摘要:目的 觀察多序列磁共振成像(MRI)影像組學對局部晚期宮頸鱗癌(CSCC)患者同步放化療(CCRT)療效的預測價值。方法 選取行CCRT治療的100例局部晚期CSCC患者的臨床資料。按7∶3比例隨機分為訓練集(70例)與驗證集(30例)。根據(jù)實體腫瘤療效標準將患者分為完全緩解(CR)與部分緩解(PR)。收集所有患者治療前橫斷面DWI、T2WI及增強T1WI延遲期的檢查圖像,使用ITK-SNAP軟件包結合3個序列勾畫感興趣區(qū)(ROI),開源軟件PyRadiomics提取影像組學特征。對MRI組學特征先采用最小冗余最大相關(mRMR)算法篩選出前30個主要特征后,采用基于10折交叉驗證的最小絕對收縮和選擇算子(Lasso)降維篩選非零系數(shù)特征,并根據(jù)訓練集中Lasso-Logistic回歸模型的加權系數(shù)計算患者組學標簽;采用Logistic回歸構建基于DWI、T2WI及T1WI各序列預測模型及多序列組學標簽的預測模型;受試者工作特征(ROC)曲線評估各個組學模型對局部晚期CSCC患者CCRT療效的預測價值。結果 訓練集CR組38例,PR組32例;驗證集CR組16例,PR組14例。在訓練集與驗證集中,CR組與PR組患者的年齡、FIGO分期、分化程度、病灶最大徑及月經情況差異均無統(tǒng)計學意義。從ROI靶區(qū)中共提取851個影像學特征,經mRMR算法保留前30個特征后,經Lasso-Logistic算法與10折交叉驗證從每個單獨序列各自的851個影像組學特征中篩選出3個與CR相關的特征。從3個序列聯(lián)合后的2 553個特征中篩選出8個與CR相關的特征。ROC曲線結果顯示,訓練集與驗證集中,多序列聯(lián)合預測局部晚期CSCC患者CCRT治療療效的曲線下面積(AUC)分別為0.971、0.946,均高于T1WI、T2WI、DWI單序列預測(訓練集:Z分別為2.683、2.046、2.817,P<0.05;驗證集:Z分別為2.075、2.117、2.005,均P<0.05)。結論 多序列MRI影像組學模型對局部晚期CSCC患者CCRT治療療效具有較高的預測價值。
關鍵詞:宮頸腫瘤;癌,鱗狀細胞;磁共振成像;放化療;影像組學
中圖分類號:R737.33 文獻標志碼:A DOI:10.11958/20241488
Abstract: Objective To observe the value of multi-sequence magnetic resonance imaging (MRI) radiomics in predicting the efficacy of concurrent chemoradiotherapy (CCRT) in locally advanced cervical squamous cell carcinoma (CSCC) patients. Methods Clinical data of 100 CSCC patients underwent CCRT treatment were selected. In order to better validate the performance of the model, patients were randomly divided into the training set (70 cases) and the validation set (30 cases) in a 7∶3 ratio. According to the efficacy criteria for solid tumors, patients were divided into the complete response (CR) group (n=16) and the partial response (PR) group (n=14). Examination images of cross-sectional DWI, T2WI and enhanced T1WI were collected from all patients before treatment. ITK-SNAP software package combined with three sequences were used to outline ROI, and the open source software PyRadiomics was used to extract image omics features. For MRI omics features, the minimum redundancy maximum correlation (mRMR) algorithm was used to analyze and screen out the first 30 main features, and then the minimum absolute contraction and selection method (Lasso) based on 10-fold cross-validation was used to reduce dimensionality to screen the non-zero coefficient features. According to the weighting coefficient of Lasso-Logistic regression model in the training set, patient omics labels were calculated. Logistic regression analysis was used to construct a prediction model based on DWI, T2WI and T1WI sequence prediction models and multiple sequenomics labels. Receiver operating characteristic (ROC) curves evaluated the predictive value of each omics model for CCRT treatment in patients with locally advanced CSCC. Results There were 38 cases in the CR group and 32 cases in the PR group in the training set. There were 16 cases in the CR group and 14 cases in the PR group in the validation set. There were no significant differences in patient age, FIGO stage, differentiation degree, maximum lesion diameter and menstrual status between the CR group and the PR group in the training and validation sets. A total of 851 imaging features were extracted from the ROI target area. After the first 30 features were retained by mRMR algorithm, 3 CR-related features were selected from the 851 imaging omics features of each individual sequence by Lasso algorithm and 10-fold cross-validation. Eight CR related features were selected from 2 553 features after the combination of the three sequences. ROC curve results showed that in the training set and validation set, the AUC of multiple sequences combined to predict the therapeutic effect of CCRT in patients with locally advanced CSCC was 0.971 and 0.946, respectively, which was higher than that of T1WI, T2WI and DWI single sequence prediction (training set Z=2.683, 2.046, 2.817, P<0.05; verification set Z=2.075, 2.117, 2.005, P<0.05). Conclusion The multi sequence MRI radiomics model has high predictive value for the efficacy of CCRT treatment in locally advanced CSCC patients.
