摘 " "要:【目的】柑橘三倍體具有無核或少核的特點,通過4x×2x雜交方式創(chuàng)制三倍體種質(zhì),以彌補雞尾葡萄柚種子多、抗寒性差的缺點?!痉椒ā恳运谋扼w(雙二倍體)胡柚為母本與二倍體雞尾葡萄柚雜交,果實成熟后對種子大小進(jìn)行分類并進(jìn)行組織培養(yǎng),采用流式細(xì)胞儀、SSR分子標(biāo)記鑒定再生子代的倍性及遺傳組成?!窘Y(jié)果】共授粉40朵花,坐果19個,坐果率為47.5%。獲得的230粒種子中,大種子占56粒,再生49株,2株為三倍體(占大種子再生后代的4.08%);小種子117粒,再生69株,35株為三倍體(占小種子再生后代的50.72%);敗育種子57粒,再生4株,2株為三倍體。經(jīng)SSR分子標(biāo)記鑒定,39株三倍體子代均為雙親雜交后代,同時鑒定出1株雜種四倍體后代?!窘Y(jié)論】創(chuàng)制了一批異源三倍體和四倍體新種質(zhì),為選育抗寒、無核的雜種葡萄柚新品種奠定了種質(zhì)基礎(chǔ)。
關(guān)鍵詞:雞尾葡萄柚;胡柚;倍性育種;三倍體;四倍體;SSR分子標(biāo)記
中圖分類號:S666.3 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2025)01-0063-09
Regeneration of triploid citrus germplasm by the crossing between tetraploid Huyou and Cocktail grapefruit
XU Tianyu1, ZHANG Chi2#, WANG Gang3, YE Xiaoling2, CHEN Xiang4, YE Shengyue4, ZHANG Xiaoqin5, ZHANG Min1*
(1Zhejiang A amp; F University/State Key Laboratory of Subtropical Silviculture, Hangzhou 311300, Zhejiang, China; 2School of Horticulture Science, Zhejiang A amp; F University/Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou 311300, Zhejiang, China; 3Agriculture and Rural Bureau of Changshan County, Changshan 324200, Zhejiang, China; 4Agriculture and Rural Bureau of Tonglu County, Tonglu 311500, Zhejiang, China; 5Zhejiang Agricultural Product Green Development Center, Hangzhou 310003, Zhejiang, China)
Abstract: 【Objective】 Seed number has a crucial effect on the fruit quality for the fresh-fruit market and processing production in citrus. Triploid citrus can produce seedless fruits, and as polyploids, it usually shows the superiority of vigorous growth, enlarged fruits and enhanced stress resistance. In citrus breeding, the 4x × 2x interploidy cross is an effective way to obtain triploids and to select new seedless species. Cocktail grapefruit (Citrus paradisi ‘Cocktail’) has excellent fruit taste with high total soluble sugar and low titratable acid contents but has the defect of abundant seeds and poor tolerance to cold. So reducing the seed number to enhance the economic value has raised the awareness among citrus breeders. Changshan Huyou (Citrus aurantium ‘Changshanhuyou’) is a native citrus species in Zhejiang province and exhibits rich flavor and excellent cold resistance, and its seed is a mixed type of single and multiple embryos. A tetraploid Changshan Huyou was identified and bear seedy fruits for several years. Therefore, we attempted to produce triploid hybrids by interploidy hybridization between the tetraploid Changshan Huyou and the diploid grapefruit. 