摘要:目的基于aMAP評分聯(lián)合RAR及PIV構(gòu)建并驗證慢性肝病患者肝細胞癌(HCC)發(fā)生風險的預測模型。方法143例慢性肝病患者按照是否發(fā)生HCC分為HCC組32例及非HCC組111例,比較2組一般臨床資料、aMAP評分及外周血指標水平。采用多因素Logistic回歸分析住院慢性肝病患者發(fā)生HCC的影響因素,構(gòu)建并驗證列線圖風險預測模型。結(jié)果與非HCC組比較,HCC組年齡大、男性比例高,總膽紅素(TBIL)、紅細胞分布寬度(RDW)、中性粒細胞計數(shù)(NEU)、單核細胞計數(shù)(MON)、aMAP評分、RDW與ALB比值(RAR)、泛免疫炎癥值(PIV)水平高,白蛋白(ALB)、淋巴細胞計數(shù)(LYM)水平低(P<0.05)。多因素Logistic回歸分析顯示,較高aMAP評分、RAR、PIV是住院慢性肝病患者HCC風險的獨立危險因素(P<0.05);據(jù)此構(gòu)建的列線圖風險預測模型受試者工作特征(ROC)曲線的曲線下面積(AUC)為0.823(95%CI:0.747~0.899),校準曲線顯示預測值與實際觀測值基本一致,Brier得分為0.125,決策曲線顯示該模型具有明顯的正向效益,Bootstrap法對預測模型進行內(nèi)部驗證的AUC為0.823(95%CI:0.820~0.825),提示模型具有良好的區(qū)分度。結(jié)論aMAP評分聯(lián)合RAR及PIV構(gòu)建的慢性肝病患者發(fā)生HCC的列線圖風險預測模型預測性能良好,有助于指導個體化治療及隨訪。
關(guān)鍵詞:癌,肝細胞;列線圖;ROC曲線;aMAP評分;慢性肝??;紅細胞分布寬度與白蛋白比值;泛免疫炎癥值中圖分類號:R735.7文獻標志碼:A DOI:10.11958/20241112
Constructing a risk prediction model for hepatocellular carcinoma in patients with chronic liverdisease based on aMAP score combined with RAR and PIV
JIANG Xiaohan,CAO Jie△,LIU Dandan,XUE Dan,GUO Zhiguo
Department of Gastroenterology,Suzhou Hospital of Anhui Medical University,Suzhou Municipal Hospital ofAnhui Province,Suzhou 234000,China
△Corresponding Author E-mail:caojiewen@126.com
Abstract:Objective To construt and validate a risk prediction model for hepatocellular carcinoma(HCC)inpatients with chronic liver disease based on age-male-ALBI-platelets(aMAP)score combined with RAR and PIV.Methods A total of 143 patients with chronic liver disease were divided into the HCC group(32 cases)and the non-HCC group(111 cases)according to whether HCC occurred.General clinical data,aMAP score and peripheral blood indicator level were compared between two groups.Multivariate Logistic regression was used to analyze influencing factors of HCC in inpatients with chronic liver disease.A nomogram risk prediction model was constructed and validated.Results Compared with the non-HCC group,there were higher age,higher proportion of males,higher levels of total bilirubin(TBIL),red blood cell distribution width(RDW),neutrophil count(NEU)and monocyte count(MON),lower levels of albumin(ALB)and lymphocyte count(LYM),higher levels of aMAP score,RDW to ALB(RAR)and pan-immune inflammation value(PIV)in the HCC group(P<0.05).Multivariate Logistic regression showed that higher levels of aMAP score,RAR and PIV were independent risk factors for HCC in inpatients with chronic liver disease(P<0.05).The area under receiver operator characteristic(ROC)curve(AUC)of the nomogram risk prediction model constructed based on above factors was 0.823(95%CI:0.747-0.899).The calibration curve showed that the predicted value was basically consistent with the actual observed value,and the Brier score was 0.125.The decision curve showed that the model had a clear positive net benefit.The AUC of internal validation of the prediction model by Bootstrap method was 0.823(95%CI:0.820-0.825),indicating that the model had a good degree of differentiation.Conclusion The nomogram risk prediction model based on aMAP score,RARand PIV showed a good predictive performance of HCC in patients with chronic liver disease,which could benefits the individualized treatment and follow-up.
