科學(xué)灌溉制度的制定和水資源高效利用,推動傳統(tǒng)農(nóng)業(yè)向數(shù)字化、精準(zhǔn)化和智慧化的變革已成為農(nóng)業(yè)可持續(xù)發(fā)展的必由之路[13-18]。
筆者在本研究中通過7種不同水分供應(yīng)處理,研究其對基質(zhì)栽培軟棗獼猴桃的干、蔓、葉生長的影響,期望篩選出適宜的水分供應(yīng)方案,為制定基質(zhì)栽培軟棗獼猴桃合理的灌溉方案提供理論依據(jù)。
1 材料和方法
1.1 試驗(yàn)地點(diǎn)
試驗(yàn)于2023年在中國農(nóng)業(yè)科學(xué)院鄭州果樹研究所軟棗獼猴桃試驗(yàn)園(113°06′ E,34°07′ N)進(jìn)行。
1.2 試驗(yàn)材料
供試材料為中國農(nóng)業(yè)科學(xué)院鄭州果樹研究所選育的軟棗獼猴桃品種中紅貝7號(A. arguta ‘Zhong Hong Bei No. 7’)1年生植株,2023年3月12日將前一年繁育的以野生軟棗獼猴桃為砧木嫁接的中紅貝7號營養(yǎng)袋苗定植在試驗(yàn)園,采用直徑60 cm、高度60 cm、厚度1.3 mm的黑色無紡布圓柱形營養(yǎng)袋進(jìn)行基質(zhì)栽培(圖1),栽培基質(zhì)采用普通育苗營養(yǎng)土與草炭按照體積比1∶1均勻混合,株行距為2 m×3 m,采用一干兩蔓羽狀整形。
1.3 試驗(yàn)設(shè)計(jì)
試驗(yàn)共設(shè)計(jì)7個(gè)供水量處理,分別為基質(zhì)持水量(saturated moisture content,SMC)的60%(SMC-60%)、70%(SMC-70%)、80%(SMC-80%)、90%(SMC-90%)、100%(SMC-100%)、110%(SMC-110%)、120%(SMC-120%),單株小區(qū),3次重復(fù)。使用水肥一體化智能系統(tǒng)設(shè)定灌溉時(shí)間,使用不同流量滴箭區(qū)分灌水量,統(tǒng)一進(jìn)行灌溉管理。使用托普云農(nóng)TP-WSB-02溫室寶(溫室環(huán)境監(jiān)測儀)監(jiān)控基質(zhì)內(nèi)溫濕度等參數(shù)情況,當(dāng)基質(zhì)含水量低于設(shè)定值時(shí)進(jìn)行補(bǔ)水。
1.4 測定指標(biāo)與方法
軟棗獼猴桃試材兩條主蔓南北分布,主蔓上發(fā)出的側(cè)蔓向主蔓兩側(cè)生長,作為下一年的結(jié)果母蔓。側(cè)蔓長至1.5 m時(shí)進(jìn)行摘心增粗、促進(jìn)花芽分化。營養(yǎng)袋苗定植84 d后開始測量,主要測定主干、主蔓、結(jié)果母蔓和葉片生長情況(圖1),在固定位置做好標(biāo)記,每次均在標(biāo)記位置進(jìn)行測量。兩次測量間隔25 d,一年共測量6次(6—10月),標(biāo)記為T1~T6。
植株生長特性測定:對試驗(yàn)株主干、南北兩條主蔓基部1 cm處進(jìn)行標(biāo)記,隨后對所標(biāo)記主蔓由基部至梢頭,依照發(fā)梢順序在第1~2條、第3~4條以及第5~6條位置上各隨機(jī)標(biāo)記1條結(jié)果母蔓;使用卷尺和數(shù)顯游標(biāo)卡尺分別測量主干、主蔓和結(jié)果母蔓的長度以及基部1 cm處的莖粗度,統(tǒng)計(jì)凈增長量。
葉片功能測定:在每條標(biāo)記結(jié)果母蔓上的第3~6枚葉片中隨機(jī)選取1枚葉片進(jìn)行標(biāo)記,使用托普云農(nóng)TYS-4N(FO2)植物養(yǎng)分測定儀測量葉片大小、厚度、葉綠素相對含量(SPAD值)、氮含量指標(biāo)等。
1.5 數(shù)據(jù)處理與分析