【Methods】 The 4x × 2x interploidy cross was conducted using a tetraploid Changshan Huyou (4x) as the female parent and the diploid Cocktail grapefruit (2x) as the pollen parent in this study. Pollen viability was determined by the result of Alexander staining and germination rate in vitro before artificial pollination. In the florescence stage of Cocktail grapefruit, the pollen was collected using a 2 mL centrifuge tube and stored in dry environment at 4 ℃ for a short period. Seeds were extracted from the ripened fruit of hybrids and divided into developed seeds of normal size, developed seeds of small size (1/3-1/6 of normal size) and undeveloped seeds. The normal size and small size seeds were sowed on Murashige and Tucker (MT) culture medium, and undeveloped seeds were sowed on MT+1.0 mg·L-1 GA3 culture medium. The seedlings were transplanted after the plant growing 4-5 functional leaves. The ploidy of progenies was then measured by flow cytometry using young leaves. After DNA extraction, the genetic origin of the offspring was analyzed using 4 Simple Sequence Repeats (SSR) markers, which could display different profiles in Changshan Huyou and Cocktail grapefruit. The morphological differences were compared using one-year-old seedlings from offsprings and parents. 【Results】 The pollen grains of Cocktail grapefruit had a staining activity of 89.40% and in vitro germination rate of 30.02%, indicating that the pollen of Cocktail grapefruit had satisfactory vitality for further pollination. As a result, a total of 40 flowers of the tetraploid Changshan Huyou were used in pollination, and 19 hybrid fruits were harvested in November with a fruit-setting rate of 47.5%. A total of 56 developed seeds (average 3.0 seeds per fruit), 117 small developed seeds (6.2 seeds per fruit), and 57 undeveloped seeds (3.0 seeds per fruit) were obtained, and 49, 69 and 4 seedlings were germinated in vitro with an average germination rate as 87.50%, 58.97% and 7.02% for these seeds, respectively. Ploidy