Key words: uterine cervical neoplasms; carcinoma, squamous cell; magnetic resonance imaging; treatment outcome; radiomics
宮頸癌是最常見的婦科惡性腫瘤,其發(fā)病率僅次于乳腺癌和結直腸癌,是女性腫瘤致死的重要原因之一[1-2]。宮頸癌患者在發(fā)病早期臨床癥狀較隱匿,隨病情進展會出現(xiàn)不同程度的陰道異常出血、排液等[3]。據(jù)統(tǒng)計,鱗癌占宮頸癌的80%~85%,且確診時大多患者已處于局部晚期[4-5]。國際婦產聯(lián)合會(International Federation of Gynecology and Obstetrics,F(xiàn)IGO)提出同步放化療(concurrent chemoradiotherapy,CCRT)是治療局部晚期宮頸鱗癌(cervical squamous cell carcinoma,CSCC)的標準治療方案[6]。研究發(fā)現(xiàn),CCRT治療能在一定程度上延長局部晚期CSCC患者的生存時間,但腫瘤異質性會導致臨床療效差異[7]。因此采用合適的方法對CCRT療效進行預測,并在此基礎上對治療方案調整與優(yōu)化,對改善患者預后意義重大。當前MRI作為癌癥診斷與評估的重要方法,在宮頸癌診斷、分期及療效評估方面應用廣泛[8]。MRI影像組學通過高通量地從MRI圖像中提取影像學特征進行定量分析,從而對腫瘤進行全面評估并揭示其異質性,有利于輔助臨床實現(xiàn)精準治療[9]。當前MRI影像學在CSCC患者的鑒別診斷與分期評估中應用較多[10],但基于多序列MRI影像組學對局部晚期CSCC患者CCRT療效的預測價值尚未明晰。鑒于此,本研究通過訓練集進行影像組學特征篩選與模型構建,驗證集對構建的預測模型進行驗證,以期為臨床評估提供參考。
1 對象與方法
1.1 研究對象 選取2021年10月—2023年10月于天門市第一人民醫(yī)院行CCRT治療的100例局部晚期CSCC患者。納入標準:(1)滿足CSCC診斷標準[11],且經臨床病理證實。(2)FIGO 2018(2018版)分期[12]處于ⅡB—ⅣA期。(3)接受CCRT治療。(4)臨床資料與影像學資料完善。排除標準:(1)伴其他惡性腫瘤。(2)有MRI檢查禁忌證。(3)入組前接受過其他治療方案。(4)MRI影像質量較差,難以用于分析。將患者按7∶3比例采用隨機數(shù)字表法分為訓練集(70例)與驗證集(30例)。本研究經醫(yī)院倫理委員會批準(批號:KY20240512),患者簽署知情同意書。
1.2 方法
1.2.1 CCRT 放療方案主要包括腔內后裝治療與三維適形調強放療,其中腔內后裝治療劑量為6~7 Gy/次,共5~7次,總劑量30~42 Gy;三維適形調強放療大體腫瘤靶區(qū)(gross tumor volume,GTV)劑量50.4~56 Gy,短徑在1 cm以上的淋巴結(GTVnd)劑量為60~66 Gy?;焺t采用紫杉醇聯(lián)合順鉑方案或紫杉醇聯(lián)合卡鉑方案,3周為1個治療周期。
1.2.2 MRI檢查 所有患者均于治療前、治療后4周接受MRI檢查。采用GE3.0 TMR掃描設備,配備16通道體部相控線圈。檢查前所有患者需適當憋尿,檢查時保持呼吸平穩(wěn)。掃描序列及參數(shù)如下:(1)矢狀面與橫斷面T2WI,視野" " " "400 mm×400 mm,層厚為5 mm,重復時間(TR)3 800 ms,回波時間(TE)116 ms。(2)橫斷面T1WI,視野400 mm×400 mm,層厚為5 mm,TR 550 ms,TE 13 ms。(3)DWI,視野400 mm×" "400 mm,層厚為4 mm,TR 700 ms,TE 11 ms,擴散敏感因子(b)為0、800 s/mm2。(4)三維容積動態(tài)增強T1WI,共6期相,掃描時間12 s/期,視野400 mm×400 mm,層厚為5 mm," " " " " TR 677 ms,TE 11 ms,層厚與層間距均為5 mm。第一期預掃描完成后行增強掃描,注射對比劑釓噴酸葡胺0.1 mmol/kg,注射速度為2 mL/s。
