摘 要:對(duì)常用的2種單向帶復(fù)合材料0°拉伸疲勞試樣構(gòu)型開展了試驗(yàn)與仿真分析對(duì)比研究,通過采用非接觸測(cè)量手段獲取了2種構(gòu)型試樣在拉伸載荷下的應(yīng)變分布,發(fā)現(xiàn)“雙啞鈴型”試樣邊緣效應(yīng)顯著,應(yīng)力集中更加嚴(yán)重;同時(shí)通過仿真分析方法獲取了2種構(gòu)型試樣在拉伸載荷下的應(yīng)力云圖,同樣表明“雙啞鈴型”應(yīng)力集中嚴(yán)重;通過電子顯微鏡觀察試樣邊緣發(fā)現(xiàn)機(jī)械加工將導(dǎo)致試樣表面損傷,“雙啞鈴型”試樣在機(jī)械加工過程中將對(duì)纖維造成更多損傷,不利于承載;試驗(yàn)與分析結(jié)果表明“直條型”試樣較“雙啞鈴型”試樣更適合開展碳纖維增強(qiáng)復(fù)合材料0°拉-拉疲勞門檻值試驗(yàn)。
關(guān)鍵詞:碳纖維復(fù)合材料;疲勞門檻值;試樣構(gòu)型;失效機(jī)理;試驗(yàn)方法
中圖分類號(hào):V216.1 "文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1000-4939(2025)01-0064-07
Comparative analysis and failure mechanism study of 0°
tensile fatigue specimen configuration of unidirectionalstrip composite materials
HUANG Guangqi,SONG Guibin,ZHANG Qiang
(National Key Laboratory of Strength and Structural Integrity,China Aircraft Strength Research Institute,710065 Xi’an,China)
Abstract:This article conducted experimental and simulation analysis and comparative research on two commonly used unidirectional composite material 0° tensile-fatigue specimen configurations.By using non-contact measurement methods,the strain distribution of the two configuration specimens under tensile load was obtained.It was found that the “double dumbbell shaped” specimen had significant edge effects and more severe stress concentration. At the same time,stress cloud maps of two types of specimens under tensile load were obtained through simulation analysis methods,which also showed severe stress concentration in the “double dumbbell shaped” specimen. By observing the edges of the sample under an electron microscope,it was found that mechanical processing would cause surface damage to the sample.The “double dumbbell shaped” sample would cause more damage to the fibers during mechanical processing,which is not conducive to load-bearing. The experimental and analytical results indicate that the “straight strip” specimen is more suitable for conducting 0° tensile-fatigue threshold tests on carbon fiber composite materials than the “double dumbbell” specimen.
