摘 " "要:【目的】探究不同類型有機(jī)肥對(duì)核桃園土壤理化性質(zhì)、樹體生長(zhǎng)結(jié)果特性和堅(jiān)果品質(zhì)的影響?!痉椒ā吭?3年生核桃園按等氮量原則連續(xù)2 a(年)施松塔(ST)有機(jī)肥、豬糞(ZF)和牛糞(NF)有機(jī)肥、有機(jī)無(wú)機(jī)復(fù)混肥(HZ)和腐殖酸鉀+生物菌肥(FJ)后,分析評(píng)價(jià)施肥效果?!窘Y(jié)果】有機(jī)肥改良了核桃園土壤,但不同有機(jī)肥改良效果存在差異。5種有機(jī)肥均促進(jìn)了1年生枝增粗生長(zhǎng),但對(duì)樹體增粗和1年生枝伸長(zhǎng)生長(zhǎng)的影響存在差異。花后30 d,有機(jī)肥對(duì)核桃坐果率產(chǎn)生影響,花后120 d時(shí),不同有機(jī)肥對(duì)坐果率影響存在顯著差異。不同有機(jī)肥對(duì)堅(jiān)果品質(zhì)影響存在差異。4個(gè)主成分累計(jì)貢獻(xiàn)率95.05%,利用2個(gè)主成分進(jìn)行坐標(biāo)分析,有機(jī)無(wú)機(jī)復(fù)混肥(HZ)和牛糞有機(jī)肥(NF)處理施肥效果相似。綜合評(píng)價(jià)排序,有機(jī)質(zhì)含量24.00%,有效成分N 6.46%、P2O5 4.16%、K2O 6.00%、S 3.79%的有機(jī)無(wú)機(jī)復(fù)混肥(HZ)處理得分最高(40.94)?!窘Y(jié)論】核桃園兼顧生長(zhǎng)和結(jié)果時(shí),宜選擇有機(jī)無(wú)機(jī)復(fù)混肥。
關(guān)鍵詞:核桃;有機(jī)肥;土壤理化性質(zhì);結(jié)果特性;堅(jiān)果品質(zhì)
中圖分類號(hào):S664.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)01-0141-10
Effects of different types of organic fertilizers on soil, growth and fruiting characteristics, and nut quality in walnut orchards
XU Yongjie1, 2, JIANG Dezhi1, 2, LI Li3*, WANG Ruiwen1, 2, WANG Daiquan4, WANG Xiaofei4, WANG Qizhu4
(1Hubei Academy of Forestry/Woody Grain and Oil Forest Engineering Technology Research Center of Hubei Province, Wuhan 430079, Hubei, China; 2Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Wuhan 430079, Hubei, China; 3Chinese Society of Forestry, Beijing 100091, China; 4Center for Walnut Technology of Baokang County, Xiangyang 441600, Hubei, China)
Abstract: 【Objective】 The study aimed to explore the effects of different organic fertilizers on the physical and chemical properties of the soil, tree growth, fruiting characteristics, and nut quality in a walnut orchard. 【Methods】 A randomized block experimental design with a single factor was used to study 13-year-old Chulinbaokui walnut forests. Five organic fertilizers-plant-based Songta (ST), animal-based pig manure (ZF) and cow manure (NF), organic-inorganic compound fertilizer (HZ), and a combination of potassium humate and biological bacteria (FJ) were applied at consistent nitrogen levels over two years. Soil samples from 0-20 cm and >20-40 cm soil layers were collected and analyzed for physicochemical properties, alongside the assessment of tree growth and fruiting traits. EXCEL and SAS 8.1 softwares were used for data statistics, with analysis of variance to compare significant effects of the five fertilizers. Oringin2021 was used for principal component analysis to average the effects of the fertilizers. 【Results】 ①All the five organic fertilizer treatments improved the soil conditions in the walnut orchards. The soil porosity in the >20-40 cm soil layer, the available sulfur content in the 0-40 cm soil layer, and the available potassium content in the 0-20 cm soil layer were significantly increased in the five treatments (p<0.05, the same below). ②Different organic fertilizers exhibited varying effects on soil improvement. Among that, the soil bulk density from 0 to 20 cm was significantly reduced, but soil pH value and hydrolytic nitrogen content significantly increased in ST, NF, ZF, and HZ treatments. The organic matter content and available phosphorus content in the >20-40 cm soil layer were significantly increased in ST, NF, and HZ treatments, with ZF treatment showing a significant increase in available phosphorus content in the same layer. The available potassium content in the >20-40 cm soil layer was significantly increased in NF, ST, HZ, and FJ treatments. ③The thickening growth of the annual branches was significantly promoted in all the five treatments. The trunk ground diameter growth was significantly promoted by HZ, NF, and ZF treatments, with a 46.67% increase in HZ treatment compared to the control. In addition, the elongation growth of annual branches was significantly promoted by ZF, NF, and ST treatments. ④The dynamics of walnut fruit setting were impacted by organic fertilizer treatments after thirty days of flowering. One hundred and twenty days after flowering, the fruit setting rates in the four treatments excluding FJ were significantly higher than the control, with HZ treatment achieving the highest fruit setting rate of 88.19%. ⑤Different organic fertilizers had varying effects on nut weight, oil content, and fatty acid composition. Among them, the HZ treatment increased the weight of nuts by 8.90% and kernel oil content by 0.44%; the ST treatment significantly increased the proportion of saturated fatty acids in walnut kernels, and the NF and ZF treatments significantly increased the proportion of unsaturated fatty acids in walnut kernels. However, the FJ treatment had little effect on the fatty acid content, but significantly reduced the vitamin E content in walnut kernels. ⑥Principal component analysis showed that the cumulative contribution rate of the four principal components was 95.05%, which reflects the fertilization effect of each treatment. Coordinate analysis using Prin1 and Prin2 showed that HZ and NF treatments had similar fertilization effects, whereas the ST treatment showed significant differences compared to other treatments. A comprehensive evaluation model was constructed using four principal component eigenvalues and contribution rates for scoring and sorting. The result showed that the HZ treatment, with organic matter content of 24.00%, available ingredients N 6.46%, P2O5 4.16%, K2O 6.00%, and S 3.79%, had the highest overall score (40.94). 【Conclusion】 The effects of different fertilizer types on walnut orchards varied. Considering soil factors, tree growth, and fruiting characteristics comprehensively, organic-inorganic compound fertilizers are recommended.