1.2.3 療效評價與分組方法 根據(jù)實體腫瘤的療效評價標準[13]對患者CCRT治療4周后的療效進行評價,將病灶完全消失的患者判定為完全緩解(complete response,CR);病灶最大徑減小≥30%的患者判定為部分緩解(partial remission,PR);病灶最大徑增大≥20%或出現(xiàn)轉移的患者判定為疾病進展(progressive disease,PD);病灶變化介于PR與PD之間的患者判定為疾病穩(wěn)定(stable disease,SD)。由2位分別具有5年、10年診斷經驗的放射科醫(yī)師根據(jù)患者治療前后的MRI影像進行獨立判斷,當兩者意見發(fā)生分歧時,則由另一位具有副高職稱以上的醫(yī)師進行判斷。
1.2.4 MRI圖像處理與特征提取 收集所有患者治療前橫斷面DWI、T2WI及增強T1WI延遲期的影像,以DICOM格式導出。由1位具有5年診斷經驗的放射科醫(yī)師在不知曉病理診斷結果的前提下進行獨立閱片,使用ITK-SNAP軟件包結合3個序列勾畫出感興趣區(qū)(regionof Interest,ROI),使用開源軟件PyRadiomics提取影像組學特征,主要包括107個原始特征和744個小波特征。在107個原始特征中,有18個一階統(tǒng)計特征、14個基于形狀的直方圖(SHAPE)特征、24個灰度共生矩陣(GLCM)特征、14個灰度依賴矩陣(GLDM)特征、16個灰度游程長度矩陣(GLRLM)特征、16個灰度區(qū)域大小矩陣(GLSZM)特征和5個鄰域灰度差矩陣(NGTDM)特征。由另一位具有10年以上診斷經驗的放射科醫(yī)師對ROI進行核對、確認。ROI勾畫時應根據(jù)患者病灶形態(tài)、大小等特征,沿腫瘤內緣勾畫;勾畫病灶腫瘤侵襲范圍時重點觀察患者陰道、子宮體等周圍組織病變情況;ROI區(qū)域應包括液化、壞死及囊變等腫瘤特征,見圖1。
1.2.5 影像組學特征篩選與預測模型構建 使用z-score法對提取的影像組學特征進行標準化,排除不同特征值量綱的影響,為了減少計算復雜性和防止過度擬合,基于訓練集,先采用最小冗余最大相關(minimum redundancy-maximum relevance,mRMR)算法分析保留重要性前30個主要組學特征,再采用“glmnet”R包,通過10折交叉驗證的最小絕對收縮和選擇算子(least absolute shrinkage and selection operator,Lasso)回歸模型對組學特征進行降維篩選非零系數(shù)特征,并根據(jù)訓練集中Lasso-Logistic回歸模型的加權系數(shù),為每個患者計算組學標簽(Rad-score),組學標簽計算公式:Rad-score=β0+β1X1+β2X2+β3X3+···+βnXn。其中:Xn表示Lasso-Logistic回歸模型識別出的影像組學特征,β0為Rad-score常數(shù),βn為模型中對應特征的回歸系數(shù)。最后采用Logistic回歸構建基于DWI、T2WI及T1WI各序列預測模型及多序列組學標簽的預測模型。
1.3 統(tǒng)計學方法 采用SPSS 22.0和R語言軟件對數(shù)據(jù)進行分析,計數(shù)資料用例(%)表示,組間比較采用χ2檢驗或Fisher確切概率法。計量資料用[[x] ±s]表示,組間比較采用獨立樣本t檢驗。采用受試者工作特征(ROC)曲線分析DWI、T2WI及增強T1WI 3個單序列及多序列MRI影像組學模型對局部晚期CSCC患者CCRT療效的預測價值。采用Delong檢驗對ROC曲線下面積(AUC)進行比較。P<0.05為差異有統(tǒng)計學意義。