Key words:carbon fiber composite material;fatigue threshold value;sample configuration;failure mechanism;test method
碳纖維增強(qiáng)復(fù)合材料具有比強(qiáng)度/比剛度高、耐腐蝕等優(yōu)異的性能,在航空航天、軌道交通、風(fēng)力發(fā)電、體育用品等領(lǐng)域得到廣泛的應(yīng)用[1-2],尤其在航空領(lǐng)域,復(fù)合材料用量的高低成為了衡量飛行器性能的標(biāo)志[3]。飛機(jī)復(fù)合材料結(jié)構(gòu)通常采用積木式驗(yàn)證方法進(jìn)行驗(yàn)證,其結(jié)構(gòu)完整性驗(yàn)證大綱包括靜強(qiáng)度、剛度、耐久性與損傷容限4部分[4]。隨著技術(shù)的發(fā)展,對(duì)復(fù)合材料結(jié)構(gòu)疲勞壽命提出了更高要求[5]。直升機(jī)旋翼槳葉、固定翼飛機(jī)上的許多構(gòu)件承受了高周疲勞載荷的作用,在疲勞載荷作用下產(chǎn)生的疲勞裂紋將使構(gòu)件剛度和強(qiáng)度下降,給飛機(jī)結(jié)構(gòu)安全帶來威脅[6-7]。
復(fù)合材料單向板疲勞性能的準(zhǔn)確測(cè)試與表征是復(fù)合材料結(jié)構(gòu)設(shè)計(jì)與驗(yàn)證的基礎(chǔ),國內(nèi)外許多學(xué)者開展了相關(guān)研究[8-15]。李生等[16]開展了不同界面對(duì)樹脂基復(fù)合材料拉-拉疲勞性能影響的研究,獲得了界面性能對(duì)復(fù)合材料疲勞性能的影響規(guī)律。高爽等[17]、陳海霞等[18]、MA等[19]
也開展了復(fù)合材料拉-拉疲勞試驗(yàn)研究,獲得了濕熱環(huán)境等條件下的影響規(guī)律。當(dāng)前大量學(xué)者針對(duì)不同類型復(fù)合材料的疲勞行為進(jìn)行了廣泛而深入的研究[20-28],在樹脂基復(fù)合材料疲勞失效機(jī)理研究方面也取得了一定研究成果。CARVELLI等[29]利用特征損傷來描述樹脂基復(fù)合材料疲勞損傷演化過程,認(rèn)為當(dāng)特征損傷超過一個(gè)閾值時(shí),損傷將快速累積,復(fù)合材料層內(nèi)與層間裂紋迅速增加,進(jìn)而纖維斷裂發(fā)生疲勞失效。還有很多學(xué)者[30-31]利用紅外熱成像方法研究樹脂基復(fù)合材料的疲勞特征,揭示了復(fù)合材料在疲勞載荷作用下的損傷演化規(guī)律,并利用溫升數(shù)據(jù)預(yù)測(cè)了材料的疲勞強(qiáng)度。
本研究針對(duì)單向帶碳纖維復(fù)合材料開展0°拉-拉疲勞試驗(yàn)構(gòu)型對(duì)比研究,通過設(shè)計(jì)“直條型”試樣、“雙啞鈴型”試樣,采用升降法獲取不同試樣構(gòu)型下的疲勞門檻值;基于非接觸測(cè)量手段以及仿真分析手段探明不同構(gòu)型下疲勞門檻值差異的原因,結(jié)合電子顯微鏡觀察結(jié)果,說明復(fù)合材料0°拉-拉疲勞失效機(jī)理。本研究可支撐聚合物基碳纖維復(fù)合材料0°拉-拉疲勞試驗(yàn)方法的確定,為準(zhǔn)確評(píng)估復(fù)合材料疲勞性能提供支撐。
1 試 驗(yàn)
1.1 試驗(yàn)件
選取T800級(jí)碳纖維增強(qiáng)復(fù)合材料,