analysis showed that 39 (31.96%) and 83 progenies were proven triploids and tetraploids, respectively. Among the offsprings of each group, a total of 2, 35 and 2 triploid seedlings were identified from the developed seeds, small developed seeds and undeveloped seeds, respectively. The majority (89.74%) of triploids were originated from the small developed seeds. The hybrid nature of all the 39 triploids and 1 out of 22 tetraploids randomly determined were confirmed by the SSR marker of F14, P72, MEST86 and CAG01, and were indicated as the characteristic stripes of both Changshan Huyou and Cocktail grapefruit. The remaining 21 tetraploids were confirmed to be derived from selfing or nucellus embryos due to the presence of the characteristic stripe of the female parent. The leaf shape index of male parents, female parents, triploid F1 seedlings (3x), and a tetraploid F1 seedling (4x) were 1.73, 2.00, 1.83 and 1.65, respectively. The triploid and tetraploid offsprings obtained from hybridization were closer to the tetraploid female parent in terms of leaf shape index, without statistical difference from the female parent but with significant difference (p<0.05) from the male parent. Leaf shape index of 3x hybrids was between 4x and 2x parents, however, the leaves of the 4x hybrid were wider and rounder than 4x female parent. The leaves of 4x hybrid offspring were significantly wider than the leaves of 3x hybrids. 【Conclusion】 The tetraploid Changshan Huyou was used as the maternal parent and hybridized with diploid pollen of Cocktail grapefruit in this study. After culture in vitro, ploidy identification and SSR molecular marker analysis, a total of thirty-nine heterozygous triploid offsprings were obtained, which mainly germinated from small developed seeds harvested from hybrid fruits in 4x × 2x interploidy cross, providing an effective strategy to ensure the seedless germplasms in citrus breeding by ploidy hybridization.
Key words: Cocktail grapefruit; Huyou; Ploidy breeding; Triploid; Tetraploid; SSR markers
葡萄柚風(fēng)味獨特,可用作鮮食和加工,是一種具有市場潛力的柑橘品種。雞尾葡萄柚(Citrus paradisi ‘Cocktail’)由暹羅甜柚和弗魯亞橘雜交選育而來[1],具有低酸,水分多,苦味輕的特點,受到消費者青睞,目前在浙江、廣西、廣東、江西、上海、湖北等長江以南地區(qū)有引種栽培[2]。但雞尾葡萄柚存在種子多、抗寒性差的缺點,單果種子數(shù)約30粒,不便鮮食。另外,雞尾葡萄柚樹體抗凍性弱,在低于-5 ℃環(huán)境下容易遭遇凍害[1],在一定程度上阻礙了其擴大引種和栽培生產(chǎn)。