采用Microsoft Excel 2019統(tǒng)計(jì)分析試驗(yàn)數(shù)據(jù),使用IBM SPSS Statistics 23.0進(jìn)行差異顯著性檢驗(yàn)(LSD法,p<0.05)和相關(guān)性分析,使用Origin 2019軟件作圖。
2 結(jié)果與分析
2.1 不同供水量對軟棗獼猴桃1年生植株主干粗度的影響
軟棗獼猴桃主干粗度凈增長量隨基質(zhì)持水量提高在SMC-110%時(shí)達(dá)到最大(圖2),SMC-60%處理的增長幅度最小,凈增長量差異顯著(p<0.01)。主干粗度凈增長在SMC-110%達(dá)到最大后開始下降,相較于其他處理分別提高了188%(SMC-60%)、137%(SMC-70%)、106%(SMC-80%)、28%(SMC-90%)、14%(SMC-100%)、30%(SMC-120%)。
對比每兩次調(diào)查間指標(biāo)凈增長量(圖3),基質(zhì)持水量SMC-60%以上時(shí),試驗(yàn)植株在T2(6月中下旬)、T4(7月下旬至8月中旬)、T5(8月下旬至9月中旬)時(shí)主干粗度凈增長量漲幅較大,為快速生長期。T3(7月初)、T6(10月下旬)時(shí)漲幅較小,為緩慢增長期。基質(zhì)含水量較低情況下即在SMC-60%時(shí),僅在T2時(shí)有較大增長。
2.2 不同供水量對中紅貝7號軟棗獼猴桃主蔓長度和粗度的影響
軟棗獼猴桃主蔓凈增長量隨基質(zhì)持水量提高呈上升趨勢(圖4),SMC-110%和SMC-120%處理的主蔓長度和粗度凈增長量相較于其他處理顯著增加,不同處理間存在顯著差異(p<0.05)。軟棗獼猴桃主蔓長度和粗度的凈增長量均在SMC-120%達(dá)到最大。
對比每兩次調(diào)查間主蔓長度、粗度凈增長量(圖5),在T2(6月中下旬)、T4(7月下旬至8月中旬)、T5(8月下旬至9月中旬)時(shí)漲幅較大,此為快速生長期。而在T3(7月初)、T6(10月下旬)漲幅相對較小,為緩慢生長期。
2.3 不同供水量對軟棗獼猴桃植株結(jié)果母蔓長度和粗度的影響
當(dāng)結(jié)果母蔓長至1.5 m后進(jìn)行摘心或剪梢,抑制其生長。在分析該指標(biāo)時(shí)選取摘心前一次數(shù)據(jù)。結(jié)果母蔓長度的凈增長量趨勢隨基質(zhì)持水量增加呈現(xiàn)先上升后下降的趨勢(圖6),SMC-100%最大,不同供水量處理間均無顯著差異。結(jié)果母蔓粗度的凈增長量隨著基質(zhì)持水量的提高而提高,SMC-60%表現(xiàn)最差,SMC-120%表現(xiàn)最好,低供水量處理(SMC-60%、SMC-70%、SMC-80%)與充足水分處理(SMC-100%、SMC-110%、SMC-120%)間存在顯著差異。
如圖7所示,結(jié)果母蔓粗度凈增長量在T3、T4(7月至8月中旬)時(shí)漲幅較大,為母蔓粗度的快速增長期。在T2(6月中下旬)、T5(8月下旬至9月中旬)、T6(10月下旬)時(shí)漲幅相對較小,為緩慢生長期。
2.4 不同供水量對軟棗獼猴桃葉片生長及生理特性的影響
各供水量處理下,葉片面積、厚度均呈上升趨勢,其中SMC-80%處理的葉片面積凈增長量最大,SMC-110%的最小。低供水量(SMC-60%、SMC-70%、SMC-80%、SMC-90%)處理的葉厚凈增長量整體大于充足水分(SMC-100%、SMC-110%、SMC-120%)處理的。
不同處理間葉片厚度凈增長量無顯著差異,在基質(zhì)持水量較低(SMC-60%、SMC-70%、SMC-80%)時(shí)該指標(biāo)大于充足水分(SMC-100%、SMC-110%、SMC-120%)情況下的凈增長量(圖8)。對比每兩次葉面積、厚度凈增長量(圖9),葉面積在T2、T3、T6時(shí)漲幅較大,為葉面積快速生長期,葉片厚度在T2、T5、T6時(shí)漲幅較大,為葉片厚度的快速生長期。綜上,T2(6月中下旬)、T6(10月下旬)時(shí)為葉片的快速生長期。
