摘要: 線粒體的形態(tài)變化和功能與非酒精性脂肪性肝病(NAFLD)的發(fā)生發(fā)展密切相關(guān)。動力蛋白相關(guān)蛋白1(Drp1)是決定線粒體分裂的最主要蛋白之一,其活性受到嚴(yán)格控制,根據(jù)細(xì)胞需要確保線粒體動力學(xué)的平衡。Drp1可通過促進(jìn)內(nèi)質(zhì)網(wǎng)小管形成,促進(jìn)線粒體的相互作用和分裂。Drp1的磷酸化狀態(tài)及去乙?;部捎绊懢€粒體的形態(tài)變化,從而影響NAFLD的疾病狀態(tài)。本文闡述了Drp1在NAFLD進(jìn)展中的作用及機(jī)制,為靶向治療NAFLD提供思路。
關(guān)鍵詞: 非酒精性脂肪性肝??; 動力蛋白; 線粒體
基金項目: 2023年陜西省教育廳課題(23JK0646)
Role of dynamin-related protein 1 in non-alcoholic fatty liver disease
SHEN Haishan 1 , WANG Shuo 1 , FENG Gong 2
1. Department of Internal Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China;2. Institute of General Practice, Xi’an Medical University, Xi’an 710021, ChinaCorresponding author: SHEN Haishan, 1055173553@qq.com (ORCID: 0009-0000-3101-7831)
Abstract: The morphological changes and functions of mitochondria are closely associated with the development and progression ofnon-alcoholic fatty liver disease (NAFLD). Dynamin-related protein 1 (Drp1) is one of the primary proteins determiningmitochondrial fission, and its activity is strictly controlled to ensure the balance of mitochondrial dynamics according to cellularneeds. Drp1 can enhance mitochondrial interactions and mitochondrial fission by promoting the formation of endoplasmic reticulumtubules, and the phosphorylation state and deacetylation of Drp1 can also affect the morphological changes of mitochondria,thereby affecting the status of NAFLD. This article elaborates on the role and mechanism of action of Drp1 in the progression ofNAFLD, in order to provide ideas for targeted therapy for NAFLD.
Key words: Non-alcoholic Fatty Liver Disease; Dyneins; Mitochondria
Research funding: 2023 Shaanxi Provincial Education Department Project (23JK0646)