三倍體植株具有果實無核或少核的特征,作為多倍體,還具有生長旺盛、果實增大、抗逆性增強等優(yōu)勢。在柑橘育種中,通過四倍體和二倍體倍性雜交是獲得三倍體無核后代的有效途徑,選取優(yōu)良且具有特定性狀的親本可以將親本優(yōu)勢轉(zhuǎn)移到子代[3]。劉承浪等[4]以早熟且高糖低酸的品種東試早柚作為二倍體母本,與3個四倍體柑橘品種雜交,培育并鑒定了128株三倍體雜交后代,以獲得兼具雙親優(yōu)良性狀的無核新種質(zhì)。為選育無核、抗寒、抗病的高酸柑橘品種,Viloria等[5]使用檸檬及酸橙四倍體種質(zhì)與二倍體進(jìn)行雜交,從35個倍性雜交組合中獲得了近650株三倍體植株。西班牙從1996年起,針對柑橘果實無核和豐富果實成熟期等育種目標(biāo),通過倍性雜交,培育了Garbí、Safor、Alborea、Albir等三倍體品種,滿足了市場對無核柑橘周年供應(yīng)的需要[6]。近幾年來,華中農(nóng)業(yè)大學(xué)以異源四倍體體細(xì)胞雜種以及雙二倍體為父本與大量性狀優(yōu)良的二倍體柑橘進(jìn)行雜交,配置了80余個倍性雜交組合,創(chuàng)制了3000余份三倍體植株,為后續(xù)篩選優(yōu)質(zhì)無核柑橘新品種提供了豐富的三倍體資源[7]。
常山胡柚(C. aurantium ‘Changshanhuyou’)為中國特色地方柑橘品種,具有果實品質(zhì)優(yōu)良以及抗寒性強等特點,種子為單、多胚混合型[8]。為彌補雞尾葡萄柚種子多和樹體不耐寒的缺點,以筆者課題組前期創(chuàng)制的胡柚雙二倍體為母本、二倍體雞尾葡萄柚為父本進(jìn)行倍性雜交。通過雜交授粉、種子組織培養(yǎng)、幼苗流式細(xì)胞儀鑒定倍性和SSR分子標(biāo)記鑒定遺傳組成,培育并鑒定出了胡柚與雞尾葡萄柚的三倍體和四倍體雜交后代,為選育抗寒、低酸、無核的雜種葡萄柚新品種奠定了種質(zhì)基礎(chǔ)。
1 材料和方法
1.1 材料
以定植于浙江農(nóng)林大學(xué)校園內(nèi)的四倍體胡柚(C. aurantium ‘Changshanhuyou’)為母本、二倍體雞尾葡萄柚(C. paradisi ‘Cocktail’)為父本,進(jìn)行倍性雜交,創(chuàng)制三倍體無核新種質(zhì)。
1.2 花粉采集與活力測定
雞尾葡萄柚花粉收集參考謝善鵬[9]的方法,在4 ℃避光環(huán)境下短時間保存?zhèn)溆?。授粉前使用亞歷山大染色法[10]和花粉離體萌發(fā)法對雞尾葡萄柚花粉活力進(jìn)行檢測,確?;ǚ刍钚宰阋赃M(jìn)行雜交。花粉離體萌發(fā)法參考肖金平等[11]的方法并作適當(dāng)修改。將花粉均勻涂抹于含10%蔗糖+0.01%硼酸+0.03% CaCl2+1%瓊脂的固體萌發(fā)培養(yǎng)基上,用濕盒保濕,(25±1)℃溫度下暗培養(yǎng)20 h。各試驗統(tǒng)計花粉總數(shù)在500個以上,花粉活力/%=有活力的花粉/花粉總數(shù)×100。
1.3 雜交授粉及胚培養(yǎng)
4月中旬在四倍體胡柚開花期挑選晴朗天氣進(jìn)行人工授粉,授粉參考解凱東等[12]的方法。11月中旬果實成熟期,采集授粉得到的果實帶回實驗室剝?nèi)》N子。根據(jù)種子大小以及發(fā)育程度,將其分為大種子(大小正常、內(nèi)部充實)、小種子(大小約為正常種子1/6~1/3、內(nèi)部充實)和敗育種子(種子內(nèi)部敗育),并分別統(tǒng)計數(shù)量。所有種子用1 mol·L-1 NaOH洗去表面殘留果膠,流水沖洗3~4 h后,在無菌環(huán)境下將大種子和小種子接種于MT培養(yǎng)基中,敗育種子接種在MT+1.0 mg·L-1 GA3的培養(yǎng)基中。培養(yǎng)環(huán)境:溫度(26±1)℃,濕度70%左右,日光照16 h。待植株長出4~5枚功能葉和完整的根系時,將其移栽至溫室繼續(xù)培養(yǎng)。
1.4 再生植株倍性鑒定
再生植株的細(xì)胞倍性通過流式細(xì)胞儀(CyFlow? Ploidy Analyser,Sysmex,Germany)鑒定,樣品處理使用CyStain? UV Precise P倍性分析試劑盒(Sysmex,Germany),具體方法如下:以二倍體植株作為對照,用剪刀取0.5 cm2左右的新鮮葉片,置于塑料培養(yǎng)皿,在樣品周圍均勻加入200 μL細(xì)胞核裂解液(CyStain? UV Precise P Nuclei Extraction Buffer),迅速用鋒利的刀片切至勻漿,隨后加入800 μL熒光染液(CyStain? UV Precise P Staining Buffer)混勻?;煲河?0 μm細(xì)胞濾網(wǎng)過濾至上樣管,使用流式細(xì)胞儀上樣分析。檢測完畢后,檢測結(jié)果使用Origin 2021進(jìn)行數(shù)據(jù)分析以及作圖。
1.5 基因組DNA提取與遺傳來源分析