Key words:carcinoma,hepatocellular;nomograms;ROC curve;aMAP score;chronic liver disease;RAR;PIV
肝癌居全球常見惡性腫瘤第6位,我國2022年原發(fā)性肝癌新增36.8萬例,死亡31.7萬例,分別占全球病例的42.4%與41.7%[1]。肝細胞癌(hepatocellular carcinoma,HCC)是主要的肝癌類型,HCC的5年生存率與癌癥早期診斷率相關(guān),然而目前我國HCC早期診斷率較低,總體中位生存期僅23個月,5年生存率不足14.1%[2-3]。另外,HCC治療難度大、費用高。因此,如何提高HCC早期診斷率是目前亟待解決的重要問題。
慢性肝病人群是我國HCC的高危人群。對HCC風險人群進行風險評分,繼而行分層管理可有效提升HCC早期診斷率和HCC風險人群獲益率[4]。aMAP評分(age-male-ALBI-platelets score)由年齡、性別、外周血總膽紅素(total bilirubin,TBIL)、白蛋白(albumin,ALB)及血小板計數(shù)(platelet count,PLT)5項指標構(gòu)成,適用于HCC的風險預測[5],可作為基層醫(yī)院及門診慢性肝病患者HCC篩查的簡便管理工具[6-7]。新型炎癥標志物在腫瘤發(fā)生、發(fā)展及預后評估中發(fā)揮重要作用。研究表明,紅細胞分布寬度(red blood cell distribution width,RDW)與ALB比值(RDW to ALB ratio,RAR)升高是癌癥全因死亡率增加的獨立預測因子[8]。泛免疫炎癥值(pan-immune inflammation value,PIV)是一種由PLT、中性粒細胞計數(shù)(neutrophil count,NEU)、單核細胞計數(shù)(monocyte count,MON)、淋巴細胞計數(shù)(lymphocyte count,LYM)通過計算形成的復合指標,綜合考慮了多種免疫和炎癥相關(guān)因素。Liang等[9]研究顯示,PIV可評估早期HCC患者接受根治性射頻消融術(shù)后的無復發(fā)生存期和總生存期。然而,慢性肝病患者病情相對較重、合并癥多,上述指標單獨檢測時對患者發(fā)生HCC風險的預測效能仍有限。本研究旨在建立并驗證基于aMAP評分聯(lián)合新型炎癥指標的慢性肝病患者發(fā)生HCC風險的預測模型,以期提高對HCC高風險人群的識別率,輔助臨床醫(yī)師診斷和決策。
1對象與方法
1.1研究對象隨機抽取2019年10月—2023年12月在安徽省宿州市立醫(yī)院住院治療的慢性肝病患者143例,按照是否發(fā)生HCC分為HCC組32例和非HCC組111例。納入標準:(1)年齡≥18歲;(2)HCC患者均存在慢性肝病史,同時符合《原發(fā)性肝癌診療指南(2022年版)》診斷標準(所有入組HCC患者重新按照2022年版標準診斷);(3)慢性肝病包括慢性乙型病毒性肝炎(chronic hepatitis B,CHB)、慢性丙型病毒性肝炎(chronic hepatitis C,CHC)、酒精性或非酒精性脂肪性肝病、自身免疫性肝病及上述或相關(guān)原因?qū)е碌母斡不?;?)一般臨床信息、血常規(guī)及肝功能等實驗室資料完整。排除標準:(1)不配合正常診療;(2)精神異常;(3)合并其他系統(tǒng)原發(fā)腫瘤。本研究經(jīng)安徽省宿州市立醫(yī)院倫理委員會批準(批號A2023016)。
1.2研究方法
1.2.1一般臨床資料通過住院病歷系統(tǒng)收集患者的年齡、性別、吸煙史(≥20支/d,連續(xù)吸煙超過5年)、飲酒史(折合乙醇量男性≥40 g/d,女性≥20 g/d,連續(xù)飲酒>5年)、合并癥(高血壓、糖尿病史)等一般臨床資料。
1.2.2實驗室指標收集患者入院時的外周血TBIL、ALB、PLT、RDW、NEU、LYM、MON。計算aMAP評分、RAR、PIV,其中aMAP評分={[0.06×年齡+0.89×性別(男性:1;女性:0)+0.48×(log10 TBIL×0.66+ALB×-0.085)-0.01×PLT]+7.4}/14.77×100,RAR=RDW/ALB,PIV=(PLT×NEU×MON)/LYM。