圖10可以看出不同水分處理下的葉片葉綠素相對含量(SPAD值)、氮含量在第一次(T1)測量時(shí)數(shù)值差異較大,后均呈快速上升趨勢;不同水分處理下葉片SPAD值和氮含量分別在T2、T3時(shí)緩慢下降,最后分別在T5或T6時(shí)緩慢上升并處在較高水平。T6時(shí)各處理間SPAD值、氮含量差異不明顯,且同一處理下葉片SPAD值和氮含量變化趨勢基本一致。
3 討 論
水是植物細(xì)胞的主要組成部分,水分通過根系吸收直接參與植物代謝活動,是植物進(jìn)行光合作用的重要原料;同時(shí)充當(dāng)所需礦質(zhì)元素的運(yùn)輸載體,為植物提供受壓支持并促進(jìn)物質(zhì)運(yùn)輸。適宜的水分供應(yīng)有利于植物正常的生理活動與代謝,而水分過多會對植物生理機(jī)制造成傷害[19-22]。同樣,存在嚴(yán)重水分脅迫時(shí),也會導(dǎo)致長勢減弱、莖蔓生長受到抑制[23-25];因此,某種程度上來說植物的高度和粗度等外觀性狀可以直觀反映出水分的供應(yīng)狀況[26]。
在本研究中,1年生中紅貝7號軟棗獼猴桃在基質(zhì)水分含量較低或超過基質(zhì)持水量時(shí)的主干、主蔓以及結(jié)果母蔓的長度和粗度等外觀性狀均受到明顯影響。當(dāng)基質(zhì)持水量較高如在120%時(shí),主蔓的長度和粗度以及母蔓粗度凈增長量最大。而主干粗凈增長量比最大凈增長量少了23%,母蔓長凈增長量比最大凈增長量少了8.3%。在低基質(zhì)持水量如在60%時(shí),此時(shí)植株生長凈增長量最??;相較于最大凈增長量主干粗度、主蔓以及母蔓長度和粗度分別減少了65%、50%和21%以及18%和31%。這與前人在桃[27]、刺槐[28]上的研究結(jié)果類似。同時(shí),低水分供應(yīng)導(dǎo)致葉片正常功能會受到一定程度的損害,葉綠素含量減少、光合速率降低,且降低幅度與水分脅迫的嚴(yán)重程度呈正相關(guān)[29];輕度干旱對生長無明顯影響,反而會提高作物的水分利用率和光合速率[30-33]。這與本研究中葉片表現(xiàn)結(jié)果一致,較低水分處理下的葉片優(yōu)于充足水分處理時(shí)的生長表現(xiàn),葉片SPAD值與氮含量受不同程度影響,其趨勢表明低水分處理的葉片SPAD值和氮含量變化響應(yīng)更為迅速。而葉面積、葉片厚度凈增長量在不同供水量條件下,并未遵循隨基質(zhì)水分提高而逐步提高的規(guī)律,這是否與試材使用遮陽網(wǎng)防曬有關(guān),還需進(jìn)一步探究。
4 結(jié) 論
不同供水量對1年生基質(zhì)栽培中紅貝7號軟棗獼猴桃的生長影響差異顯著,在基質(zhì)含水量110%、120%處理下主干、蔓、母蔓長度、粗度和葉片等生長指標(biāo)凈增長量綜合表現(xiàn)較好,可作為基質(zhì)栽培軟棗獼猴桃適宜的水分管理方案。
參考文獻(xiàn) References:
[1] PINTO D,DELERUE-MATOS C,RODRIGUES F. Bioactivity,phytochemical profile and pro-healthy properties of Actinidia arguta:A review[J]. Food Research International,2020,136:109449.
[2] 齊秀娟,郭丹丹,王然,鐘云鵬,方金豹. 我國獼猴桃產(chǎn)業(yè)發(fā)展現(xiàn)狀及對策建議[J]. 果樹學(xué)報(bào),2020,37(5):754-763.
QI Xiujuan,GUO Dandan,WANG Ran,ZHONG Yunpeng,F(xiàn)ANG Jinbao. Development status and suggestions on Chinese kiwifruit industry[J]. Journal of Fruit Science,2020,37(5):754-763.