使用CTAB法提取葉片基因組DNA,參考程運江等[13]的方法并作適當(dāng)修改。提取的DNA使用1%瓊脂糖凝膠電泳檢測后置于-80 ℃冰箱保存。采用SSR分子標(biāo)記鑒定后代遺傳組成,4對SSR引物源自相關(guān)參考文獻(xiàn)(表1),由杭州有康生物科技有限公司合成。PCR體系(10 μL)為:無菌水2 μL,正反向引物各1 μL,DNA模板1 μL,2× Accurate Taq酶5 μL。PCR擴增程序為:94 ℃預(yù)變性5 min;94 ℃變性1 min;58 ℃退火30 s;72 ℃延伸30 s;33個循環(huán)后72 ℃延伸10 min,10 ℃保存。擴增產(chǎn)物加入2 μL 6× Loading Buffer(TaKaRa)混合,使用12%聚丙烯酰胺凝膠電泳分離條帶。
1.6 雜交后代形態(tài)學(xué)比較
雜交后代以父母本1年生實生苗為對照,對其植株上春梢成熟葉片的形狀、長寬、葉形指數(shù)進(jìn)行比較和測量。葉形指數(shù)計算公式為:葉形指數(shù)=主葉長度/主葉寬度,使用SPSS 27.0對計算結(jié)果進(jìn)行多重比較和方差分析。
2 結(jié)果與分析
2.1 花粉活力測定
采用亞歷山大染色法和花粉離體萌發(fā)法對父本雞尾葡萄柚花粉活性進(jìn)行檢驗(圖1),亞歷山大染色法檢測的花粉染色活力為89.40%,花粉離體萌發(fā)法檢測的花粉萌發(fā)率為30.02%。兩種檢測方法均表明雞尾葡萄柚花粉具有良好的花粉活力,能作為父本用于雜交。
2.2 雜交授粉結(jié)果
在四倍體胡柚花期使用雞尾葡萄柚花粉授粉,共授粉40朵花,坐果19個,坐果率為47.5%。11月采收授粉的果實后共獲得種子230粒,種子分組后再接種于培養(yǎng)基內(nèi)培養(yǎng)成苗(圖2)。其中大種子56粒(平均每果3.0粒),再生植株49株,成苗率87.50%;小種子117粒(平均每果6.2粒),再生植株69株,成苗率58.97%;敗育種子57粒(平均每果3.0粒),再生植株4株,成苗率7.02%。
2.3 再生植株倍性分析
采用流式細(xì)胞儀對雜交獲得的122株再生植株進(jìn)行倍性分析(圖3)。在122株檢測植株中,有39株為三倍體,83株為四倍體,三倍體后代數(shù)量占31.96%。其中,大種子再生后代有4.08%為三倍體,共2株;小種子再生后代有50.72%為三倍體,共35株。敗育種子僅獲得4株再生植株,其中三倍體后代2株,四倍體后代2株。在所有再生植株中,三倍體主要集中于小種子的再生后代,且數(shù)量和比例遠(yuǎn)高于其他兩個種子類型。
2.4 再生植株遺傳來源分析
對再生獲得的39株三倍體植株,以及隨機挑選的22株四倍體植株,使用4對SSR引物進(jìn)行雜合性分析(圖4)。其中,SSR引物P72、MEST86、CAG01分別僅能鑒定部分后代,而SSR引物F14在鑒定的39株三倍體后代中均含有雙親差異條帶。結(jié)果顯示,所有三倍體后代均含有父母本的特征條帶,為四倍體胡柚和雞尾葡萄柚雜交所得。在檢測的22株四倍體后代中,21株只含有母本特征條帶,并非通過雞尾葡萄柚雜交所得,僅有1株(7號)包含了父母本的特征條帶,為雜交產(chǎn)生的四倍體(圖5)。
2.5 雜交后代植株形態(tài)及葉片特征比較
雜交后代以雙親1年生實生苗為對照進(jìn)行植株形態(tài)與葉片形態(tài)對比(圖6)。母本、父本、3x雜交后代以及本次獲得的1株4x雜交后代的葉形指數(shù)分別為1.73、2.00、1.83、1.65。雜交獲得的三倍體和四倍體后代葉形指數(shù)更接近四倍體母本,與母本差異不顯著,但都與父本有顯著差異。三倍體雜交后代葉形指數(shù)介于父母本之間,但本次鑒定得到的1株雜合四倍體植株葉片相對于四倍體母本更寬、更接近圓形(表2),且葉形指數(shù)顯著小于三倍體。
3 討 論
倍性雜交除了獲得三倍體后代的無核特性外,親本選配對獲得符合育種目標(biāo)的雜交后代有很大影響。植物抗寒性受基因的影響。章文才等[18]研究發(fā)現(xiàn),在來自不同親本組合的柑橘自然雜交后代中,F(xiàn)1代的抗寒性往往介于親本之間,推測選擇抗寒性較強的親本可有機會提升后代的抗寒能力。通過抗寒性強的種質(zhì)培育品質(zhì)優(yōu)良的抗寒后代在葡萄育種中已有大量實踐以及成功案例[19]。成年常山胡柚枝條致死溫度在-13.7 ℃[8],在冬季表現(xiàn)出較強的抗凍性。由于三倍體植物在解剖學(xué)及細(xì)胞學(xué)特性、光合特性和代謝產(chǎn)物等方面表現(xiàn)出良好的抗逆性能[20-21],因此,雞尾葡萄柚異源三倍體樹體的抗凍性將可能得以提高。另外,雞尾葡萄柚和胡柚的果皮和果肉內(nèi)均含有豐富的類黃酮成分[22],且均為低呋喃香豆素含量的品種[23],雜交后代有望結(jié)出類黃酮含量較高、呋喃香豆素含量低的果實。