非酒精性脂肪性肝?。╪on-alcoholic fatty liver disease,NAFLD)目前已成為全球最常見的肝臟疾病,估計影響全球38%的人口[1] 。由于NAFLD巨大且不斷增長的治療需求,相關(guān)發(fā)病機(jī)制及治療研究受到極大關(guān)注。全球首款針對NAFLD的藥物Resmetirom在美國已獲得批準(zhǔn)使用[2] ,但其長期療效尚需進(jìn)一步評價。深入探究NAFLD的發(fā)病機(jī)制,對于開發(fā)針對關(guān)鍵靶點的有效治療藥物仍有重要意義。目前研究認(rèn)為NAFLD的病程演變包括肝損傷、脂肪性肝炎、肝纖維化和肝硬化,最終可導(dǎo)致肝細(xì)胞癌和嚴(yán)重的肝外并發(fā)癥。大量研究表明,NAFLD的發(fā)病機(jī)制與線粒體功能障礙高度相關(guān),線粒體是脂肪肝中脂質(zhì)代謝的關(guān)鍵決定因素[3] 。而動力蛋白相關(guān)蛋白 1(dynamin-related protein 1,Drp1)是影響線粒體形態(tài)最重要的蛋白質(zhì)之一,目前Drp1介導(dǎo)的線粒體分裂被認(rèn)為是NAFLD中一個適應(yīng)的過程,可加劇肝臟胰島素抵抗、脂肪性肝炎和細(xì)胞死亡[3]。NAFLD細(xì)胞內(nèi)脂質(zhì)積累可促進(jìn)活性氧(reactive oxygen species,ROS)的產(chǎn)生,從而影響線粒體功能并導(dǎo)致細(xì)胞毒性[4] 。相反,線粒體功能障礙又會打破肝脂肪合成與分解的穩(wěn)態(tài),進(jìn)一步促使ROS的過量產(chǎn)生,形成惡性循環(huán),加重NAFLD的進(jìn)展[5]。因此,線粒體處于融合和裂變的動態(tài)平衡中,而針對恢復(fù)線粒體動力學(xué)的靶向藥物則成為NAFLD治療的熱點研究方向。
1 線粒體在NAFLD中的作用
越來越多的證據(jù)表明,在肝細(xì)胞中線粒體可通過數(shù)量和功能的可塑性來適應(yīng)各種外部刺激。而線粒體的可塑性是隨著NAFLD的進(jìn)展而喪失,且線粒體失調(diào)發(fā)生在NAFLD的早期階段[6-7] 。肝臟是碳代謝(葡萄糖、脂質(zhì)和蛋白質(zhì))發(fā)生調(diào)節(jié)的主要器官,而線粒體是肝臟代謝途徑,特別是脂質(zhì)代謝的重要細(xì)胞器[8]。在NAFLD的病理發(fā)展過程中,脂質(zhì)的合成和分解出現(xiàn)了失衡,其中脂質(zhì)分解代謝主要依賴于線粒體脂肪酸β-氧化。在NAFLD中,受過氧化物酶體增殖物激活受體γ輔激活子1α調(diào)控的線粒體代謝被強(qiáng)烈抑制,導(dǎo)致線粒體氧化磷酸化、線粒體呼吸和β-氧化減少[9-10] ,從而促進(jìn)脂肪積累并驅(qū)動疾病進(jìn)展。線粒體是動態(tài)的細(xì)胞器,有規(guī)律的裂變和融合是維持其大小和形態(tài)所必需的。然而,在病理性NAFLD條件下,以Drp1為主要代表的調(diào)控蛋白表達(dá)失調(diào)。在胰島素抵抗和脂肪肝患者中,線粒體中的脂肪氧化上調(diào),以支持對腺苷三磷酸和氧化還原過程的需求增加,從而維持葡萄糖產(chǎn)量升高[11-12] 。NAFLD中線粒體功能的上調(diào)不僅使脂肪酸氧化升高,還增加了三羧酸循環(huán)的通量[12] ,后者提供碳中間體,為脂肪酸合成提供燃料[13] 。脂肪肝線粒體氧化功能的永久性增加導(dǎo)致線粒體ROS生成升高,部分學(xué)者認(rèn)為這一過程通過誘導(dǎo)氧化損傷進(jìn)而引發(fā)肝炎[9, 14] 。因此,線粒體對這種增加的代謝負(fù)荷的失敗或不適應(yīng)可能是觸發(fā)向非酒精性脂肪性肝炎過渡的關(guān)鍵事件。線粒體是細(xì)胞生存必不可少的細(xì)胞器,是細(xì)胞的“能量站”,為無數(shù)細(xì)胞過程產(chǎn)生必要的能量[15-16] 。線粒體是一種高度動態(tài)的細(xì)胞器,通過融合和裂變來調(diào)節(jié)其形態(tài)并控制線粒體的數(shù)量和大小,這一過程被稱為“線粒體動力學(xué)”[17-18]。