Key words: Walnuts; Organic fertilizer; Soil physical and chemical properties; Bearing characteristics; Nut quality
核桃(Juglans regia)是中國(guó)林業(yè)特色優(yōu)勢(shì)樹種,在增加農(nóng)民收入、產(chǎn)業(yè)扶貧、山地水土保持等方面發(fā)揮了重要作用[1-2]。盡管全國(guó)核桃產(chǎn)量逐年攀升,從2011年的165.55萬(wàn)t增長(zhǎng)到2020年479.59萬(wàn)t [3],但限制核桃產(chǎn)業(yè)發(fā)展的重要因素依然是單位面積產(chǎn)量過低。據(jù)統(tǒng)計(jì),2022年全國(guó)核桃干果平均單產(chǎn)僅為3.9 t·hm-2,低于美國(guó)平均單產(chǎn)4.2 t·hm-2 [4]。
施肥是農(nóng)業(yè)生產(chǎn)中補(bǔ)充土壤養(yǎng)分、提高單位面積產(chǎn)量的重要措施[5]。核桃園施肥技術(shù)研究是核桃產(chǎn)業(yè)研究的熱點(diǎn)之一。施肥可通過有效補(bǔ)充土壤養(yǎng)分,改變核桃根系形態(tài)和根系養(yǎng)分濃度[6]、改變核桃葉片葉綠素和類胡蘿卜素含量、影響光合效率[7-8],提高單位面積產(chǎn)量[9]。有機(jī)肥因有機(jī)質(zhì)含量豐富,能長(zhǎng)久維持地力,近年來備受關(guān)注[5]。有機(jī)肥原料來源不同,致使其對(duì)核桃產(chǎn)量和品質(zhì)的影響不同,比如植物源有機(jī)肥半焦肥在改良土壤和改善果實(shí)品質(zhì)方面較動(dòng)物源有機(jī)肥雞糞和生物菌肥效果更好[10];動(dòng)物源有機(jī)肥牛糞較雞糞和牛糞肥效釋放緩慢,能顯著改善核桃園土壤的理化性質(zhì),增加新溫185核桃的產(chǎn)量,同時(shí)改善核桃仁品質(zhì)[11];新疆核桃園施入礦源黃腐酸鉀和中量元素水溶肥制成的有機(jī)無(wú)機(jī)肥復(fù)混肥后,土壤pH值、鹽離子含量顯著降低,葉片礦質(zhì)元素含量顯著提高,但具有季節(jié)性差異[12]。學(xué)者們普遍認(rèn)為,完全施用有機(jī)肥不能達(dá)到提升作物產(chǎn)量和品質(zhì)的理想要求[13],而有機(jī)-無(wú)機(jī)肥復(fù)混肥保持了養(yǎng)分的足量供應(yīng),結(jié)合了無(wú)機(jī)肥的速效性和有機(jī)肥的持久性,對(duì)培肥土壤、減少環(huán)境污染等起到重要作用[14]。當(dāng)前,系統(tǒng)比較不同原料來源的有機(jī)肥對(duì)核桃園土壤、樹體生長(zhǎng)結(jié)果特性和果實(shí)品質(zhì)的影響研究較少。
隨著核桃堅(jiān)果產(chǎn)量的增加,作為高含油率作物,核桃油將在植物油占比方面有較大的提升空間[3]。前人對(duì)于核桃品質(zhì)的研究,多集中在外觀品質(zhì)和脂肪酸組分方面[10-11],對(duì)于核桃仁是重要的維生素E源[15],且其對(duì)維持核桃油的抗氧化性起到重要作用[16]的研究較少,而在施肥條件下關(guān)注核桃油抗氧化的研究更少。
筆者在本研究中系統(tǒng)比較了植物源松塔有機(jī)肥、動(dòng)物源豬糞有機(jī)肥和牛糞有機(jī)肥、有機(jī)無(wú)機(jī)復(fù)混肥(當(dāng)?shù)赝茝V的配方肥)和含有益生菌的腐殖酸鉀生物菌肥對(duì)核桃園土壤、樹體生長(zhǎng)與結(jié)果特性和果實(shí)內(nèi)外品質(zhì)的影響,以期為核桃園肥料類型選擇和科學(xué)施肥提供技術(shù)參考。
1 材料和方法
1.1 試驗(yàn)地概況
試驗(yàn)地位于湖北省??悼h馬良鎮(zhèn)張家?guī)X村,年均溫15 ℃,年均降水量934.6 mm,年均無(wú)霜期240 d,面積1.0 hm2,試驗(yàn)前測(cè)定核桃園根系主要分布層[17]土壤理化性質(zhì)指標(biāo)見表1。
1.2 試驗(yàn)材料
供試核桃品種為當(dāng)?shù)刂魍破贩N楚林保魁,于2009年春栽植,株行距6 m×8 m。于2014年試果,2018年進(jìn)入盛果期,樹形為疏散分層形,每年按照湖北省核桃豐產(chǎn)栽培技術(shù)規(guī)程進(jìn)行水肥管理。保康縣寶康農(nóng)業(yè)科技有限公司提供了4種有機(jī)肥,分別是①松塔有機(jī)肥(ST)[pH值5.5,有機(jī)質(zhì)含量49.70%(w,下同),有效成分N 0.30%,P2O5 0.18%,K2O 1.01%,有效成分S 0.21%],②豬糞有機(jī)肥(ZF)[pH值5.3,有機(jī)質(zhì)含量27.30%,有效成分N 0.33%,P2O5 0.22%,K2O 0.51%,有效成分S 0.27%],③牛糞有機(jī)肥(NF)[pH值6.1,有機(jī)質(zhì)含量32.20%,有效成分N 0.22%,P2O5 0.20%,K2O 0.76%,有效成分S 0.23%],④有機(jī)無(wú)機(jī)復(fù)混肥(HZ)[pH值6.5,有機(jī)質(zhì)含量24.00%,有效成分N 6.46%,P2O5 4.16%,K2O 6.00%,有效成分S 3.79%]。⑤中國(guó)林業(yè)科學(xué)研究院提供了含有淡紫擬青霉(Purpureocillium lilacinum)、紅灰鏈霉菌(Streptomyces rubrogriseus)、黑曲霉(Aspergillus niger)、塔賓曲霉(Aspergillus tabingensis)和Phialocephala fortinii在內(nèi)的99%礦質(zhì)腐殖酸鉀生物菌肥(FJ)[pH值6.5,有機(jī)質(zhì)含量59.00%,有效成分N 0.83%,P2O5 0.73%,K2O 8.84%,有效成分S 5.35%]。