設(shè)計(jì)“直條型”與“雙啞鈴型”2種試驗(yàn)構(gòu)型進(jìn)行單向帶復(fù)合材料拉-拉疲勞試驗(yàn)對(duì)比研究,如圖1~圖2所示?!爸睏l型”試樣長度為250mm、寬度為15mm、工作段厚度為1.12mm,“雙啞鈴型”試樣長度為270mm,工作段處寬度為5mm、厚度為2mm。
1.2 試驗(yàn)方法
疲勞試驗(yàn)載荷波形采用正弦波,動(dòng)靜比為0.9(應(yīng)力比為0.0526),加載頻率為10Hz,采用熱電偶監(jiān)測(cè)試驗(yàn)件表面溫度,同時(shí)采用散熱措施確保試樣表面溫升不超過10℃?!爸睏l型”試樣與“雙啞鈴型”試樣疲勞試驗(yàn)狀態(tài)如圖3所示。
2 試驗(yàn)結(jié)果及分析
2.1 2種試樣構(gòu)型疲勞門檻值結(jié)果
疲勞試驗(yàn)采用升降法進(jìn)行,若試樣達(dá)到106次壽命仍未失效,則增加一級(jí)應(yīng)力水平進(jìn)行下一件試樣疲勞試驗(yàn);若第一件試樣未達(dá)到106次壽命即失效,則降低一級(jí)應(yīng)力水平進(jìn)行試驗(yàn)?!爸睏l型”試樣和“雙啞鈴型”試樣疲勞試驗(yàn)結(jié)果分別如表1~表2所示,其疲勞門檻值分別為1893MPa和1505MPa,結(jié)果表明采用不同試樣測(cè)得的相同材料0°拉伸疲勞門檻值具有較大差異,“直條型”試樣結(jié)果比“雙啞鈴型”試樣結(jié)果高25.8%。
2.2 結(jié)果分析
2.2.1 2種構(gòu)型試樣疲勞剛度變化對(duì)比
“直條型”試樣和“雙啞鈴型”試樣疲勞過程中,典型剛度變化結(jié)果分別如圖4~圖5所示。
“直條型”試樣在疲勞破壞前剛度基本保持不變,臨近破壞時(shí)剛度快速降低,在極短的疲勞循環(huán)內(nèi)發(fā)生破壞;“雙啞鈴型”試樣在整個(gè)疲勞加載過程中剛度逐漸降低,表明試樣在疲勞載荷作用下發(fā)生了漸進(jìn)破壞。
本研究采用攝像設(shè)備記錄了試樣疲勞循環(huán)過程中的表面形貌,“直條型”試樣和“雙啞鈴型”試樣的典型失效過程形貌如圖6~圖7所示?!半p啞鈴型”試樣在R區(qū)先發(fā)生分層,隨后工作段逐步發(fā)生分層及纖維的部分?jǐn)嗔?,纖維不斷斷裂最終破壞,破壞形式為工作段分層與劈裂;“直條型”試樣在邊緣發(fā)生少量分層,纖維未發(fā)生提前斷裂,最終發(fā)生纖維整體斷裂失效,破壞形式為工作段纖維間劈裂及斷裂。失效過程表明“雙啞鈴型”試樣在疲勞試驗(yàn)過程中出現(xiàn)了纖維逐漸斷裂,引起了試樣剛度的逐漸降低;而“直條型”試樣在疲勞過程中纖維未發(fā)生斷裂,僅邊緣出現(xiàn)分層,因此其剛度變化不明顯。
2.2.2 2種構(gòu)型試樣表面應(yīng)變對(duì)比分析
本研究設(shè)計(jì)了“直條型”試樣和“雙啞鈴型”試樣拉伸試驗(yàn),采用DIC(digital image correlation)監(jiān)測(cè)試樣的應(yīng)變場(chǎng),對(duì)比2種試樣在拉伸載荷作用下的應(yīng)變分布,試驗(yàn)狀態(tài)如圖8所示。
試驗(yàn)方法為對(duì)“雙啞鈴型”試樣和“直條型”試樣施加拉伸載荷,使其拉伸強(qiáng)度達(dá)到800MPa,通過對(duì)測(cè)試數(shù)據(jù)進(jìn)行分析獲取試樣工作段的應(yīng)變場(chǎng)。試驗(yàn)結(jié)果對(duì)比如圖9所示。結(jié)果表明“雙啞鈴型”試樣應(yīng)變場(chǎng)分布不均勻,證實(shí)“雙啞鈴型”試樣在工作段寬度方向應(yīng)力分布極不均勻,邊緣的高應(yīng)力區(qū)將導(dǎo)致疲勞先失效;“直條型”試樣同樣存在邊緣效應(yīng),但其工作段較寬,從結(jié)果反映出其應(yīng)力均勻性更好。
“雙啞鈴型”試樣邊緣效應(yīng)明顯,應(yīng)力集中是導(dǎo)致試樣受疲勞載荷漸進(jìn)失效的重要原因,因此其疲勞門檻值低于“直條型”試樣。
3 仿真結(jié)果及分析
“直條型”、 “雙啞鈴型”試樣的幾何建模和邊界條件分別如圖10~圖11所示。