過度的線粒體分裂增加ROS的產(chǎn)生和膜電位的破壞,導(dǎo)致細(xì)胞損傷或死亡。線粒體動力學(xué)過程受線粒體成形蛋白的調(diào)控,而Drp1作為主要的促裂變蛋白發(fā)揮著關(guān)鍵作用。Drp1活性受到細(xì)胞嚴(yán)格的控制,以適應(yīng)細(xì)胞對線粒體動態(tài)平衡的需求[19]。因此探究Drp1的結(jié)構(gòu)及在NAFLD發(fā)生發(fā)展的過程中Drp1的功能至關(guān)重要。
2 Drp1的結(jié)構(gòu)與功能
Drp1是一種在細(xì)胞質(zhì)中廣泛存在的大型的GTPase蛋白,由4個結(jié)構(gòu)域組成:高度保守的N端GTPase結(jié)構(gòu)域、位于C端的GTPase效應(yīng)域、可變結(jié)構(gòu)域(也稱為插入物B)和螺旋狀中間結(jié)構(gòu)域[20] 。在結(jié)構(gòu)上,Drp1由位于被稱為束信號元件的頸部區(qū)域的頭部(GTPase結(jié)構(gòu)域)、包含中間結(jié)構(gòu)域和GTPase效應(yīng)結(jié)構(gòu)域的莖以及未表征的可變結(jié)構(gòu)域組成[21]。晶體結(jié)構(gòu)上,可變結(jié)構(gòu)域通過形成T型二聚體或四聚體并有效結(jié)合靶膜而發(fā)揮鉸鏈作用[22] 。由于缺乏與脂質(zhì)相互作用的同源結(jié)構(gòu)域,Drp1只能與其受體相互作用產(chǎn)生功能性復(fù)合物,該復(fù)合物隨后聚集成寡聚體并運輸至裂變位點[23]。迄今為止,已發(fā)現(xiàn)4種線粒體外膜(outer mitochondrial membrane,OMM)受體蛋白 — —線粒體分裂蛋白1(mitochondrial fission 1protein,F(xiàn)IS1)、線粒體裂變因子(mitochondrial fission factor,MFF)、49 kD 線粒體動態(tài)蛋白(mitochondrial dynamicprotein of 49 kD,MiD49)以及MiD51在細(xì)胞質(zhì)中招募Drp1至OMM進(jìn)行裂變。FIS1是第一個被確定為Drp1招募者的外膜適配蛋白[24] ,其在OMM上產(chǎn)生低聚物,作為支架并通過2個四肽重復(fù)樣基序與Drp1相互作用。MFF是Drp1線粒體募集的重要因素,并被證實在線粒體裂變過程中對Drp1的線粒體募集發(fā)揮重要作用[25] 。MiD49/51可影響Drp1/MFF的相互作用以及Drp1在線粒體上的積累[26]。磷酸化是通過與無機(jī)磷酸鹽反應(yīng)或通過從另一有機(jī)磷酸鹽轉(zhuǎn)移磷酸鹽使化合物磷酸化的過程。Drp1通過磷酸化在不同位點被激活,參與調(diào)節(jié)多種生理過程,包括維持細(xì)胞功能、調(diào)控線粒體代謝、促進(jìn)線粒體碎片化和自噬、調(diào)節(jié)OMM滲透性以及參與細(xì)胞凋亡等(圖1)。根據(jù)修飾位點的不同,Drp1的特異性結(jié)構(gòu)既可以作為磷酸化的激活劑,也可作為磷酸化的抑制劑。Ser616和Ser637作為2個重要位點已被廣泛研究,前者磷酸化促進(jìn)線粒體分裂和Drp1在OMM的定位[27] ,而后者可被蛋白激酶A(protein kinase A,PKA)磷酸化,并被鈣依賴性磷酸酶去磷酸化,可能是減少線粒體分裂的失活步驟[27-28] 。因此,Ser616磷酸化因其促進(jìn)與其他裂變蛋白的結(jié)合可能激活裂變,而Ser637磷酸化則可能是一個滅活步驟。最近研究表明,Drp1是控制線粒體分裂的關(guān)鍵蛋白,可通過促進(jìn)內(nèi)質(zhì)網(wǎng)小管的形成,增加線粒體的相互作用[29-30]。
3 Drp1在NAFLD中的作用機(jī)制