1.3 試驗(yàn)方法
在試驗(yàn)地選擇樹體地徑基本一致的核桃單株,在離地面20 cm處用胸徑尺測(cè)定地徑,試驗(yàn)前測(cè)定參試單株平均地徑為(138.07±14.13) mm。利用上述5種有機(jī)肥,以不施肥為對(duì)照(CK),采用隨機(jī)區(qū)組排列,設(shè)置3個(gè)區(qū)組,每個(gè)區(qū)組內(nèi)每種有機(jī)肥設(shè)置1個(gè)處理,每個(gè)處理6株重復(fù),處理間以3株不施肥單株隔開。按照當(dāng)?shù)厣a(chǎn)施肥習(xí)慣,分別在2022年5月下旬、2022年9月上旬、2023年5月上旬,采用環(huán)狀溝方式施肥,溝深30 cm,寬40 cm,施肥量以等氮量1.00 kg·株-1計(jì)[8]。保果率測(cè)定:2023年在每個(gè)參試單株樹冠東、西、南、北4個(gè)方向隨機(jī)選定3個(gè)結(jié)果枝掛牌記錄果實(shí)數(shù)量,花后每30 d記錄1次,共記錄5次。保果率/%=觀測(cè)果數(shù)/第一次果數(shù)×100。在每個(gè)參試單株樹冠東、西、南、北4個(gè)方向隨機(jī)選取10個(gè)1年生枝,落葉后測(cè)定1年生枝長(zhǎng)度和基部1 cm處直徑。
2023年9月中旬采收各處理成熟果實(shí),脫皮曬干后檢測(cè)堅(jiān)果單果質(zhì)量、殼厚、出仁率、脂肪酸組分和維生素E含量,同時(shí)測(cè)定參試單株地徑和土壤理化性質(zhì)。參照廖逸寧等[18]的方法進(jìn)行樣株土樣采集,避開施肥環(huán)狀溝。采用環(huán)刀法測(cè)定土壤容重(soil bulk density)、土壤總孔隙度(soil total porosity)。參照鮑士旦[19]的方法測(cè)定有效硫(available S,AS)含量。參照Bai等[20]的方法測(cè)定土壤pH值和水解性氮(hydrolyzable N)、有效磷(available P)、有效鉀(available K)、有機(jī)質(zhì)(organic matter)含量,參照劉穎等[21]的方法測(cè)定脂肪酸組分,參照GB 5009.82—2016測(cè)定維生素E含量[22]。
1.4 數(shù)據(jù)分析
利用Excel和SAS 8.1進(jìn)行數(shù)據(jù)統(tǒng)計(jì)和方差分析,利用Oringin 2021進(jìn)行主成分分析。
2 結(jié)果與分析
2.1 有機(jī)肥對(duì)核桃園土壤理化性質(zhì)的影響
2.1.1 對(duì)核桃園土壤物理性質(zhì)的影響 從圖1-A不同有機(jī)肥對(duì)核桃園土壤容重和總孔隙度的影響可以看出,除FJ處理外,其他4有機(jī)肥均顯著降低了0~20 cm土層容重(p<0.05),其中ST處理土壤容重為1.30 g·cm-3,較對(duì)照1.50 g·cm-3顯著降低13.33%,其次是NF、ZF和HZ處理,分別顯著降低了8.00%、7.33%和6.00%。從圖1-B可以看出,5種有機(jī)肥均顯著提升了>20~40 cm土層總孔隙度(p<0.05),其中HZ處理總孔隙度為40.17%,較對(duì)照提升22.62%,其次是NF、ZF、ST和FJ處理,分別顯著提升了20.37%、18.98%、10.70%和8.44%。說明復(fù)混肥、動(dòng)植物源有機(jī)肥對(duì)表層土壤容重和深層土壤總孔隙度均有較好的改善作用。
2.1.2 對(duì)核桃園土壤pH值和化學(xué)性質(zhì)的影響 (1)對(duì)核桃園土壤pH值的影響。從圖2-A中可以看出,與對(duì)照相比,ST、ZF、NF、HZ 4種處理使0~20 cm土層pH值分別升高6.56%、2.81%、5.51%、5.34%。相比而言,5種處理對(duì)>20~40 cm土層pH值影響相對(duì)較小,其中ZF處理使>20~40 cm土層pH值升高2.34%,但不顯著,而HZ處理則使pH值顯著降低了2.69%(p<0.05)。
(2)對(duì)核桃園土壤有機(jī)質(zhì)含量的影響。從圖2-B中可以看出,與對(duì)照相比,5種處理對(duì)0~20 cm土層有機(jī)質(zhì)含量變化影響不大,而ST、HZ、NF 3種處理分別使>20~40 cm土層有機(jī)質(zhì)含量顯著提升了23.82%、20.86%、16.69%(p<0.05)。說明有機(jī)肥對(duì)深層土壤有機(jī)質(zhì)含量有顯著提升效果,且動(dòng)物源有機(jī)肥根據(jù)肥料源不同存在差異。