1.3統(tǒng)計學方法采用SPSS 29.0及R軟件分析數(shù)據(jù)。正態(tài)分布的計量資料以x±s表示,2組間比較采用獨立樣本t檢驗,偏態(tài)分布以M(P25,P75)表示,2組間比較采用秩和檢驗。計數(shù)資料以例或例(%)表示,組間比較采用χ2檢驗;影響因素分析采用Logistic回歸分析,根據(jù)回歸分析結(jié)果構(gòu)建列線圖預測模型。繪制受試者工作特征(ROC)曲線并計算曲線下面積(AUC)分析各指標及預測模型對住院慢性肝病患者發(fā)生HCC的預測價值,預測模型的內(nèi)部驗證應用Bootstrap法(抽樣1 000次),校準曲線評價模型校準度,決策曲線評價模型臨床效益。P<0.05為差異有統(tǒng)計學意義。
2結(jié)果
2.1 2組一般臨床資料比較與非HCC組比較,HCC組年齡大、男性比例高(P<0.05),2組吸煙史、飲酒史、高血壓、糖尿病等基礎(chǔ)疾病差異無統(tǒng)計學意義(P>0.05),見表1。
2.2 2組外周血指標及aMAP評分比較與非HCC組比較,HCC組TBIL、RDW、NEU、MON、aMAP評分、RAR、PIV升高,而ALB、LYM水平降低(Plt;0.01),2組PLT差異無統(tǒng)計學意義,見表2。
2.3 HCC影響因素分析以aMAP評分、RAR、PIV為自變量,以是否發(fā)生HCC(否=0,是=1)為因變量,進行Logistic回歸分析。結(jié)果顯示,較高aMAP評分、RAR、PIV是住院慢性肝病患者發(fā)生HCC的獨立危險因素(P<0.05),見表3。
2.4慢性肝病患者發(fā)生HCC的列線圖預測模型構(gòu)建據(jù)Logistic回歸分析結(jié)果構(gòu)建預測模型的回歸方程為Logit(P)=0.094×aMAP評分+3.419×RAR+0.003×PIV-9.363,繪制慢性肝病患者發(fā)生HCC的列線圖,見圖1。
2.5列線圖預測模型的評價與驗證以aMAP評分、RAR、PIV及聯(lián)合檢測預測模型為檢驗變量,是否發(fā)生HCC(是=1,否=0)為狀態(tài)變量,繪制ROC曲線。結(jié)果顯示列線圖預測模型具有較好的預測能力,其預測住院慢性肝病患者發(fā)生HCC的效能高于aMAP評分和RAR單獨檢測(Z分別為3.044和2.199,均P<0.05),與PIV比較差異無統(tǒng)計學意義(Z=1.446,P=0.148),見表4、圖2。校準曲線示,預測值與實際觀測值基本一致,Brier得分為0.125,說明模型預測的準確度較好,見圖3A;決策曲線示,模型具有明顯的正向凈效益,有臨床實用價值,見圖3B。運用Bootstrap法對預測模型進行內(nèi)部驗證,內(nèi)部驗證的AUC為0.823(95%CI:0.820~0.825),提示模型具有良好的區(qū)分度。
3討論
肝硬化和未抗病毒治療的CHB等慢性肝病是導致肝癌的主要原因[4]。研究顯示,85%~95%的肝癌患者曾患有肝硬化[10],而86%以上的肝硬化患者由CHB所致[11]。因此,患有慢性肝病者,尤其是CHB導致的肝硬化患者是臨床需要重點關(guān)注的目標人群。
aMAP評分是近年新開發(fā)的預測HCC發(fā)生風險的評分系統(tǒng),包含年齡、性別、TBIL、ALB、PLT五項指標。CHB由乙型肝炎病毒(hepatitis B virus,HBV)感染所致,研究顯示,母嬰傳播是HBV傳播的重要途徑,大部分HBV感染發(fā)生在嬰兒期,呈慢性感染狀態(tài),病毒復制持續(xù)活躍,因此CHB所致HCC發(fā)病風險隨年齡增加呈上升趨勢[12]。Liu等[13]研究亦證實,CHB發(fā)生HCC風險隨年齡增加而增加。研究顯示,我國男性HCC的發(fā)病率約是女性的3倍[14],原因可能為男性有飲酒等不良習慣者較多,女性X染色體富含免疫相關(guān)基因且性激素的免疫調(diào)節(jié)作用也產(chǎn)生了影響[15]。TBIL是結(jié)合膽紅素與未結(jié)合膽紅素的總和,為血紅素分解代謝的最終產(chǎn)物,可反映肝臟的清除代謝功能。ALB由肝細胞合成,可反映肝臟的合成功能及營養(yǎng)狀態(tài)。