2 結果
2.1 訓練集與驗證集患者基線資料比較 本研究中無PD與SD患者。訓練集CR38例,PR32例;驗證集CR16例,PR14例。在訓練集與驗證集中,CR與PR患者的年齡、FIGO分期、分化程度、病灶最大徑及月經情況差異均無統(tǒng)計學意義(P>0.05)。見表1。
3 討論
當前CCRT是局部晚期CSCC患者的主要治療方案,但腫瘤異質性易導致患者局部血管密度、增殖轉移、能量代謝等生物學活動出現(xiàn)不同程度的差異,進而對臨床療效及預后產生影響[14]。既往研究指出,對臨床療效進行早期預測,從而輔助臨床實施個性化CCRT治療是改善患者預后的關鍵環(huán)節(jié)[15]。影像組學通過提取、篩選相關影像學特征,并在此基礎上構建影像組學預測模型,可為臨床診斷與評估提供可靠依據(jù)[16]。
本研究探討MRI影像組學對100例局部晚期CSCC患者CCRT療效的預測價值,通過對可能干擾研究結果的臨床因素進行對比分析,發(fā)現(xiàn)訓練集與驗證集中CR組與PR組患者的年齡、FIGO分期、分化程度、病灶最大徑及月經情況等臨床基線資料差異無統(tǒng)計學意義,可排除混雜因素對模型的干擾。田士峰等[17]研究指出,從宮頸癌患者ROI中篩選相關定量影像組學特征有利于量化腫瘤異質性。本研究從ROI靶區(qū)中共提取851個影像學特征,經mRMR算法與Lasso算法等篩選出最優(yōu)特征參數(shù),主要包括Flatness、Mesh volume、Minimum、IMC、Cluster shade、RLN及Complexity。IMC數(shù)值與圖像灰度分布復雜程度呈正相關,Cluster shade則與體素強度分布均勻度有關,而RLN、Complexity、IMC等特征能夠反映區(qū)域體積與行程長度的同質性、灰度級強度改變[18],可作為預測CCRT療效的重要因素,這也間接表征了病灶周圍微環(huán)境的侵襲活動及細胞排列方式。另外Minimum表示體素中最小灰度值,能在一定程度上反映病灶的血供情況,Minimum值越小,表示病灶局部存在血供不均勻,從而更易誘發(fā)缺血、壞死等不良情況,同時也難以使藥物到達靶點,對CCRT療效產生不利影響。
本研究通過進一步構建預測模型,結果顯示訓練集與驗證集中,多序列聯(lián)合預測局部晚期CSCC患者CCRT療效的AUC均高于單序列預測,提示多序列MRI影像組學模型對局部晚期CSCC患者CCRT治療療效具有較高的預測價值。主要原因在于將多個序列聯(lián)合能夠互為補充,豐富數(shù)據(jù)維度,全面反映患者腫瘤細胞密度與結構、血管等多方面信息,從而有效彌補單一序列的不足,提高了對療效的預測效能。本研究中訓練集AUC、敏感度及特異度分別為0.971、89.47%、93.75%;驗證集分別為0.946、100.00%、87.50%,與佟晶等[19]的研究結果有所差異,這可能與不同研究采用的掃描參數(shù)及影像組學分析方法不同有關。
綜上所述,多序列MRI影像組學模型對局部晚期CSCC患者CCRT的療效具有較高的預測價值,對于臨床決策與預后評估具有積極意義。本研究不足之處在于樣本量較少,未設置外部測試,且未針對不同分期患者進行分層研究,后續(xù)可設計大樣本、多中心試驗,進一步驗證多序列MRI影像組學模型對局部晚期CSCC患者CCRT療效的預測價值。
參考文獻
[1] HE H,LIN C,LU Y,et al. Knockdown of miR-24 suppressed the tumor growth of cervical carcinoma through regulating PTEN/PI3K/AKT signaling pathway[J]. Biochem Genet,2024,62(2):1277-1290. doi:10.1007/s10528-023-10491-w.