(3)對(duì)核桃園土壤水解性氮含量的影響。從圖2-C可以看出,與對(duì)照相比,F(xiàn)J、NF、ZF、ST 4種處理使0~20 cm土層水解性氮含量分別顯著提升了18.82%、17.69%、13.61%、12.02%(p<0.05)。而HZ處理使>20~40 cm土層水解性氮含量顯著提升了16.94%(p<0.05)。說明復(fù)混肥有利于提升核桃園深層土壤水解性氮含量(p<0.05)。
(4)對(duì)核桃園土壤有效磷含量的影響。從圖2-D可以看出,與對(duì)照相比,ST、NF和HZ 3種處理均顯著提升了0~20 cm土層有效磷含量(p<0.05),其中ST處理較對(duì)照提高了49.34%。ST、NF、ZF和HZ處理則顯著提升了>20~40 cm土層有效磷含量(p<0.05),而腐殖酸鉀生物菌肥對(duì)土壤有效磷含量改善沒有顯著影響。
(5)對(duì)核桃園土壤有效鉀含量的影響。從圖2-E可以看出,與對(duì)照相比,ST、FJ、NF、HZ、ZF處理分別使土壤0~20 cm土層有效鉀含量顯著提升了25.00%、19.86%、15.95%、15.33%、13.58%(p<0.05)。除ZF外,NF、ST、HZ、FJ 4種處理使土壤>20~40 cm土層有效鉀含量分別顯著提升了59.66%、30.69%、27.47%、22.32%(p<0.05)。說明5種有機(jī)肥對(duì)改善土壤有效鉀含量均有顯著效果,而動(dòng)物源有機(jī)肥則根據(jù)肥料源不同存在差異。
(6)對(duì)核桃園土壤有效硫含量的影響。從圖2-F可以看出,與對(duì)照相比,5種處理均顯著提升了土壤有效硫含量(p<0.05),其中0~20 cm土層有效硫含量提升效果表現(xiàn)為FJ>HZ>NF>ZF>ST,>20~40 cm土層有效硫含量提升效果表現(xiàn)為HZ>FJ>NF>ZF>ST。說明施肥能顯著提升土壤有效硫含量,且腐殖酸鉀生物菌肥和復(fù)混肥效果更為顯著。
2.2 有機(jī)肥對(duì)核桃生長(zhǎng)和結(jié)果的影響
2.2.1 有機(jī)肥對(duì)核桃樹體生長(zhǎng)的影響 從表2可以看出,HZ、NF和ZF處理顯著促進(jìn)了樹體地徑生長(zhǎng),其中HZ處理較對(duì)照提升46.67%。ZF、NF和ST處理在促進(jìn)1年生枝伸長(zhǎng)生長(zhǎng)方面沒有顯著差異,但均顯著高于FJ和對(duì)照(p<0.05)。不同處理對(duì)促進(jìn)1年生枝增粗生長(zhǎng)效果存在顯著差異(p<0.05),表現(xiàn)為HZ>ZF>NF>ST>FJ>CK。
2.2.2 有機(jī)肥對(duì)核桃坐果率動(dòng)態(tài)的影響 圖3給出了不同有機(jī)肥對(duì)核桃坐果率動(dòng)態(tài)的影響,從圖中可以看出,花后30 d時(shí),不同有機(jī)肥對(duì)核桃坐果率產(chǎn)生了影響?;ê?0 d時(shí),不同有機(jī)肥處理的坐果率均顯著高于對(duì)照(p<0.05)?;ê?20 d時(shí),除FJ處理外,其他處理的坐果率均顯著高于對(duì)照(47.47%)(p<0.05),其中HZ處理的坐果率達(dá)到88.19%,說明有機(jī)無(wú)機(jī)復(fù)混肥(HZ)更有利于提高核桃坐果率。
2.3 有機(jī)肥對(duì)核桃堅(jiān)果品質(zhì)的影響
表3為不同有機(jī)肥對(duì)核桃堅(jiān)果品質(zhì)的影響。從表中可以看出,不同處理對(duì)堅(jiān)果殼厚和出仁率影響不大,而HZ、ZF和NF處理顯著提升了堅(jiān)果單果質(zhì)量(p<0.05),其中HZ處理提升堅(jiān)果質(zhì)量達(dá)到8.90%。與對(duì)照相比,HZ處理使核桃仁含油率顯著提升了0.44%,ST處理使核桃仁飽和脂肪酸占比顯著提升了1.67%,ZF處理使核桃仁不飽和脂肪酸占比顯著提升了1.09%,ST處理使脂肪酸ω-6/ω-3較對(duì)照顯著提升了19.87%(p<0.05),更接近中國(guó)居民脂肪酸參考攝入量比例(4~6)∶1[23]。而除FJ處理導(dǎo)致核桃仁維生素E含量顯著下降外(p<0.05),其他4種處理的核桃仁維生素E含量沒有顯著差異。說明不同肥料對(duì)果實(shí)品質(zhì)的作用效果不同,有機(jī)無(wú)機(jī)復(fù)混肥提高了果實(shí)含油率,植物源有機(jī)肥提高了核桃仁飽和脂肪酸占比和調(diào)節(jié)了不飽和脂肪酸比例,動(dòng)物源有機(jī)肥側(cè)重于提高不飽和脂肪酸占比。
2.4 土壤理化性質(zhì)與樹體和果實(shí)性狀指標(biāo)的主成分分析
將核桃園土壤理化性質(zhì)、生長(zhǎng)結(jié)果特性及果實(shí)品質(zhì)指標(biāo)標(biāo)準(zhǔn)化后,進(jìn)行主成分分析,提取特征根大于1且累計(jì)貢獻(xiàn)率大于85%的4個(gè)主成分,其貢獻(xiàn)率分別為33.41%、28.72%、18.79%、14.13%,累計(jì)貢獻(xiàn)率95.05%。利用第1和第2主成分基于Bray-Curtis 距離作散點(diǎn)圖(圖4),可以直觀地看出,對(duì)照和不同有機(jī)肥相距較遠(yuǎn),說明施肥改變了核桃園土壤理化性質(zhì)、生長(zhǎng)結(jié)果特性及果實(shí)品質(zhì)。在5個(gè)施肥處理中,HZ和NF處理距離相近,說明二者的施肥效果較為相似,而ST處理與其他施肥處理距離較遠(yuǎn),說明ST處理與其他處理施肥效果差異較大。