[3] 張效星,樊毅,崔寧博,李晨,胡笑濤,龔道枝. 不同灌水量對滴灌獼猴桃光合、產(chǎn)量與水分利用效率的影響[J]. 灌溉排水學(xué)報(bào),2019,38(1):1-7.
ZHANG Xiaoxing,F(xiàn)AN Yi,CUI Ningbo,LI Chen,HU Xiaotao,GONG Daozhi. The effects of drip-irrigation amount on photosynthesis,yield and water use efficiency of kiwifruit[J]. Journal of Irrigation and Drainage,2019,38(1):1-7.
[4] 甘雨康,施浩然,崔寧博,康佳輝. 不同微灌方式下水分調(diào)控對獼猴桃光合特性及產(chǎn)量的影響[J]. 灌溉排水學(xué)報(bào),2020,39(4):17-25.
GAN Yukang,SHI Haoran,CUI Ningbo,KANG Jiahui. Effects of water regulation on photosynthetic characteristics and yield of kiwifruit leaves under different micro-irrigation methods[J]. Journal of Irrigation and Drainage,2020,39(4):17-25.
[5] 羅良國,任愛勝,王瑞梅,郭鴻鵬. 我國農(nóng)業(yè)可持續(xù)發(fā)展的水危機(jī)及廣泛開展節(jié)水農(nóng)業(yè)前景初探[J]. 節(jié)水灌溉,2000(5):6-9.
LUO Liangguo,REN Aisheng,WANG Ruimei,GUO Hongpeng. An elementary study on water resource crisis and agricultural WS foreground for agriculture sustainable development in China[J]. Water Saving Irrigation,2000(5):6-9.
[6] 梁金霞. 現(xiàn)代節(jié)水農(nóng)業(yè)技術(shù)探討[J]. 現(xiàn)代農(nóng)業(yè)科技,2022(23):139-142.
LIANG Jinxia. Discussion on modern water-saving agricultural technology[J]. Modern Agricultural Science and Technology,2022(23):139-142.
[7] 謝小玉,鄒志榮,江雪飛,妙曉莉. 中國蔬菜無土栽培基質(zhì)研究進(jìn)展[J]. 中國農(nóng)學(xué)通報(bào),2005,21(6):280-283.
XIE Xiaoyu,ZOU Zhirong,JIANG Xuefei,MIAO Xiaoli. Research advances of substrates in soil-less culture of vegetables in China[J]. Chinese Agricultural Science Bulletin,2005,21(6):280-283.
[8] 晏瓊,劉曉宇,虞昊安,李翎慈,劉瀟漪,張育新,戴昊鳴,陳斯琳,成喜雨. 植物無土栽培技術(shù)研究進(jìn)展[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào),2022,27(5):1-11.
YAN Qiong,LIU Xiaoyu,YU Haoan,LI Lingci,LIU Xiaoyi,ZHANG Yuxin,DAI Haoming,CHEN Silin,CHENG Xiyu. Recent advances in plant soilless cultivation[J]. Journal of China Agricultural University,2022,27(5):1-11.
[9] 孫錦,李謙盛,岳冬,高洪波,康云艷,田婧,李晶,郭世榮. 國內(nèi)外無土栽培技術(shù)研究現(xiàn)狀與應(yīng)用前景[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2022,45(5):898-915.
SUN Jin,LI Qiansheng,YUE Dong,GAO Hongbo,KANG Yunyan,TIAN Jing,LI Jing,GUO Shirong. Research status and application prospects of soilless culture technology in the world[J]. Journal of Nanjing Agricultural University,2022,45(5):898-915.
[10] 殷學(xué)云,張國森,劉華. 戈壁日光溫室西葫蘆—菜豆有機(jī)生態(tài)型無土栽培技術(shù)[J]. 中國蔬菜,2020(11):113-115.
YIN Xueyun,ZHANG Guosen,LIU Hua. Gobi solar greenhouse zucchini-bean organic ecotype soilless cultivation technology[J]. China Vegetables,2020(11):113-115.
[11] 張曉斌,馮俊杰,劉楊,韓啟彪,婁和,王明. 灌溉流量自調(diào)節(jié)閥的結(jié)構(gòu)設(shè)計(jì)與性能分析[J]. 節(jié)水灌溉,2020(6):56-60.