在拉伸試驗(yàn)?zāi)P椭?,固支約束試樣左側(cè)夾持區(qū),約束試樣右端除X向外其余方向的平動(dòng)和所有轉(zhuǎn)動(dòng),在試樣上下兩面夾持區(qū)域施加X向的位移載荷,采用光滑的加載幅值曲線。“直條型”、 “雙啞鈴型”試樣模型的網(wǎng)格劃分如圖12~圖13所示,采用三維實(shí)體縮減積分單元(C3D8R),復(fù)合材料單層采用自定義的材料模型;采用增強(qiáng)的沙漏控制以避免零能模式(沙漏)的發(fā)生。
“直條型”、 “雙啞鈴型”試樣的應(yīng)力云圖分別如圖14~圖15所示。由圖中可以看出,“雙啞鈴型”試樣工作區(qū)邊緣存在較大的應(yīng)力集中,而“直條型”試樣工作區(qū)應(yīng)力分布更加均勻。因此在疲勞載荷作用下,由于“雙啞鈴型”試樣工作區(qū)邊緣存在應(yīng)力集中,容易引起邊緣破壞,從而導(dǎo)致試樣整體承載力的下降,使得試樣提前失效;“直條型”試樣工作區(qū)應(yīng)力分布較均勻,該構(gòu)型更適合開展復(fù)合材料0°拉-拉疲勞試驗(yàn)。
4 疲勞失效機(jī)理分析
本研究采用電子顯微鏡對(duì)試樣及其斷口進(jìn)行觀察。圖16為未開展試驗(yàn)時(shí)“雙啞鈴型”試樣邊緣微觀試圖,從400μm視場(chǎng)發(fā)現(xiàn)當(dāng)前制備工藝下單層厚度仍存在差異,從10μm視場(chǎng)可清晰地看出試樣邊緣纖維存在損傷,表明試樣在機(jī)械加工過程中不可避免會(huì)損傷纖維,使得其承載力下降;而“雙啞鈴型”試樣在寬度方向、厚度方向均需切割以滿足試樣構(gòu)型要求,勢(shì)必?fù)p傷其寬度兩側(cè)、厚度兩側(cè)的纖維,使得該構(gòu)型的表層纖維更易疲勞斷裂;而“直條型”試樣厚度兩側(cè)無需機(jī)械加工,纖維完整性更佳,其疲勞承載能力更佳,這也是“直條型”試樣0°拉-拉疲勞門檻值高于“雙啞鈴型”試樣的原因之一。
圖17為破壞后0°拉伸試樣的層間斷口電子顯微鏡觀察圖片。通過觀察斷口發(fā)現(xiàn),樹脂基體中存在孔洞等初始缺陷,初始缺陷將引起應(yīng)力集中,使得分層萌生;而纖維、樹脂基體以及層間為了滿足變形協(xié)調(diào)將導(dǎo)致應(yīng)力分配不均勻,基體承受縱向拉應(yīng)力與縱向切應(yīng)力的耦合作用,使得分層持續(xù)擴(kuò)展。由圖18可以發(fā)現(xiàn)試樣失效后基體呈現(xiàn)“麥穗狀”,在疲勞循環(huán)加載中基體在產(chǎn)生初始損傷后不斷擴(kuò)展,已損傷的基體彼此間不斷摩擦而導(dǎo)致基體不再連續(xù),從而無法傳遞應(yīng)力,而此時(shí)應(yīng)力會(huì)在纖維間產(chǎn)生“跳躍性”,導(dǎo)致纖維的不斷斷裂,進(jìn)而整體破壞。
5 結(jié) 論
采用“直條型”試樣與“雙啞鈴型”試樣測(cè)試碳纖維增強(qiáng)復(fù)合材料0°拉-拉疲勞門檻值存在顯著差異;通過試驗(yàn)與仿真分析發(fā)現(xiàn)“雙啞鈴型”試樣邊緣效應(yīng)顯著,導(dǎo)致較大的邊緣應(yīng)力集中,使得試樣邊緣更易發(fā)生疲勞斷裂;“雙啞鈴型”試樣在機(jī)械加工過程中將對(duì)纖維造成更多損傷,使得纖維束承載力下降。因此,“直條型”試樣較“雙啞鈴型”試樣更適合開展碳纖維增強(qiáng)復(fù)合材料0°拉-拉疲勞門檻值試驗(yàn)。
參考文獻(xiàn):
[1] ZHOU S,WU X D.Fatigue life prediction of composite laminates by fatigue master curves[J].Journal of materials research and technology,2019,8(6):6094-6105.
[2] DAS A D,MANNONI G,F(xiàn)RH A E,et al.Damage-reporting carbon fiber epoxy composites[J].ACS applied polymer materials,2019,1(11):2990-2997.