[2] 王倩倩,李婷芳,王峰. CHD4調控端粒功能促進宮頸癌HeLa細胞生長的機制研究[J]. 天津醫(yī)藥,2023,51(9):909-915. WANG Q Q,LI T F,WANG F. Study on the mechanism of CHD4 regulating telomere function to promote cervical cancer HeLa cell proliferation[J]. Tianjin Med J,2023,51(9):909-915. doi:10.11958/20222091.
[3] NASIOUDIS D,BYRNE M,KO E M,et al. Minimally invasive hysterectomy for stage IA cervical carcinoma:a survival analysis of the National Cancer Database[J]. Int J Gynecol Cancer,2021,31(8):1099-1103. doi:10.1136/ijgc-2021-002543.
[4] FERNANDES F P,CAMBUI R,SOARES J,et al. Cervical carcinoma induces NLRP3 inflammasome activation and IL-1? release in human peripheral blood monocytes affecting patients' overall survival[J]. Clin Transl Oncol,2023,25(11):3277-3286. doi:10.1007/s12094-023-03241-2.
[5] TANAKA K,MURAKAMI I,MIKAMI M,et al. Reduced expression of gangliosides with GM2-determinant in cervical carcinoma-derived cells after subcutaneous transplantation into nude mice[J]. Hum Cell,2023,36(3):1199-1203. doi:10.1007/s13577-023-00864-z.
[6] YANG H,ZHANG Y,HENG F,et al. Risk prediction model for radiation-induced dermatitis in patients with cervical carcinoma undergoing chemoradiotherapy[J]. Asian Nurs Res(Korean Soc Nurs Sci),2024,18(2):178-187. doi:10.1016/j.anr.2024.04.012.
[7] FURUSAWA A,TAKEKUMA M,MORI K,et al. A randomized phase Ⅲ trial of adjuvant chemotherapy versus concurrent chemoradiotherapy for postoperative cervical cancer:Japanese Gynecologic Oncology Group study(JGOG1082)[J]. Int J Gynecol Cancer,2021,31(4):623-626. doi:10.1136/ijgc-2020-002344.
[8] 蘆海星,焦光麗,劉峰,等. 影像組學模型對局部中晚期宮頸鱗癌同步放化療后無進展生存期的預測[J]. 國際醫(yī)學放射學雜志,2023,46(4):402-408. LU H X,JIAO G L,LIU F,et al. An radiomics model for progression-free survival prediction after concurrent chemoradiotherapy in patients with locally advanced squamous cervical cancer[J]. Int J Med Radiol ,2023,46(4):402-408. doi:10.19300/j.2023.L20077.
[9] 段夢瑾,張路,田齊,等. 腦膜瘤的MRI影像組學應用進展[J]. 國際醫(yī)學放射學雜志,2023,46(5):551-555. DUAN M J,ZHANG L,TIAN Q,et al. Progress of MRI-based radiomics in meningioma research[J]. Int J Med Radiol,2023,46(5):551-555. doi:10.19300/j.2023.Z20580.