利用4個(gè)主成分構(gòu)建評(píng)價(jià)模型,根據(jù)特征根和貢獻(xiàn)率對(duì)各處理綜合評(píng)價(jià),計(jì)算綜合得分并進(jìn)行排序,從表4中可以看出,HZ處理效果綜合得分最高(40.94),土壤養(yǎng)分提供及樹體、果實(shí)生長(zhǎng)效果表現(xiàn)最好,其次是NF、ZF處理,綜合得分分別為39.94和39.63,而FJ和ST處理效果較差。
3 討 論
3.1 有機(jī)肥對(duì)土壤理化性質(zhì)的影響
土壤容重和孔隙度是土壤物理性質(zhì)的重要指標(biāo)。有機(jī)肥因自身密度低、體積大、空隙率高、營(yíng)養(yǎng)豐富[24-26],能夠提高根系活力和根際微生物活性,顯著降低土壤容重和增大土壤孔隙度。本研究中ST、NF、ZF、HZ處理顯著降低了0~20 cm土壤容重,使>20~40 cm土層土壤孔隙度顯著增加,與上述研究結(jié)果相似。有研究報(bào)道,牛糞、雞糞、農(nóng)家肥、農(nóng)作物秸稈均可提高土壤pH值[27-28],而王祺等[12]研究表明,礦源黃腐酸鉀和中量元素水溶肥有機(jī)-無(wú)機(jī)肥施入鹽堿性核桃園顯著降低了土壤pH值。在本研究中ST、ZF、NF、HZ 4種處理使0~20 cm土層pH值升高2%~6%,腐殖酸鉀+生物菌肥對(duì)土壤pH值影響不大。導(dǎo)致結(jié)論差異的原因,可能是土壤pH值的升降與土壤鹽離子濃度有關(guān),有機(jī)肥能顯著降低鹽堿地pH值[12]。有機(jī)肥自身豐富的有機(jī)質(zhì)和較多的活性磷,可明顯提高土壤微生物對(duì)底物碳源的利用率[29],促進(jìn)無(wú)機(jī)磷向有機(jī)磷的轉(zhuǎn)化[30],釋放土壤中的鉀元素,進(jìn)而提高土壤中有機(jī)質(zhì)和有效N、P、K、S等元素的含量。在本研究中,5種有機(jī)肥均使0~40 cm土層中有效硫含量和0~20 cm土層有效鉀含量顯著增加,不同程度地增加了土壤中有機(jī)質(zhì)和有效N、P、S等元素的含量,而不同有機(jī)肥在提高土壤有機(jī)質(zhì)和有效成分含量方面存在差異,與有機(jī)肥原料種類、養(yǎng)分含量、制作工藝和施肥年限有關(guān)[12,31]。
3.2 核桃園有機(jī)肥施肥效果綜合評(píng)價(jià)
有機(jī)肥改善果實(shí)品質(zhì)[11]和脂肪酸組分[32-33]已有較多報(bào)道,本研究中不同來源有機(jī)肥對(duì)核桃品質(zhì)的影響差異較大,有機(jī)無(wú)機(jī)復(fù)混肥(HZ)和牛糞有機(jī)肥(NF)顯著提升了核桃果實(shí)含油率,ST和ZF改變了脂肪酸組分,這與前人研究結(jié)果相似[8,11]。前人研究表明,核桃園土壤中有效N、P、K含量存在交互作用[34],因此有機(jī)肥養(yǎng)分總量?jī)H僅是肥效的決定因素之一。本研究中將土壤因子、生長(zhǎng)結(jié)果性狀和果實(shí)品質(zhì)綜合考慮進(jìn)行評(píng)價(jià),有機(jī)無(wú)機(jī)復(fù)混肥(HZ)得分最高,但這一處理土壤中單一養(yǎng)分含量在5種有機(jī)肥中并非最大值,說明在土壤肥力較高的基礎(chǔ)上,核桃園地土壤養(yǎng)分的吸收存在閾值[35],合理配比才是促進(jìn)樹體生長(zhǎng)和結(jié)果的關(guān)鍵[36]。
另外,在本研究中,松塔有機(jī)肥(ST)降低了果實(shí)含油率,并使脂肪酸比例發(fā)生了變化,而含有益生菌的礦質(zhì)腐殖酸鉀(FJ)降低了核桃果實(shí)維生素E含量,其內(nèi)在機(jī)制有待進(jìn)一步開展研究。
4 結(jié) 論
施用有機(jī)肥后,核桃園土壤通透性和養(yǎng)分含量顯著增加,顯著促進(jìn)了核桃樹體地徑生長(zhǎng)和1年生枝的生長(zhǎng),提高了坐果率,改善了堅(jiān)果品質(zhì)。不同有機(jī)肥在增加土壤有機(jī)質(zhì)和有效成分方面存在差異,主成分分析構(gòu)建的綜合評(píng)價(jià)模型表明,有機(jī)質(zhì)含量24.00%,有效成分N 6.46%、P2O5 4.16%、K2O 6.00%、S 3.79%的有機(jī)無(wú)機(jī)復(fù)混肥施肥效果最佳,因此在綜合考慮核桃園土壤因子、樹體生長(zhǎng)結(jié)果特性和果實(shí)品質(zhì)時(shí),宜選擇有機(jī)無(wú)機(jī)復(fù)混肥。
參考文獻(xiàn)References:
[1] 馬慶國(guó),樂佳興,宋曉波,周曄,裴東. 新中國(guó)果樹科學(xué)研究70年:核桃[J]. 果樹學(xué)報(bào),2019,36(10):1360-1368.