大量研究表明,NAFLD的發(fā)病機(jī)制與線粒體功能障礙密切相關(guān),線粒體的動態(tài)平衡對維持脂質(zhì)代謝功能至關(guān)重要。在線粒體分裂過程中,Drp1的募集導(dǎo)致線粒體膜縮窄。有研究表明,通過抑制肝細(xì)胞Drp1活性,能夠預(yù)防性地保護(hù)小鼠免受高脂飲食引起的肝脂肪變性、胰島素抵抗和體質(zhì)量增加[31-32]。OMM上與Drp1結(jié)合啟動線粒體斷裂的MFF是神經(jīng)酰胺下游的效應(yīng)物,可促進(jìn)胰島素抵抗和單純性肝脂肪變性[33] 。Drp1的人類同源基因DNM1L在脂肪組織中的表達(dá)與肥胖和胰島素抵抗呈正相關(guān)[34],表明Drp1在代謝調(diào)節(jié)中發(fā)揮重要作用。
進(jìn)一步研究揭示了Drp1在線粒體-內(nèi)質(zhì)網(wǎng)結(jié)構(gòu)偶聯(lián)中的關(guān)鍵功能。Drp1在線粒體-內(nèi)質(zhì)網(wǎng)結(jié)構(gòu)偶聯(lián)處組裝成低聚物,包裹線粒體,然后低聚誘導(dǎo)GTP水解,改變低聚物的構(gòu)象,切斷線粒體[35] 。另有研究發(fā)現(xiàn),Drp1塑造內(nèi)質(zhì)網(wǎng)小管,然后增加內(nèi)質(zhì)網(wǎng)-線粒體關(guān)聯(lián),促進(jìn)線粒體分裂,但不依賴于寡聚化和GTP水解[29] 。此外,研究發(fā)現(xiàn)在內(nèi)質(zhì)網(wǎng)應(yīng)激下,PKA介導(dǎo)Drp1的磷酸化,促進(jìn)線粒體伸長,進(jìn)而增強(qiáng)內(nèi)質(zhì)網(wǎng)-線粒體關(guān)聯(lián)。進(jìn)一步研究顯示,小窩蛋白-1(細(xì)胞膜上的一種支架蛋白)上調(diào)抑制PKA依賴性的Drp1磷酸化,從而阻止線粒體延伸并減少內(nèi)質(zhì)網(wǎng)-線粒體關(guān)聯(lián)[36]。Drp1在OMM周圍募集和激活,收縮和切斷由 FIS1、MFF 和 MiD49/50 受體介導(dǎo)的線粒體。因此,Drp1在內(nèi)質(zhì)網(wǎng)-線粒體關(guān)聯(lián)中發(fā)揮重要作用。靶向敲除Drp1可降低內(nèi)質(zhì)網(wǎng)應(yīng)激,防止線粒體內(nèi)膜蛋白激活和應(yīng)激反應(yīng)惡化以減輕NAFLD[37] 。RNA去甲基化酶介導(dǎo)Drp1 mRNA 3'UTR的N 6 -甲基腺嘌呤去甲基化,以YT521-B同源結(jié)構(gòu)域家族蛋白1獨立的方式誘導(dǎo)其翻譯。隨后,在轉(zhuǎn)化生長因子β1誘導(dǎo)的肝細(xì)胞中,Drp1介導(dǎo)線粒體分裂,增加細(xì)胞增殖和遷移。Drp1表達(dá)降低抑制線粒體分裂,抑制肝細(xì)胞增殖和遷移。值得注意的是,纖維化的肝臟/心臟組織表現(xiàn)出增強(qiáng)的線粒體裂變,Drp1、α-平滑肌肌動蛋白、Ⅰ型膠原表達(dá)增加,N 6 -甲基腺嘌呤去甲基化酶AlkB同源蛋白5表達(dá)降低以及肝纖維化加重[38] 。去乙?;讣易逶诰€粒體形態(tài)變化過程中也起著重要作用。有氧運動可激活沉默信息調(diào)節(jié)因子1(silent information regulator 1,SIRT1),調(diào)控 Drp1 乙?;瑴p輕 NAFLD 及其線粒體功能障礙[39] 。胰島素抵抗在NAFLD的疾病發(fā)展中發(fā)揮重要作用,研究證實SIRT2能夠降低Drp1改善胰島素抵抗[40]。
4 Drp1的潛在作用靶點