ZHANG Xiaobin,F(xiàn)ENG Junjie,LIU Yang,HAN Qibiao,LOU He,WANG Ming. Structural design and performance analysis of irrigation flow auto-regulating valve[J]. Water Saving Irrigation,2020(6):56-60.
[12] 崔文軍,李大山,劉祖貴,張寄陽,高陽,申孝軍. 幾種墑情監(jiān)測設(shè)備的測量精度對比研究[J]. 中國農(nóng)村水利水電,2014(5):61-63.
CUI Wenjun,LI Dashan,LIU Zugui,ZHANG Jiyang,GAO Yang,SHEN Xiaojun. An analysis of measuring accuracy of different kinds of soil moisture monitoring equipment[J]. China Rural Water and Hydropower,2014(5):61-63.
[13] ALIZADEH Z,GHASEMNEZHAD M,SANGANI M F,ATAK A. The effects of high concentration of bicarbonate applications on kiwifruit genotypes with different ploidy levels on some growth parameters of leaves[J]. Turkish Journal of Agriculture and Forestry,2023,47(4):436-447.
[14] PUROHIT S,RAWAT J M,PATHAK V K,SINGH D K,RAWAT B. A hydroponic-based efficient hardening protocol for in vitro raised commercial kiwifruit (Actinidia deliciosa)[J]. In Vitro Cellular amp; Developmental Biology - Plant,2021,57(3):541-550.
[15] PENG D D,CHEN D G,XU K W,PENTTINEN P,YOU H Y,LIAO H P,YANG R,CHEN Y X. Optimal substrate moisture content for kiwifruit (Actinidia valvata Dunn) seedling growth based on analyses of biomass,antioxidant defense,and photosynthetic response[J]. Agronomy,2023,13(7):1858.
[16] WOZNICKI T,KUSNIEREK K,VANDECASTEELE B,S?NSTEBY A. Reuse of coir,peat,and wood fiber in strawberry production[J]. Frontiers in Plant Science,2024,14:1307240.
[17] ?IRIN U,ERTAN E,ERTAN B. Growth substrates and fig nursery tree production[J]. Scientia Agricola,2010,67(6):633-638.
[18] 李智琪,李晴,董相潔,乜蘭春,趙文圣,趙麗平,王磊,劉淑芹. 以醋糟為主要成分的無土栽培基質(zhì)篩選及其對甜瓜生長和果實(shí)品質(zhì)的影響[J]. 山東農(nóng)業(yè)科學(xué),2023,55(9):72-78.
LI Zhiqi,LI Qing,DONG Xiangjie,NIE Lanchun,ZHAO Wensheng,ZHAO Liping,WANG Lei,LIU Shuqin. Selection of soilless cultivation substrate with vinegar dregs as main component and its effect on melon growth and fruit quality[J]. Shandong Agricultural Sciences,2023,55(9):72-78.
[19] 鄧輝茗,龍聰穎,蔡仕珍,宋宇,鄢如霞,車亦然,王長見,肖瑤. 不同水分脅迫對綿毛水蘇幼苗形態(tài)和生理特性的影響[J]. 西北植物學(xué)報(bào),2018,38(6):1099-1108.
DENG Huiming,LONG Congying,CAI Shizhen,SONG Yu,YAN Ruxia,CHE Yiran,WANG Changjian,XIAO Yao. Morphology and physiological characteristics of Stachys lanata seedling under water stress[J]. Acta Botanica Boreali-Occidentalia Sinica,2018,38(6):1099-1108.
[20] 王佳嵐,李春杰. 不同水分梯度對堿茅農(nóng)藝性狀的影響[J]. 草地學(xué)報(bào),2021,29(7):1584-1588.
WANG Jialan,LI Chunjie. Effect of different water gradients on agronomic characters of Puccinellia distans[J]. Acta Agrestia Sinica,2021,29(7):1584-1588.
[21] 鐘海霞,張付春,潘明啟,張雯,韓守安,謝輝,王敏,周曉明,艾爾買克·才卡斯木,伍新宇. 不同灌水量對赤霞珠葡萄光合作用的影響[J]. 新疆農(nóng)業(yè)科學(xué),2020,57(3):492-497.
ZHONG Haixia,ZHANG Fuchun,PAN Mingqi,ZHANG Wen,HAN Shouan,XIE Hui,WANG Min,ZHOU Xiaoming,Ermek·Cakasim,WU Xinyu. Effects of different irrigation amounts on photosynthesis of Cabernet Sauvignon grapes[J]. Xinjiang Agricultural Sciences,2020,57(3):492-497.