MA Qingguo,LE Jiaxing,SONG Xiaobo,ZHOU Ye,PEI Dong. Fruit scientific research in new China in the past 70 years:Walnut[J]. Journal of Fruit Science,2019,36(10):1360-1368.
[2] 徐永杰,付亞男,陳遠(yuǎn)雄,徐朝煜,廖舒,王其竹,徐春永. 核桃林下長(zhǎng)柔毛野豌豆腐解動(dòng)態(tài)及養(yǎng)分釋放[J]. 內(nèi)蒙古農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,43(3):24-29.
XU Yongjie,F(xiàn)U Yanan,CHEN Yuanxiong,XU Chaoyu,LIAO Shu,WANG Qizhu,XU Chunyong. Decomposition dynamics and nutrient release of Vicia villosa in walnut forest[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition),2022,43(3):24-29.
[3] 孟佳,方曉璞,史宣明,張煜,劉建. 我國(guó)核桃產(chǎn)業(yè)發(fā)展現(xiàn)狀、問題與建議[J]. 中國(guó)油脂,2023,48(1):84-86.
MENG Jia,F(xiàn)ANG Xiaopu,SHI Xuanming,ZHANG Yu,LIU Jian. Situation,problems and suggestions on the development of walnut industry in China[J]. China Oils and Fats,2023,48(1):84-86.
[4] 徐雅雯,吳文豐,王其竹,王代全,徐朝煜,陳萬(wàn)勝,徐永杰. 基于地統(tǒng)計(jì)分析的核桃園土壤養(yǎng)分空間特征研究[J]. 果樹學(xué)報(bào),2024,41(5):968-979.
XU Yawen,WU Wenfeng,WANG Qizhu,WANG Daiquan,XU Chaoyu,CHEN Wansheng,XU Yongjie. Spatial distribution characteristics of soil nutrients in walnut orchards based on geostatistical model[J]. Journal of Fruit Science,2024,41(5):968-979.
[5] 寧川川,王建武,蔡昆爭(zhēng). 有機(jī)肥對(duì)土壤肥力和土壤環(huán)境質(zhì)量的影響研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào),2016,25(1):175-181.
NING Chuanchuan,WANG Jianwu,CAI Kunzheng. The effects of organic fertilizers on soil fertility and soil environmental quality:A review[J]. Ecology and Environmental Sciences,2016,25(1):175-181.
[6] 及利,楊雨春,王君,羅也,陸志民,張維勝,韓曉光. 不同輕基質(zhì)配比對(duì)核桃楸容器苗根系形態(tài)和養(yǎng)分累積的影響[J]. 西部林業(yè)科學(xué),2021,50(1):42-49.
JI Li,YANG Yuchun,WANG Jun,LUO Ye,LU Zhimin,ZHANG Weisheng,HAN Xiaoguang. Effects of different light substrate composition on root morphology and nutrient accumulation of Juglans mandshurica seedlings[J]. Journal of West China Forestry Science,2021,50(1):42-49.
[7] 肖冰,潘存德,王世偉,葉靜,常志帥,努斯熱提·托合提. 新溫185號(hào)核桃葉片光譜特征及其對(duì)施肥的響應(yīng)[J]. 新疆農(nóng)業(yè)科學(xué),2014,51(7):1205-1212.
XIAO Bing,PAN Cunde,WANG Shiwei,YE Jing,CHANG Zhishuai,Nusireti·Tuoheti. The leaf spectral characteristics of Juglans regia ‘Xinwen 185’ and its response to the fertilizer[J]. Xinjiang Agricultural Sciences,2014,51(7):1205-1212.
[8] 黃小輝,吳焦焦,王玉書,馮大蘭,孫向陽(yáng). 不同供氮水平的核桃幼苗生長(zhǎng)及葉綠素?zé)晒馓匦訹J]. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,46(2):119-126.
HUANG Xiaohui,WU Jiaojiao,WANG Yushu,F(xiàn)ENG Dalan,SUN Xiangyang. Growth and chlorophyll fluorescence characteristics of walnut (Juglans regia) seedling under different nitrogen supply levels[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2022,46(2):119-126.
[9] 李青軍,耿慶龍,賴寧,陳署晃. 核桃土壤養(yǎng)分評(píng)價(jià)及其與核桃產(chǎn)量的相關(guān)性分析[J]. 新疆農(nóng)業(yè)科學(xué),2019,56(5):826-833.
LI Qingjun,GENG Qinglong,LAI Ning,CHEN Shuhuang. Evaluation of walnut soil nutrients and the correlation with its yield[J]. Xinjiang Agricultural Sciences,2019,56(5):826-833.
[10] 李艷,王芳,陳燕燕,張文龍,張銳,王紅霞,安秀紅. 不同有機(jī)肥對(duì)土壤及核桃果實(shí)品質(zhì)的影響[J]. 中國(guó)南方果樹,2024,53(2):178-185.
LI Yan,WANG Fang,CHEN Yanyan,ZHANG Wenlong,ZHANG Rui,WANG Hongxia,AN Xiuhong. Effects of different organic fertilizers on soil and walnut fruit quality[J]. South China Fruits,2024,53(2):178-185.
[11] 楊文忠,杜研,王越銘,亞爾坤. 不同有機(jī)肥在新溫185號(hào)核桃上應(yīng)用效果研究[J]. 新疆農(nóng)業(yè)科學(xué),2015,52(8):1432-1441.
YANG Wenzhong,DU Yan,WANG Yueming,YA Erkun. Studies on different organic fertilizer application effect on Juglans regia ‘Xinwen 185’[J]. Xinjiang Agricultural Sciences,2015,52(8):1432-1441.