鑒于Drp1在NAFLD病理機(jī)制中的關(guān)鍵作用,靶向Drp1的NAFLD治療策略已成為研究熱點。線粒體分裂抑制劑-1(mitochondrial division inhibitor 1,Mdivi-1)是Drp1的一種特殊抑制劑,其對Drp1的化學(xué)抑制可極大阻礙線粒體分裂,并改善高脂飲食誘導(dǎo)的小鼠和人肝細(xì)胞中的脂滴沉積[41] 。此外,Mdivi-1可通過降低Drp1的激活和表達(dá),減弱線粒體裂變,從而減少線粒體ROS積累和線粒體DNA損傷[42] ??傮w而言,Mdivi-1可通過恢復(fù)線粒體穩(wěn)態(tài)和功能,預(yù)防飲食誘導(dǎo)的NAFLD。薯蕷皂苷元是一種具有多種活性的膳食和植物化學(xué)甾體皂苷,研究發(fā)現(xiàn)其通過抑制Drp1緩解線粒體分裂和融合障礙,改善線粒體功能,延緩NAFLD進(jìn)展。此外,薯蕷皂苷元還可提高超氧化物歧化酶、過氧化氫酶和谷胱甘肽過氧化物酶活性,下調(diào)ROS水平,增強(qiáng)抗氧化能力[43] 。有氧運動被證實通過激活SIRT1減輕NAFLD,但目前尚無針對SIRT1的靶向激活劑的相關(guān)研究,有待進(jìn)一步探究。C-X-C基序趨化因子受體3(C-X-C chemokine receptor type 3,CXCR3)是慢性肝臟疾病中必不可少的促炎因子,敲除CXCR3的小鼠,其肝線粒體完整性可獲得很大改善。與CXCR3純合子小鼠相比,野生小鼠的線粒體功能明顯受損,Drp1的表達(dá)明顯增加。因此,靶向阻斷CXCR3可改善線粒體功能障礙和脂肪性肝炎嚴(yán)重程度。另有研究證實,腺苷單磷酸活化蛋白激酶對體外肝脂肪變性具有保護(hù)作用,主要依賴于抑制Drp1介導(dǎo)的線粒體裂變[44] 。綜上所述,通過調(diào)控Drp1及其相關(guān)通路的多種策略在NAFLD治療中展現(xiàn)出潛在的益處。
5 小結(jié)
在 NAFLD的疾病進(jìn)程中,線粒體的形態(tài)和功能變化扮演著至關(guān)重要的角色。Drp1在調(diào)控線粒體動力學(xué)平衡中發(fā)揮著重要作用,其通過影響內(nèi)質(zhì)網(wǎng)小管的形成促進(jìn)線粒體的相互作用和分裂。此外,Drp1的磷酸化狀態(tài)和去乙酰化也對線粒體形態(tài)和功能產(chǎn)生影響,從而影響NAFLD的病理狀態(tài)。未來,針對Drp1的靶向治療策略可能為NAFLD的治療提供新的思路,進(jìn)一步探究線粒體動力學(xué)及其調(diào)控機(jī)制是關(guān)鍵的研究方向。
利益沖突聲明: 本文不存在任何利益沖突。
作者貢獻(xiàn)聲明: 沈海珊負(fù)責(zé)設(shè)計論文框架,起草論文;王數(shù)負(fù)責(zé)文獻(xiàn)檢索及修改文章;馮鞏負(fù)責(zé)論文修改,擬定寫作思路,指導(dǎo)撰寫文章并最后定稿。
參考文獻(xiàn):
[1] WONG VWS, EKSTEDT M, WONG GLH, et al. Changing epidemiol?ogy, global trends and implications for outcomes of NAFLD[J]. JHepatol, 2023, 79(3): 842-852. DOI: 10.1016/j.jhep.2023.04.036.
[2] KOKKORAKIS M, BOUTARI C, HILL MA, et al. Resmetirom, the firstapproved drug for the management of metabolic dysfunction-associatedsteatohepatitis: Trials, opportunities, and challenges[J]. Metabolism,2024, 154: 155835. DOI: 10.1016/j.metabol.2024.155835.
[3] SHUM M, NGO J, SHIRIHAI OS, et al. Mitochondrial oxidative func?tion in NAFLD: Friend or foe?[J]. Mol Metab, 2021, 50: 101134. DOI:10.1016/j.molmet.2020.101134.