ALB、TBIL是aMAP評分的重要部分,可體現(xiàn)肝臟的儲備功能,廣泛用于HCC治療后的預后價值評估[16-17]。PLT是骨髓成熟的巨核細胞胞質(zhì)裂解脫落的小塊胞質(zhì),參與腫瘤微環(huán)境的形成,可用于早期癌癥檢測、疾病進展監(jiān)測及腫瘤預后評估[18-19]。因此,包含以上指標的aMAP評分可用于預測HCC的發(fā)生。Innes等[20]研究表明,aMAP評分對肝硬化和已治愈的丙型肝炎病毒(hepatitis C virus,HCV)感染患者發(fā)生HCC風險的預測性能較其他預測模型更好。Yamashita等[21]研究也表明,aMAP評分可用于預測達到持續(xù)病毒學反應的HCV患者發(fā)生HCC的風險程度。本研究結(jié)果亦證實,與非HCC組比較,HCC組年齡、男性占比及TBIL水平高,ALB水平低,但2組PLT水平無差異,考慮原因為本研究中納入的均是住院患者,病情相對重所致。
RAR是RDW與ALB的比值,為一種新型炎癥標志物。RDW反映了外周血中紅細胞體積異質(zhì)性,可反映機體的炎癥程度,其升高通常與多種肝臟疾病相關(guān)。研究顯示,RDW與CHB的嚴重程度呈正相關(guān),可以獨立預測CHB相關(guān)肝硬化的長期預后[22]。RDW也與HCC腫瘤大小有關(guān),是預測HBV相關(guān)HCC患者生存和預后的潛在有價值的血液學標志物[23-25]。因此,RAR可同時反映機體的炎癥和營養(yǎng)狀況,能更全面地反映疾病的發(fā)展狀態(tài)。PIV是以外周血NEU、MON、PLT和LYM為基礎(chǔ)的新型標志物,可反映機體全身免疫炎癥水平。NEU是全身及局部炎癥過程的關(guān)鍵介質(zhì),參與了肝癌發(fā)生發(fā)展和轉(zhuǎn)移的多個環(huán)節(jié),通過產(chǎn)生和釋放促血管生成的因子、蛋白水解酶及多種細胞因子來刺激腫瘤增殖和轉(zhuǎn)移[26]。研究顯示,NEU與采用手術(shù)或局部治療的肝癌患者的高腫瘤負荷、血管侵犯、肝外轉(zhuǎn)移和甲胎蛋白水平存在顯著相關(guān)性[27]。LYM在腫瘤免疫循環(huán)中發(fā)揮核心作用,低LYM是腫瘤預后不良的預測因素[28]。MON可發(fā)揮吞噬作用和免疫調(diào)節(jié)作用。研究表明,高水平NEU、MON及低水平LYM的HCC患者總生存期降低、疾病進展較快[27]。本研究結(jié)果顯示,較高aMAP評分、RAR、PIV是影響住院慢性肝病患者HCC風險的獨立危險因素,三者聯(lián)合檢測預測HCC的效能較高,證實了上述指標聯(lián)合檢測對HCC的發(fā)生有一定的預測價值,且與aMAP評分、RAR、PIV任一指標單獨檢測的診斷效能相比,提高了AUC或敏感度。本研究進一步將多因素Logistic回歸分析得到的影響因素構(gòu)建慢性肝病患者發(fā)生HCC的風險預測模型,并以列線圖的形式可視化呈現(xiàn),該預測模型在預測慢性肝病患者發(fā)生HCC的AUC較高,校準曲線示預測值與實際觀測值基本一致,模型具有良好的準確度,決策曲線示模型具有明顯的正向凈效益,預測模型內(nèi)部驗證提示模型具有良好的區(qū)分度。此外,模型中所納入的指標檢測成本低、易獲得,便于臨床評估;因此,筆者認為臨床中可通過該列線圖評估住院慢性肝病患者發(fā)生HCC的風險,簡單、便捷,實用性強。
綜上所述,aMAP評分聯(lián)合RAR、PIV構(gòu)建的慢性肝病患者發(fā)生HCC的風險預測模型預測性能良好,有助于識別HCC高風險人群以制定個體化治療及隨訪策略,具有臨床應用價值。然而,由于本研究為回顧性研究,所納入病例數(shù)偏少、為單中心研究,存在選擇偏倚問題,并且有待開展外部驗證。
參考文獻
[1]LI Q,DING C,CAO M,et al.Global epidemiology of liver cancer 2022:an emphasis on geographic disparities[J].Chin Med J(Engl),2024,137(19):2334-2342.doi:10.1097/CM9.0000000000003264.