4x × 2x雜交組合下,三倍體胚一般發(fā)育正常,無需提前進(jìn)行胚挽救離體培養(yǎng),與2x × 4x組合相比,在三倍體后代的獲得上具有更高的效率,節(jié)約大量人力和物力。該雜交組合下獲得的三倍體種子內(nèi)胚和胚乳的倍性比為3∶5,影響了胚發(fā)育的起止時間,導(dǎo)致其種子大小一般只有正常種子的1/6~1/3,故小種子可以作為篩選三倍體種子的特征之一[24]。在本研究中,種子收集后根據(jù)大小以及發(fā)育程度將其分為大種子、小種子和敗育種子,以觀察種子形態(tài)與再生植株倍性的關(guān)聯(lián)性。Esen等[25]以Lisbon檸檬等四倍體柑橘為母本,授以四倍體花粉時,獲得的種子全部或絕大部分為正常大小的種子;而在授以二倍體花粉時,所獲得的種子全部為小種子。Aleza等[26]進(jìn)行了多個4x × 2x柑橘組合的雜交,雜交果實中99.3%為小粒種子,且再生后代絕大部分為三倍體。在本研究中,89.74%的三倍體出現(xiàn)于小種子中,與前人研究結(jié)果基本一致。但小種子中仍有近一半的再生后代為四倍體,且在大種子中也獲得了2株三倍體,表明不同基因型的柑橘作為親本進(jìn)行倍性雜交,三倍體后代不完全來自小種子,小種子發(fā)育而來的植株也不一定全部為三倍體。
簡單重復(fù)序列(simple sequence repeat,SSR)標(biāo)記是一種共顯性遺傳的分子標(biāo)記,具有重復(fù)性好、多態(tài)性高、操作簡單等優(yōu)點,可用于鑒定雜交后代,提高育種效率。在本研究中,再生的39株三倍體后代均包含父母本的特征條帶,可判斷它們都是胡柚與雞尾葡萄柚的雜交后代。除三倍體外,種子再生后還獲得了部分四倍體。鑒定的22株四倍體中,21株僅含有母本胡柚的特征條帶,非雙親雜交產(chǎn)生,來源可能為:(1)胡柚種子約60%為多胚[8],四倍體后代為珠心胚再生而來。但試驗中未對胡柚種子進(jìn)行單多胚分級,無法較為準(zhǔn)確地判斷四倍體后代來自珠心胚還是為有性后代。(2)部分四倍體后代為母本自交而來,等位基因出現(xiàn)重組分離,如四倍體后代中的第14號單株。本研究中大部分果實內(nèi)同時含有大種子和小種子,其中大種子再生后絕大部分為四倍體。Esen等[25]在研究中同時授以四倍體母本4x及2x的混合花粉,也出現(xiàn)了大種子和小種子同時產(chǎn)生的情況,本次授粉過程中部分花的柱頭可能受到了母本花粉的污染,導(dǎo)致同一果實內(nèi)同時產(chǎn)生了四倍體和三倍體后代。二倍體柑橘中存在2n卵和2n花粉,四倍體在減數(shù)分裂時也可能產(chǎn)生n、2n和3n配子[27],本試驗中有1株四倍體后代包含了父本和母本的特征條帶,且僅含有一條來自母本的等位基因,推測可能是由雞尾葡萄柚未減數(shù)的2n雄配子與四倍體胡柚的2n雌配子雜交而來,四倍體后代詳細(xì)的遺傳來源還有待進(jìn)一步研究。
4 結(jié) 論
筆者在本研究中以四倍體胡柚為母本,與二倍體雞尾葡萄柚有性雜交,經(jīng)組織培養(yǎng)、流式細(xì)胞儀鑒定倍性、SSR分子標(biāo)記鑒定遺傳組成,共獲得39株雜合三倍體后代和1株雜合四倍體后代,為今后篩選優(yōu)質(zhì)、耐寒、無核的雜種葡萄柚品種提供了種質(zhì)基礎(chǔ)。
參考文獻(xiàn) References:
[1] 柯甫志,徐建國,羅君琴,聶振朋,王平,孫建華. 雞尾葡萄柚的品種特性及栽培技術(shù)[J]. 浙江柑橘,2015,32(1):16-18.
KE Fuzhi,XU Jianguo,LUO Junqin,NIE Zhenpeng,WANG Ping,SUN Jianhua. Variety characteristics and cultivation techniques of Cocktail grapefruit[J]. Zhejiang Ganju,2015,32(1):16-18.
[2] 鄭麗,諶丹丹,劉慧宇,夏文娟,徐繩武,鄢華捷,楊陽,李鴻昌,向守宏,李長林. 雞尾葡萄柚在湖北部分地區(qū)的引種表現(xiàn)及栽培技術(shù)[J]. 中國南方果樹,2021,50(6):17-21.
ZHENG Li,CHEN Dandan,LIU Huiyu,XIA Wenjuan,XU Shengwu,YAN Huajie,YANG Yang,LI Hongchang,XIANG Shouhong,LI Changlin. Performance of Cocktail grapefruit introduced to Hubei province and its cultivation techniques[J]. South China Fruits,2021,50(6):17-21.
[3] 黨江波,崔璐璐,韓國輝,李彩,向素瓊,郭啟高,梁國魯. 柑橘倍性操作技術(shù)與育種現(xiàn)狀、難點及展望[J]. 園藝學(xué)報,2021,48(4):791-810.
DANG Jiangbo,CUI Lulu,HAN Guohui,LI Cai,XIANG Su-qiong,GUO Qigao,LIANG Guolu. Ploidy manipulation and citrus breeding:Current status,problems and prospects[J]. Acta Horticulturae Sinica,2021,48(4):791-810.