[4] WU LW, MO WH, FENG J, et al. Astaxanthin attenuates hepaticdamage and mitochondrial dysfunction in non-alcoholic fatty liverdisease by up-regulating the FGF21/PGC-1α pathway[J]. Br J Phar?macol, 2020, 177(16): 3760-3777. DOI: 10.1111/bph.15099.
[5] PARADIES G, PARADIES V, RUGGIERO FM, et al. Oxidative stress,cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liverdisease[J]. World J Gastroenterol, 2014, 20(39): 14205-14218. DOI:10.3748/wjg.v20.i39.14205.
[6] YU LP, LI YJ, WANG T, et al. In vivo recognition of bioactive sub?stances of Polygonum multiflorum for protecting mitochondria againstmetabolic dysfunction-associated fatty liver disease[J]. World J Gas?troenterol, 2023, 29(1): 171-189. DOI: 10.3748/wjg.v29.i1.171.
[7] di CIAULA A, PASSARELLA S, SHANMUGAM H, et al. Nonalcoholicfatty liver disease (NAFLD). Mitochondria as players and targetsof therapies?[J]. Int J Mol Sci, 2021, 22(10): 5375. DOI: 10.3390/ijms22105375.
[8] MORIO B, PANTHU B, BASSOT A, et al. Role of mitochondria in livermetabolic health and diseases[J]. Cell Calcium, 2021, 94: 102336.DOI: 10.1016/j.ceca.2020.102336.
[9] KOLIAKI C, SZENDROEDI J, KAUL K, et al. Adaptation of hepaticmitochondrial function in humans with non-alcoholic fatty liver is lostin steatohepatitis[J]. Cell Metab, 2015, 21(5): 739-746. DOI: 10.1016/j.cmet.2015.04.004.
[10] MANSOURI A, GATTOLLIAT CH, ASSELAH T. Mitochondrial dys?function and signaling in chronic liver diseases[J]. Gastroenterol?ogy, 2018, 155(3): 629-647. DOI: 10.1053/j.gastro.2018.06.083.
[11] IOZZO P, BUCCI M, ROIVAINEN A, et al. Fatty acid metabolism inthe liver, measured by positron emission tomography, is increasedin obese individuals[J]. Gastroenterology, 2010, 139(3): 846-856.e1-e6. DOI: 10.1053/j.gastro.2010.05.039.
[12] SUNNY NE, PARKS EJ, BROWNING JD, et al. Excessive hepatic mi?tochondrial TCA cycle and gluconeogenesis in humans with nonalco?holic fatty liver disease[J]. Cell Metab, 2011, 14(6): 804-810. DOI: 10.1016/j.cmet.2011.11.004.
[13] MCGARRY JD, MANNAERTS GP, FOSTER DW. A possible role formalonyl-CoA in the regulation of hepatic fatty acid oxidation andketogenesis[J]. J Clin Invest, 1977, 60(1): 265-270. DOI: 10.1172/JCI108764.
[14] SATAPATI S, KUCEJOVA B, DUARTE JAG, et al. Mitochondrial me?tabolism mediates oxidative stress and inflammation in fatty liver[J].J Clin Invest, 2015, 125(12): 4447-4462. DOI: 10.1172/JCI82204.
[15] COGLIATI S, ENRIQUEZ JA, SCORRANO L. Mitochondrial cristae:Where beauty meets functionality[J]. Trends Biochem Sci, 2016, 41(3): 261-273. DOI: 10.1016/j.tibs.2016.01.001.
[16] FORMOSA LE, RYAN MT. Mitochondrial OXPHOS complex as?sembly lines[J]. Nat Cell Biol, 2018, 20(5): 511-513. DOI: 10.1038/s41556-018-0098-z.
[17] WAI T, LANGER T. Mitochondrial dynamics and metabolic regulation
[J]. Trends Endocrinol Metab, 2016, 27(2): 105-117. DOI: 10.1016/j.tem.2015.12.001.