[12] 王祺,周榮飛,李寶鑫,張俊佩,張強(qiáng),裴東,白永超. 有機(jī)-無(wú)機(jī)肥配施對(duì)新疆核桃園土壤和葉片養(yǎng)分的影響[J]. 林業(yè)科學(xué)研究,2024,37(2):178-188.
WANG Qi,ZHOU Rongfei,LI Baoxin,ZHANG Junpei,ZHANG Qiang,PEI Dong,BAI Yongchao. Effects of combined application of organic-inorganic fertilizer on soil and leaf nutrients in walnut orchards in Xinjiang[J]. Forest Research,2024,37(2):178-188.
[13] 劉紅江,郭智,張?jiān)婪?,盛婧,周煒,劉德? 不同類型有機(jī)肥對(duì)水稻產(chǎn)量和稻米品質(zhì)的影響[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2024,40(4):645-651.
LIU Hongjiang,GUO Zhi,ZHANG Yuefang,SHENG Jing,ZHOU Wei,LIU Dekun. Effects of different types of organic fertilizers on rice yield and quality[J]. Jiangsu Journal of Agricultural Sciences,2024,40(4):645-651.
[14] 梁堯,苑亞茹,韓曉增,李祿軍,鄒文秀,任軍,李剛. 化肥配施不同劑量有機(jī)肥對(duì)黑土團(tuán)聚體中有機(jī)碳與腐殖酸分布的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2016,22(6):1586-1594.
LIANG Yao,YUAN Yaru,HAN Xiaozeng,LI Lujun,ZOU Wenxiu,REN Jun,LI Gang. Distribution of organic carbon and humic acids in aggregates of mollisol as affected by amendments with different rates of organic manure plus mineral fertilizer[J]. Journal of Plant Nutrition and Fertilizer,2016,22(6):1586-1594.
[15] 孫翠,李永濤,王明林,韓笑,侯立群,楊克強(qiáng). 核桃仁維生素E含量分析研究[J]. 中國(guó)糧油學(xué)報(bào),2011,26(6):45-51.
SUN Cui,LI Yongtao,WANG Minglin,HAN Xiao,HOU Liqun,YANG Keqiang. The analysis for tocopherol content of kernel in Juglans[J]. Journal of the Chinese Cereals and Oils Association,2011,26(6):45-51.
[16] 劉梁,張煜,方曉璞,孟佳,劉建. 不同抗氧化劑對(duì)核桃油氧化穩(wěn)定性和預(yù)測(cè)貨架期的影響[J]. 中國(guó)油脂,2023,48(2):55-57.
LIU Liang,ZHANG Yu,F(xiàn)ANG Xiaopu,MENG Jia,LIU Jian. Effects of different antioxidants on oxidative stability and predicted shelf life of walnut oil[J]. China Oils and Fats,2023,48(2):55-57.
[17] 云雷,畢華興,馬雯靜,田曉玲,崔哲偉. 晉西黃土區(qū)核桃花生復(fù)合系統(tǒng)核桃根系空間分布特征[J]. 東北林業(yè)大學(xué)學(xué)報(bào),2010,38(7):67-70.
YUN Lei,BI Huaxing,MA Wenjing,TIAN Xiaoling,CUI Zhewei. Spatial distribution characteristics of root system of walnut trees in the walnut-peanut intercropping system in the loess region of western Shanxi[J]. Journal of Northeast Forestry University,2010,38(7):67-70.
[18] 廖逸寧,郭素娟,王芳芳,馬雅莉,劉亞斌. 有機(jī)-無(wú)機(jī)肥配施對(duì)板栗園土壤肥力及根系功能性狀的影響[J]. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,45(5):84-92.
LIAO Yining,GUO Sujuan,WANG Fangfang,MA Yali,LIU Yabin. Effects of combined application of organic and inorganic fertilizers on soil fertility and root functional traits in chestnut orchards[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2021,45(5):84-92.
[19] 鮑士旦. 土壤農(nóng)化分析[M]. 3版. 北京:中國(guó)農(nóng)業(yè)出版社,2000.
BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing:China Agriculture Press,2000.
[20] BAI Y C,LI B X,XU C Y,RAZA M,WANG Q,WANG Q Z,F(xiàn)U Y N,HU J Y,IMOULAN A,HUSSAIN M,XU Y J. Intercropping walnut and tea:effects on soil nutrients,enzyme activity,and microbial communities[J]. Frontiers in Microbiology,2022,13:852342.
[21] 劉穎,劉曉謙,梁曜華,馮偉紅,楊立新,李春,王智民. 11種植物油的脂肪酸組成與抗氧化活性比較[J]. 中國(guó)油脂,2020,45(10):52-56.
LIU Ying,LIU Xiaoqian,LIANG Yaohua,F(xiàn)ENG Weihong,YANG Lixin,LI Chun,WANG Zhimin. Comparison of fatty acid compositions and antioxidant activities of eleven vegetable oils[J]. China Oils and Fats,2020,45(10):52-56.
[22] 中華人民共和國(guó)國(guó)家衛(wèi)生和計(jì)劃生育委員會(huì),國(guó)家食品藥品監(jiān)督管理總局. 食品安全國(guó)家標(biāo)準(zhǔn) 食品中維生素A、D、E的測(cè)定:GB 5009.82—2016[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2017.
National Health and Family Planning Commission of the People’s Republic of China,China Food and Drug Administration. National food safety standard-Determination of Vitamin A,D,E:GB 5009.82—2016[S]. Beijing:Standards Press of China,2017.
[23] 中國(guó)營(yíng)養(yǎng)學(xué)會(huì). 中國(guó)居民膳食營(yíng)養(yǎng)素參考攝入量:2023版[M]. 北京:人民衛(wèi)生出版社,2023:143-157.
Chinese Nutrition Society. Dietary reference intakes for China[M]. Beijing:People’s Medical Publishing House,2023:143-157.