[4] 劉承浪,馮迪,曹宗洪,陶亞文,徐祥增,高世德,岳建強,謝宗周,葉俊麗,柴利軍,郭文武,鄧秀新. 以東試早柚為母本創(chuàng)制柑橘三倍體種質(zhì)資源[J]. 果樹學(xué)報,2023,40(10):2041-2049.
LIU Chenglang,F(xiàn)ENG Di,CAO Zonghong,TAO Yawen,XU Xiangzeng,GAO Shide,YUE Jianqiang,XIE Zongzhou,YE Junli,CHAI Lijun,GUO Wenwu,DENG Xiuxin. Creation of triploid seedling plants of citrus by crossing Dongshizao pummelo female with tetraploid male parents[J]. Journal of Fruit Science,2023,40(10):2041-2049.
[5] VILORIA Z,GROSSER J W. Acid citrus fruit improvement via interploid hybridization using allotetraploid somatic hybrid and autotetraploid breeding parents[J]. Journal of the American Society for Horticultural Science,2005,130(3):392-402.
[6] NAVARRO L,ALEZA P,CUENCA J,JUáREZ J,PINA J A,ORTEGA C,NAVARRO A,ORTEGA V. The mandarin triploid breeding program in Spain[J]. Acta Horticulturae,2015(1065):389-395.
[7] GUO W W,XIE K D,WU X M,XIE Z Z,XU Q,DENG X X. Ploidy manipulation via cell engineering for citrus improvement facilitated by application of molecular markers[J]. Acta Horticulturae,2018(1203):105-110.
[8] 貝增明,葉杏元. 常山胡柚特性與栽培技術(shù)[M]. 北京:中國科學(xué)技術(shù)出版,2003:21-23.
BEI Zengming,YE Xingyuan. Characteristics and cultivation techniques of Changshan Huyou[M]. Beijing:Science and Technology of China Press,2003:21-23.
[9] 謝善鵬. 柑橘11個地方品種資源四倍體高效發(fā)掘及三倍體新種質(zhì)創(chuàng)制[D]. 武漢:華中農(nóng)業(yè)大學(xué),2022.
XIE Shanpeng. Efficient exploration of tetraploid seedlings from 11 local citrus cultivars and production of triploid plants[D]. Wuhan:Huazhong Agricultural University,2022.
[10] ALEXANDER M P. A versatile stain for pollen fungi,yeast and bacteria[J]. Stain Technology,1980,55(1):13-18.
[11] 肖金平,譚金娟,劉海琳,陳力耕,葉偉其,程文亮. 麗椪2號椪柑無核機制研究[J]. 果樹學(xué)報,2007,24(4):421-426.
XIAO Jinping,TAN Jinjuan,LIU Hailin,CHEN Ligeng,YE Weiqi,CHENG Wenliang. Studies on the seedless mechanism of Lipeng No. 2 ponkan (Citrus reticulata)[J]. Journal of Fruit Science,2007,24(4):421-426.
[12] 解凱東,彭珺,袁東亞,強瑞瑞,謝善鵬,周銳,夏強明,伍小萌,柯甫志,劉高平,GROSSER J W,郭文武. 以本地早橘和槾橘為母本倍性雜交創(chuàng)制柑橘三倍體[J]. 中國農(nóng)業(yè)科學(xué),2020,53(23):4961-4968.
XIE Kaidong,PENG Jun,YUAN Dongya,QIANG Ruirui,XIE Shanpeng,ZHOU Rui,XIA Qiangming,WU Xiaomeng,KE Fuzhi,LIU Gaoping,GROSSER J W,GUO Wenwu. Production of citrus triploids based on interploidy crossing with Bendizao and Man tangerines as female parents[J]. Scientia Agricultura Sinica,2020,53(23):4961-4968.
[13] 程運江,伊華林,龐曉明,郭文武,鄧秀新. 幾種木本果樹DNA的有效提取[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報,2001,20(5):481-483.
CHENG Yunjiang,YI Hualin,PANG Xiaoming,GUO Wenwu,DENG Xiuxin. An efficient method for genomic DNA extraction from woody fruit plants[J]. Journal of Huazhong Agricultural,2001,20(5):481-483.