[3] 杜善義.先進(jìn)復(fù)合材料與航空航天[J].復(fù)合材料學(xué)報(bào),2007,24(1):1-12.
DU Shanyi.Advanced composite materials and aerospace engineering[J].Acta materiae compositae Sinica,2007,24(1):1-12(in Chinese).
[4] 中國人民解放軍總裝備部.軍用飛機(jī)結(jié)構(gòu)強(qiáng)度規(guī)范第14部分:復(fù)合材料結(jié)構(gòu):GJB67.14—2008[S].北京:中國人民解放軍總裝備部,2008:1-13.
[5] VASSILOPOULOS A P.The history of fiber-reinforced polymer composite laminate fatigue[J].International journal of fatigue,2020,134:105512.
[6] 鮑學(xué)淳,程禮,陳煊,等.碳纖維樹脂基復(fù)合材料三點(diǎn)彎曲超高周疲勞實(shí)驗(yàn)研究[J].機(jī)械強(qiáng)度,2019,41(4):858-863.
BAO Xuechun,CHENG Li,CHEN Xuan,et al.Study on the three-piont bending fatifgue experiment of carbon fiber reinforced resin compositees in the very high cycle fatigue regime[J].Journal of mechanical strength,2019,41(4):858-863(in Chinese).
[7] 劉牧東.航空復(fù)合材料疲勞性能研究[J].中國科技信息,2019(1):29-30.
LIU Mudong.Fatigue performance of aerospace composite materials[J].China science and technology information,2019(1):29-30(in Chinese).
[8] HWANG W,HAN K S.Cumulative damage models and multi-stress fatigue life prediction[J].Journal of composite materials,1986,20(2):125-153.
[9] TALREJA R.A mechanisms-based reliability model for fatigue of composite laminates[J].Journal of applied mathematics and mechanics,2015,95(10):1058-1066.
[10]SHIRI S,POURGOL-MOHAMMAD M,YAZDANIM.Probabilistic assessment of fatigue life in fiber reinforced composites[C]//ASME 2014 International Mechanical Engineering Congress and Exposition.New York,NY,USA:ASME,2014:V014T08A018.
[11]WU F Q,YAO W X.A fatigue damage model of composite materials[J].International journal of fatigue,2010,32(1):134-138.
[12]SHOKRIEH M M,LESSARD L B.Progressive fatigue damage modeling of composite materials,part I:modeling[J].Journal of composite materials,2000,34(13):1056-1080.
[13]LAPCZYK I,HURTADO J A.Progressive damage modeling in fiber-reinforced materials[J].Composites part a:applied science and manufacturing,2007,38(11):2333-2341.
[14]ELLYIN F,EL-KADI H.A fatigue failure criterion for fiber reinforced composite laminae[J].Composite structures,1990,15(1):61-74.
[15]XIAO X R.Modeling of load frequency effect on fatigue life of thermoplastic composites[J].Journal of composite materials,1999,33(12):1141-1158.
[16]李生,陶紅波,李想.界面對(duì)樹脂基復(fù)合材料拉-拉疲勞性能影響研究[J].材料開發(fā)與應(yīng)用,2022,37(1):17-20.
LI Sheng,TAO Hongbo,LI Xiang.Influence of interface on tension-tension fatigue property of fiber reinforced plastic composite materials[J].Development and application of materials,2022,37(1):17-20(in Chinese).
[17]高爽,李澤邦,李森,等.玻璃纖維增強(qiáng)復(fù)合材料拉-拉疲勞研究[J].海洋工程裝備與技術(shù),2023,10(2):57-60.
GAO Shuang,LI Zebang,LI Sen,et al.Research on tensile fatigue of glass fiber reinforced composites[J].Ocean engineering equipment and technology,2023,10(2):57-60(in Chinese).
[18]陳海霞,劉菲,祁文軍,等.玻璃纖維層合板拉-拉疲勞特性研究[J].機(jī)械設(shè)計(jì)與制造,2017(12):56-59.
CHEN Haixia,LIU Fei,QI Wenjun,et al.Research on the fatigue properties of glass fiber composite laminates[J].Machinery design amp; manufacture,2017(12):56-59(in Chinese).