[24] CAI A D,XU M G,WANG B R,ZHANG W J,LIANG G P,HOU E Q,LUO Y Q. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility[J]. Soil and Tillage Research,2019,189:168-175.
[25] HUANG R,WANG Y Y,LIU J,GAO J J,ZHANG Y R,NI J P,XIE D T,WANG Z F,GAO M. Partial substitution of chemical fertilizer by organic materials changed the abundance,diversity,and activity of nirS-type denitrifying bacterial communities in a vegetable soil[J]. Applied Soil Ecology,2020,152:103589.
[26] PAN H,CHEN M M,F(xiàn)ENG H J,WEI M,SONG F P,LOU Y H,CUI X M,WANG H,ZHUGE Y P. Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in Northern China[J]. Soil and Tillage Research,2020,198:104540.
[27] SINGH A,AGRAWAL M,MARSHALL F M. The role of organic vs. inorganic fertilizers in reducing phytoavailability of heavy metals in a wastewater-irrigated area[J]. Ecological Engineering,2010,36(12):1733-1740.
[28] CHAIYARAT R,SUEBSIMA R,PUTWATTANA N,KRUATRACHUE M,POKETHITIYOOK P. Effects of soil amendments on growth and metal uptake by Ocimum gratissimum grown in Cd/Zn-contaminated soil[J]. Water,Air,amp; Soil Pollution,2011,214(1):383-392.
[29] 郝小雨,周寶庫(kù),馬星竹,高中超. 長(zhǎng)期不同施肥措施下黑土作物產(chǎn)量與養(yǎng)分平衡特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(16):178-185.
HAO Xiaoyu,ZHOU Baoku,MA Xingzhu,GAO Zhongchao. Characteristics of crop yield and nutrient balance under different long-term fertilization practices in black soil[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(16):178-185.
[30] 胡可,李華興,盧維盛,劉遠(yuǎn)金,王利賓. 生物有機(jī)肥對(duì)土壤微生物活性的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2010,18(2):303-306.
HU Ke,LI Huaxing,LU Weisheng,LIU Yuanjin,WANG Libin. Effect of microbial organic fertilizer application on soil microbial activity[J]. Chinese Journal of Eco-Agriculture,2010,18(2):303-306.
[31] 且天真,武迪,張德健,李娟,劉凌悅,喬旭,王宏偉,賈賽紅. 不同年限施用有機(jī)肥對(duì)土壤理化性質(zhì)的影響[J]. 安徽農(nóng)業(yè)科學(xué),2023,51(12):135-141.
QIE Tianzhen,WU Di,ZHANG Dejian,LI Juan,LIU Lingyue,QIAO Xu ,WANG Hongwei,JIA Saihong. Effects of different years of application of organic fertilizer on physical and chemical properties of soil[J]. Journal of Anhui Agricultural Sciences,2023,51(12):135-141.
[32] 馬興幫,吳兵,高玉紅,馬偉明,剡斌,王一帆,劉亞輝,崔政軍,王海娣,胡亞朋. 有機(jī)肥對(duì)胡麻籽粒產(chǎn)量及品質(zhì)的影響[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2023,58(5):42-52.
MA Xingbang,WU Bing,GAO Yuhong,MA Weiming,YAN Bin,WANG Yifan,LIU Yahui,CUI Zhengjun,WANG Haidi,HU Yapeng. Effects of organic fertilizer on grain yield and quality of flax[J]. Journal of Gansu Agricultural University,2023,58(5):42-52.
[33] 胡淵,潘存德,陳虹. 根施氮磷鉀肥對(duì)‘新溫185號(hào)’核桃堅(jiān)果粗脂肪含量的影響[J]. 北方園藝,2015(12):152-155.
HU Yuan,PAN Cunde,CHEN Hong. Effect of root fertilizing with nitrogen,phosphorus and potassium fertilizers on nut crude fat content of Juglans regia ‘Xinwen 185’[J]. Northern Horticulture,2015(12):152-155.
[34] 常志帥,潘存德,王世偉,葉靜,肖冰,努斯熱提·托合提. 特定土壤養(yǎng)分條件下新溫185號(hào)核桃根施氮磷鉀肥的產(chǎn)量效應(yīng)[J]. 新疆農(nóng)業(yè)科學(xué),2014,51(8):1451-1456.
CHANG Zhishuai,PAN Cunde,WANG Shiwei,YE Jing,XIAO Bing,Nusireti Tuoheti. Effects of root fertilizing with urea,calcium superphosphate and potassium sulphate on yield of Juglans regia ‘Xinwen 185’ under the condition of specific soil nutrient contents[J]. Xinjiang Agricultural Sciences,2014,51(8):1451-1456.
[35] 張靜,張兆彤,殷子月,許詠梅. 我國(guó)核桃主產(chǎn)區(qū)果實(shí)氮磷鉀養(yǎng)分吸收閾值研究[J]. 中國(guó)土壤與肥料,2023(5):231-239.
ZHANG Jing,ZHANG Zhaotong,YIN Ziyue,XU Yongmei. Study on the absorption threshold of nitrogen,phosphorus and potassium in walnut fruits in China[J]. Soil and Fertilizer Sciences in China,2023(5):231-239.
[36] 緱培欣,陳智勇,張陽(yáng)陽(yáng),周茹,劉山,謝迎新,馬冬云,康國(guó)章,王晨陽(yáng),郭天財(cái). 不同類型肥料對(duì)潮土冬小麥產(chǎn)量和品質(zhì)及氮肥利用效率的影響[J]. 麥類作物學(xué)報(bào),2021,41(8):1023-1032.
GOU Peixin,CHEN Zhiyong,ZHANG Yangyang,ZHOU Ru,LIU Shan,XIE Yingxin,MA Dongyun,KANG Guozhang,WANG Chenyang,GUO Tiancai. Effect of different types of fertilizers on yield,quality and nitrogen use efficiency of winter wheat in alluvial soil farmland[J]. Journal of Triticeae Crops,2021,41(8):1023-1032.