[14] CHEN C X,ZHOU P,CHOI Y A,HUANG S,JR GMITTER F G. Mining and characterizing microsatellites from citrus ESTs[J]. Theoretical and Applied Genetics,2006,112(7):1248-1257.
[15] 王福生,江東. 應(yīng)用cpSSR和EST-SSR標(biāo)記進(jìn)行柑橘特異種質(zhì)資源遺傳背景研究[J]. 園藝學(xué)報,2010,37(3):465-474.
WANG Fusheng,JIANG Dong. Studies on genetic background of important germplasm resources among citrus based on cpSSR and EST-SSR marker[J]. Acta Horticulturae Sinica,2010,37(3):465-474.
[16] GARCíA-LOR A,LURO F,NAVARRO L,OLLITRAULT P. Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity:A perspective for genetic association studies[J]. Molecular Genetics and Genomics,2012,287(1):77-94.
[17] BARKLEY N A,ROOSE M L,KRUEGER R R,F(xiàn)EDERICI C T. Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs)[J]. Theoretical and Applied Genetics,2006,112(8):1519-1531.
[18] 章文才,陳吉笙. 柑桔的越冬栽培及抗寒品種的選育[J]. 園藝學(xué)報,1962,1(1):15-28.
ZHANG Wencai,CHEN Jisheng. Winter cultivation of citrus and breeding of cold resistant varieties[J]. Acta Horticulturae Sinica,1962,1(1):15-28.
[19] 劉軍,王小偉,魏欽平,魯韌強,高照全. 世界葡萄抗寒育種的成就與展望[J]. 果樹學(xué)報,2004,21(5):461-466.
LIU Jun,WANG Xiaowei,WEI Qinping,LU Renqiang,GAO Zhaoquan. Achievements and prospect of world cold-resistant grape breeding[J]. Journal of Fruit Science,2004,21(5):461-466.
[20] LOURKISTI R,F(xiàn)ROELICHER Y,HERBETTE S,MORILLON R,TOMI F,GIBERNAU M,GIANNETTINI J,BERTI L,SANTINI J. Triploid citrus genotypes have a better tolerance to natural chilling conditions of photosynthetic capacities and specific leaf volatile organic compounds[J]. Frontiers in Plant Science,2020,11:330.
[21] LOURKISTI R,OUSTRIC J,QUILICHINI Y,F(xiàn)ROELICHER Y,HERBETTE S,MORILLON R,BERTI L,SANTINI J. Improved response of triploid citrus varieties to water deficit is related to anatomical and cytological properties[J]. Plant Physiology and Biochemistry,2021,162:762-775.
[22] XI W P,F(xiàn)ANG B,ZHAO Q Y,JIAO B N,ZHOU Z Q. Flavonoid composition and antioxidant activities of Chinese local pummelo (Citrus grandis Osbeck.) varieties[J]. Food Chemistry,2014,161:230-238.
[23] 馬麗麗. 不同柑橘種質(zhì)資源中呋喃香豆素組成的評價[D]. 武漢:華中農(nóng)業(yè)大學(xué),2013.
MA Lili. Composition of furanoumarins in different citrus germplasm resources[D]. Wuhan:Huazhong Agricultural University,2013.
[24] ESEN A,SOOST R K. Precocious development and germination of spontaneous triploid seeds in citrus[J]. Journal of Heredity,1973,64(3):147-154.
[25] ESEN A,SOOST R K,GERACI G. Seed set,size,and development after 4x×2x and 4x×4x crosses in citrus[J]. Euphytica,1978,27(1):283-294.
[26] ALEZA P,JUáREZ J,HERNáNDEZ M,OLLITRAULT P,NAVARRO L. Implementation of extensive Citrus triploid breeding programs based on 4x×2x sexual hybridisations[J]. Tree Genetics amp; Genomes,2012,8(6):1293-1306.
[27] 彭靜,魏岳榮,熊興華. 植物多倍體育種研究進(jìn)展[J]. 中國農(nóng)學(xué)通報,2010,26(11):45-49.
PENG Jing,WEI Yuerong,XIONG Xinghua. Polyploid induction of plant research summary[J]. Chinese Agricultural Science Bulletin,2010,26(11):45-49.