[10] 鄭明雪,董江寧,李翠平,等. 表觀擴散系數(shù)聯(lián)合紋理特征評估宮頸鱗癌分化程度的價值[J]. 實用放射學雜志,2020,36(4):592-595,614. ZHENG M X,DONG J N,LI C P,et al. The value of ADC values and texture analysis in evaluating the differentiation degree of cervical squamous cell carcinoma[J]. J Pract Radiol,2020,36(4):592-595,614. doi:10.3969/j.issn.1002-1671.2020.04.021.
[11] 中國抗癌協(xié)會婦科腫瘤專業(yè)委員會. 子宮頸癌診斷與治療指南(2021年版)[J]. 中國癌癥雜志,2021,31(6):474-489. Gynecological Tumor Professional Committee of Chinese Anti-Cancer Association. Guidelines for diagnosis and treatment of cervical cancer(2021 edition)[J]. China Oncology,2021,31(6):474-489. doi:10.19401/j.cnki.1007-3639.2021.06.06.
[12] BHATLA N,DENNY L. FIGO cancer report 2018[J]. Int J Gynaecol Obstet,2018,143 Suppl 2:2-3. doi:10.1002/ijgo.12608.
[13] THERASSE P,ARBUCK S G,EISENHAUER E A,et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer,National Cancer Institute of the United States,National Cancer Institute of Canada[J]. J Natl Cancer Inst,2000,92(3):205-216. doi:10.1093/jnci/92.3.205.
[14] ENGINEER R,CHOPRA S,SHUKLA R,et al. Computed tomography-based interstitial brachytherapy for recurrent cervical carcinoma in the vaginal apex[J]. Clin Oncol(R Coll Radiol),2022,34(1):e1-e6. doi:10.1016/j.clon.2021.09.012.
[15] KAUR A,SHARMA Y,KUMAR A,et al. In-vitro antiproliferative efficacy of Abrus precatorius seed extracts on cervical carcinoma[J]. Sci Rep,2022,12(1):10226. doi:10.1038/s41598-022-13976-7.
[16] 尹韻清,張偉,張彥舫,等. 影像組學預測肝細胞癌免疫組化標志物的研究進展[J]. 國際醫(yī)學放射學雜志,2024,47(6):719-724. YIN Y Q,ZHANG W,ZHANG Y F,et al. Research progress on radiomics in predicting immunohistochemical biomarkers of hepatocellular carcinoma[J]. Int J Med Radiol,2024,47(6):719-724. doi:10.19300/j.2024.Z21385.
[17] 田士峰,劉愛連,郭妍,等. 基于擴散峰度成像序列平均擴散峰度圖的影像組學鑒別宮頸鱗癌與腺癌的應用[J]. 中國醫(yī)學影像學雜志,2021,29(7):716-720. TIAN S F,LIU A L,GUO Y,et al. Application of radiomics methods based on DKI sequence MK map for differentiating squamous cell carcinoma from cervix adenocarcinoma[J]. Chinese Journal of Medical Imaging,2021,29(7):716-720. doi:10.3969/j.issn.1005-5185.2021.07.015.
[18] 王艷芳,肖峰,張寒菲,等. DCE-MRI圖像紋理分析對乳腺良惡性病變的診斷價值[J]. 武漢大學學報(醫(yī)學版),2021,42(6):935-940. WANG Y F,XIAO F,ZHANG H F,et al. Diagnostic value of texture analysis based on DCE-MRI images on benign and malignant breast lesions[J]. Medical Journal of Wuhan University,2021,42(6):935-940. doi:10.14188/j.1671-8852.2019.0596.
[19] 佟晶,卑貴光,闞楊楊,等. 多序列MRI影像組學預測局部晚期宮頸鱗癌同步放化療早期治療反應的價值[J]. 中華放射學雜志,2022,56(11):1223-1229. TONG J ,BEI G G,KAN Y Y,et al. The value of multi-sequence MRI radiomics in predicting the early response to concurrent chemoradiotherapy for locally advanced cervical squamous cell carcinoma [J]. Chin J Radiol,2022,56(11):1223-1229. doi:10.3760/cma.j.cn112149-20211117-01024.
(2024-10-08收稿 2024-12-09修回)
(本文編輯 李志蕓)