[22] CALVO F E,TRENTACOSTE E R,SILVENTE S T. Vegetative growth,yield,and crop water productivity response to different irrigation regimes in high density walnut orchards (Juglans regia L.) in a semi-arid environment in Argentina[J]. Agricultural Water Management,2022,274:107969.
[23] HUSSAIN M,MALIK M A,F(xiàn)AROOQ M,ASHRAF M Y,CHEEMA M A. Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower[J]. Journal of Agronomy and Crop Science,2008,194(3):193-199.
[24] 張玉,冷海楠,曹宏杰,徐明怡. 干旱脅迫對植物的影響研究[J]. 黑龍江科學(xué),2022,13(14):22-24.
ZHANG Yu,LENG Hainan,CAO Hongjie,XU Mingyi. Study on the influence of drought stress on botany[J]. Heilongjiang Science,2022,13(14):22-24.
[25] 馬福林,馬玉花. 干旱脅迫對植物的影響及植物的響應(yīng)機(jī)制[J]. 寧夏大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,43(4):391-399.
MA Fulin,MA Yuhua. Effect of drought stress on plants and their response mechanism[J]. Journal of Ningxia University (Natural Science Edition),2022,43(4):391-399.
[26] 陸日惠,徐力興,周曉星,盛世紅,馮晨,陳釧,唐麗. 淹水脅迫對福建山櫻花幼苗生長和光合特性的影響[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2022,44(4):871-881.
LU Rihui,XU Lixing,ZHOU Xiaoxing,SHENG Shihong,F(xiàn)ENG Chen,CHEN Chuan,TANG Li. Effects of flooding stress on growth and photosynthesis of Cerasus campanulate seedlings[J]. Acta Agriculturae Universitatis Jiangxiensis,2022,44(4):871-881.
[27] WANG D,ZHANG H H,GARTUNG J. Long-term productivity of early season peach trees under different irrigation methods and postharvest deficit irrigation[J]. Agricultural Water Management,2020,230:105940.
[28] 唐洋,溫仲明,王楊,劉靜. 土壤水分脅迫對刺槐幼苗生長、根葉性狀和生物量分配的影響[J]. 水土保持通報(bào),2019,39(6):98-105.
TANG Yang,WEN Zhongming,WANG Yang,LIU Jing. Effects of soil water stress on growth,root and leaf traits,and biomass allocation of Robinia pseudoacacia seedlings[J]. Bulletin of Soil and Water Conservation,2019,39(6):98-105.
[29] 王海珍,韓路,徐雅麗,牛建龍,于軍. 土壤水分梯度對灰胡楊光合作用與抗逆性的影響[J]. 生態(tài)學(xué)報(bào),2017,37(2):432-442.
WANG Haizhen,HAN Lu,XU Yali,NIU Jianlong,YU Jun. Effects of soil water gradient on photosynthetic characteristics and stress resistance of Populus pruinosa in the Tarim Basin,China[J]. Acta Ecologica Sinica,2017,37(2):432-442.
[30] PéREZ-áLVAREZ E P,INTRIGLIOLO M D S,VIVALDI G A,GARCíA-ESPARZA M J,LIZAMA V,áLVAREZ I. Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate:I. water relations,vine performance and grape composition[J]. Agricultural Water Management,2021,248:106772.
[31] PENG S Z,GAO X L,YANG S H,YANG J,ZHANG H X. Water requirement pattern for tobacco and its response to water deficit in Guizhou Province[J]. Water Science and Engineering,2015,8(2):96-101.
[32] 梁銀麗,康紹忠. 節(jié)水灌溉對冬小麥光合速率和產(chǎn)量的影響[J]. 西北農(nóng)業(yè)大學(xué)學(xué)報(bào),1998,26(4):16-19.
LIANG Yinli,KANG Shaozhong. Effects of water saving irrigation on photosynthesis and yield of winter wheat (Triticum aestivum L.)[J]. Acta University Agriculture Boreali-occidentalis,1998,26(4):16-19.
[33] GONZALEZ-DUGO V,RUZ C,TESTI L,ORGAZ F,F(xiàn)ERERES E. The impact of deficit irrigation on transpiration and yield of mandarin and late oranges[J]. Irrigation Science,2018,36(4):227-239.