[18] EISNER V, PICARD M, HAJNóCZKY G. Mitochondrial dynamics inadaptive and maladaptive cellular stress responses[J]. Nat Cell Biol,2018, 20(7): 755-765. DOI: 10.1038/s41556-018-0133-0.
[19] SIMULA L, CAMPANELLA M, CAMPELLO S. Targeting Drp1 and mi?tochondrial fission for therapeutic immune modulation[J]. Pharma?col Res, 2019, 146: 104317. DOI: 10.1016/j.phrs.2019.104317.
[20] STRACK S, CRIBBS JT. Allosteric modulation of Drp1 mechanoen?zyme assembly and mitochondrial fission by the variable domain[J].J Biol Chem, 2012, 287(14): 10990-11001. DOI: 10.1074/jbc.M112.342105.
[21] FR?HLICH C, GRABIGER S, SCHWEFEL D, et al. Structural insightsinto oligomerization and mitochondrial remodelling of dynamin 1-likeprotein[J]. EMBO J, 2013, 32(9): 1280-1292. DOI: 10.1038/emboj.2013.74.
[22] KISHIDA H, SUGIO S. Crystal structure of GTPase domain fusedwith minimal stalks from human dynamin-1-like protein (Dlp1) incomplex with several nucleotide analogues[J]. Curr Top Pept Pro?tein Res, 2013, 14: 67-77.
[23] RAMACHANDRAN R, SCHMID SL. The dynamin superfamily[J].Curr Biol, 2018, 28(8): R411-R416. DOI: 10.1016/j.cub.2017.12.013.
[24] JOSHI AU, SAW NL, SHAMLOO M, et al. Drp1/Fis1 interaction medi?ates mitochondrial dysfunction, bioenergetic failure and cognitivedecline in Alzheimer’s disease[J]. Oncotarget, 2017, 9(5): 6128-6143. DOI: 10.18632/oncotarget.23640.
[25] JIN JY, WEI XX, ZHI XL, et al. Drp1-dependent mitochondrial fissionin cardiovascular disease[J]. Acta Pharmacol Sin, 2021, 42(5): 655-664. DOI: 10.1038/s41401-020-00518-y.
[26] YU R, LIU T, JIN SB, et al. MIEF1/2 function as adaptors to recruitDrp1 to mitochondria and regulate the association of Drp1 with Mff [J]. Sci Rep, 2017, 7(1): 880. DOI: 10.1038/s41598-017-00853-x.
[27] SOUNDARARAJAN R, HERNáNDEZ-CUERVO H, STEARNS TM, et al.A-kinase anchor protein 1 deficiency causes mitochondrial dysfunc?tion in mouse model of hyperoxia induced acute lung injury[J].Front Pharmacol, 2022, 13: 980723. DOI: 10.3389/fphar.2022.980723.
[28] CRIBBS JT, STRACK S. Reversible phosphorylation of Drp1 by cy?clic AMP-dependent protein kinase and calcineurin regulates mito?chondrial fission and cell death[J]. EMBO Rep, 2007, 8(10): 939-944. DOI: 10.1038/sj.embor.7401062.
[29] ADACHI Y, KATO T, YAMADA T, et al. Drp1 tubulates the ER in aGTPase-independent manner[J]. Mol Cell, 2020, 80(4): 621-632.e6. DOI: 10.1016/j.molcel.2020.10.013.
[30] NAVARATNARAJAH T, ANAND R, REICHERT AS, et al. The relevanceof mitochondrial morphology for human disease[J]. Int J Biochem CellBiol, 2021, 134: 105951. DOI: 10.1016/j.biocel.2021.105951.
[31] WANG LX, ISHIHARA T, IBAYASHI Y, et al. Disruption of mitochon?drial fission in the liver protects mice from diet-induced obesity andmetabolic deterioration[J]. Diabetologia, 2015, 58(10): 2371-2380.DOI: 10.1007/s00125-015-3704-7.
[32] GALLOWAY CA, LEE H, BROOKES PS, et al. Decreasing mitochon?drial fission alleviates hepatic steatosis in a murine model of nonalco?holic fatty liver disease[J]. Am J Physiol Gastrointest Liver Physiol,2014, 307(6): G632-G641. DOI: 10.1152/ajpgi.00182.2014.