[19]MA B L,F(xiàn)ENG Y,HE Y T,et al.Effect of hygrothermal environment on the tension-tension fatigue performance and reliable fatigue life of T700/MTM46 composite laminates[J].Journal of Zhejiang University-Science A,2019,20(7):499-514.
[20]邱爽,周金宇.不同應(yīng)力水平對(duì)碳纖維復(fù)合材料疲勞剩余剛度的影響[J].航空材料學(xué)報(bào),2018,38(2):110-117.
QIU Shuang,ZHOU Jinyu.Effect of different stress levels on fatigue residual stiffness of carbon fiber reinforced composite[J].Journal of aeronautical materials,2018,38(2):110-117(in Chinese).
[21]HERNáNDEZ S,SKET F,MOLINA-ALDAREGUI′A J M,et al.Effect of curing cycle on void distribution and interlaminar shear strength in polymer-matrix composites[J].Composites science and technology,2011,71(10):1331-1341.
[22]RUIZ E,ACHIM V,SOUKANE S,et al.Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites[J].Composites science and technology,2006,66(3/4):475-486.
[23]PROTZ R,KOSMANN N,GUDE M,et al.Voids and their effect on the strain rate dependent material properties and fatigue behaviour of non-crimp fabric composites materials[J].Composites part b:engineering,2015,83:346-351.
[24]ZHANG A Y,LI D H,LU H B,et al.Qualitative separation of the effect of voids on the bending fatigue performance of hygrothermal conditioned carbon/epoxy composites[J].Materials amp; design,2011,32(10):4803-4809.
[25]許經(jīng)緯,顧嬡娟.碳?;祀s纖維增強(qiáng)復(fù)合材料的拉-拉疲勞性能的研究[J].復(fù)合材料科學(xué)與工程,2020(4):39-45.
XU Jingwei,GU Yuanjuan.Study on tension-tension fatigue performance for carbon/glass hybridized fabric reinforced composites[J].Composites science and engineering,2020(4):39-45(in Chinese).
[26]MONTESANO J,F(xiàn)AWAZ Z,BOUGHERARA H.Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite[J].Composite structures,2013,97:76-83.
[27]朱元林,溫衛(wèi)東,劉禮華,等.單向碳/碳復(fù)合材料拉-拉疲勞壽命及剩余強(qiáng)度預(yù)測(cè)模型[J].復(fù)合材料學(xué)報(bào),2018,35(8):2293-2301.
ZHU Yuanlin,WEN Weidong,LIU Lihua,et al.Model for predicting tension-tension fatigue life and residual strength of unidirectional carbon/carbon composites[J].Acta materiae compositae Sinica,2018,35(8):2293-2301(in Chinese).
[28]趙璽,路國運(yùn),彭曉兵,等.基于損傷力學(xué)的復(fù)雜航空構(gòu)件疲勞壽命預(yù)估[J].應(yīng)用力學(xué)學(xué)報(bào),2020,37(3):1007-1012.
ZHAO Xi,LU Guoyun,PENG Xiaobing,et al.Fatigue life prediction of complex aeronautical components based on damage mechanics[J].Chinese journal of applied mechanics,2020,37(3):1007-1012(in Chinese).
[29]CARVELLI V,OKUBO K,F(xiàn)UJII T.Fatigue damage characterization and percolation in plain-weave carbon fiber-epoxy composites[J].Composites part b:engineering,2021,224:109225.
[30]楊正偉,趙志彬,李胤,等.壓-壓疲勞載荷下CFRP層合板表面紅外輻射特征[J].航空學(xué)報(bào),2021,42(5):226-236.
YANG Zhengwei,ZHAO Zhibin,LI Yin,et al.Infrared radiation characteristics of CFRP laminate surface under compressive fatigue load[J].Acta aeronautica et astronautica Sinica,2021,42(5):226-236(in Chinese).
[31]CRUPI V,GUGLIELMINO E,SCAPPATICCI L,et al.Fatigue assessment by energy approach during tensile and fatigue tests on PPGF35[J].Procedia structural integrity,2017,3:424-431.
(編輯 李坤璐)