[33] HAMMERSCHMIDT P, OSTKOTTE D, NOLTE H, et al. CerS6-de?rived sphingolipids interact with mff and promote mitochondrial frag?mentation in obesity[J]. Cell, 2019, 177(6): 1536-1552. e23. DOI: 10.1016/j.cell.2019.05.008.
[34] XIA WM, VEERAGANDHAM P, CAO Y, et al. Obesity causes mito?chondrial fragmentation and dysfunction in white adipocytes due toRalA activation[J]. Nat Metab, 2024, 6(2): 273-289. DOI: 10.1038/s42255-024-00978-0.
[35] FRIEDMAN JR, LACKNER LL, WEST M, et al. ER tubules mark sitesof mitochondrial division[J]. Science, 2011, 334(6054): 358-362.DOI: 10.1126/science.1207385.
[36] BRAVO-SAGUA R, PARRA V, ORTIZ-SANDOVAL C, et al. Caveolin-1impairs PKA-DRP1-mediated remodelling of ER-mitochondria com?munication during the early phase of ER stress[J]. Cell Death Dif?fer, 2019, 26(7): 1195-1212. DOI: 10.1038/s41418-018-0197-1.
[37] STEFFEN J, NGO J, WANG SP, et al. The mitochondrial fission pro?tein Drp1 in liver is required to mitigate NASH and prevents the acti?vation of the mitochondrial ISR[J]. Mol Metab, 2022, 64: 101566.DOI: 10.1016/j.molmet.2022.101566.
[38] WANG J, YANG Y, SUN F, et al. ALKBH5 attenuates mitochondrialfission and ameliorates liver fibrosis by reducing Drp1 methylation
[J]. Pharmacol Res, 2023, 187: 106608. DOI: 10.1016/j.phrs.2022.106608.
[39] HU ZQ, ZHANG HY, WANG YT, et al. Exercise activates Sirt1-medi?ated Drp1 acetylation and inhibits hepatocyte apoptosis to improvenonalcoholic fatty liver disease[J]. Lipids Health Dis, 2023, 22(1):33. DOI: 10.1186/s12944-023-01798-z.
[40] LEMOS V, DE OLIVEIRA RM, NAIA LA, et al. The NAD + -dependentdeacetylase SIRT2 attenuates oxidative stress and mitochondrialdysfunction and improves insulin sensitivity in hepatocytes[J]. HumMol Genet, 2017, 26(21): 4105-4117. DOI: 10.1093/hmg/ddx298.
[41] ZHANG LW, XIE XX, TAO JX, et al. Mystery of bisphenol F-inducednonalcoholic fatty liver disease-like changes: Roles of Drp1-medi?ated abnormal mitochondrial fission in lipid droplet deposition[J].Sci Total Environ, 2023, 904: 166831. DOI: 10.1016/j.scitotenv.2023.166831.
[42] QUAN Y, SHOU DW, YANG SQ, et al. Mdivi1 ameliorates mitochon?drial dysfunction in non-alcoholic steatohepatitis by inhibiting JNK/MFF signaling[J]. J Gastroenterol Hepatol, 2023, 38(12): 2215-2227.DOI: 10.1111/jgh.16372.
[43] ZHONG YJ, LI ZM, JIN RY, et al. Diosgenin ameliorated type II dia?betes-associated nonalcoholic fatty liver disease through inhibitingde novo lipogenesis and improving fatty acid oxidation and mitochon?drial function in rats[J]. Nutrients, 2022, 14(23): 4994. DOI: 10.3390/nu14234994.
[44] DU JX, WANG TT, XIAO CY, et al. Pharmacological activation ofAMPK prevents Drp1-mediated mitochondrial fission and alleviateshepatic steatosis In vitro[J]. Curr Mol Med, 2024, 24(12): 1506-1517.DOI: 10.2174/0115665240275594231229121030.
收稿日期:2024-04-23;錄用日期:2024-06-17
本文編輯:邢翔宇