[2]PARK J W,CHEN M,COLOMBO M,et al.Global patterns of hepatocellular carcinoma management from diagnosis to death:the BRIDGE Study[J].Liver Int,2015,35(9):2155-2166.doi:10.1111/liv.12818.
[3]ALLEMANI C,MATSUDA T,DI CARLO V,et al.Global surveillance of trends in cancer survival 2000-14(CONCORD-3):analysis of individual records for 37513025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J].Lancet,2018,391(10125):1023-1075.doi:10.1016/S0140-6736(17)33326-3.
[4]楊永平,盧實春.原發(fā)性肝癌的分層篩查與監(jiān)測指南(2020版)[J].中華肝臟病雜志,2021,29(1):25-40.YANG YP,LU S C.Guideline for stratified screening and surveillance of primary liver cancer(2020 Edition)[J].Chinese Journal of Hepatology,2021,29(1):25-40.doi:10.3760/cma.j.cn112152-20201109-00970.
[5]FAN R,PAPATHEODORIDIS G,SUN J,et al.aMAP risk score predicts hepatocellular carcinoma development in patients with chronic hepatitis[J].J Hepatol,2020,73(6):1368-1378.doi:10.1016/j.jhep.2020.07.025.
[6]李秀華,郝新,鄧永紅,等.應用aMAP評分評估基層醫(yī)院慢性肝病人群的肝癌發(fā)生風險[J].中華肝臟病雜志,2021,29(4):332-337.LI X H,HAO X,DENG Y H,et al.Application of aMAP score to assess the risk of hepatocarciongenesis in population of chronic liver disease in primary hospitals[J].Chin J Hepatol,2021,29(4):332-337.doi:10.3760/cma.j.cn501113-20210329-00144.
[7]王麗旻,張鴻飛,甘雨,等.aMAP評分評估門診慢性HBV感染者肝細胞癌風險的價值分析[J].臨床肝膽病雜志,2022,38(10):2242-2246.WANG L M,ZHANG H F,GAN Y,et al.Value of aMAP score in prediction of hepatocellular carcinoma risk in outpatients with chronic hepatitis B virus infection[J].J Clin Hepatol,2022,38(10):2242-2246.doi:10.3969/j.issn.1001-5256.2022.10.009.
[8]LU C,LONG J,LIU H,et al.Red blood cell distribution width-to-albumin ratio is associated with all-cause mortality in cancer patients[J].J Clin Lab Anal,2022,36(5):e24423.doi:10.1002/jcla.24423.
[9]LIANG X,BU J,JIANG Y,et al.Prognostic significance of pan-immune-inflammation value in hepatocellular carcinoma treated by curative radiofrequency ablation:potential role for individualized adjuvant systemic treatment[J].Int J Hyperthermia,2024,41(1):2355279.doi:10.1080/02656736.2024.2355279.
[10]FORNER A,REIG M,BRUIX J.Hepatocellular carcinoma[J].Lancet,2018,391(10127):1301-1314.doi:10.1016/S0140-6736(18)30010-2.
[11]WANG M,WANG Y,F(xiàn)ENG X,et al.Contribution of hepatitis B virus and hepatitis C virus to liver cancer in China north areas:experience of the Chinese National Cancer Center[J].Int J Infect Dis,2017,65:15-21.doi:10.1016/j.ijid.2017.09.003.
[12]CHEN L Z,ZHOU W Q,ZHAO S S,et al.A nested case-control study of maternal-neonatal transmission of hepatitis B virus in a Chinese population[J].World J Gastroenterol,2011,17(31):3640-3644.doi:10.3748/wjg.v17.i31.3640.
[13]LIU M,TSENG T C,JUN D W,et al.Transition rates to cirrhosis and liver cancer by age,gender,disease and treatment status in Asian chronic hepatitis B patients[J].Hepatol Int,2021,15(1):71-81.doi:10.1007/s12072-020-10113-2.
[14]CHEN W Q,ZHENG R S,BAADE P D,et al.Cancer statistics in China,2015[J].CA Cancer J Clin,2016,66(2):115-132.doi:10.3322/caac.21338.
[15]BUETTNER N,THIMME R.Sexual dimorphism in hepatitis B and C and hepatocellular carcinoma[J].Semin Immunopathol,2019,41(2):203-211.doi:10.1007/s00281-018-0727-4.
[16]ZHAO SJ,WANG M M,YANG Z Y,et al.Comparison between Child-Pugh score and Albumin-Bilirubin grade in the prognosis of patients with HCC after liver resection using time-dependent ROC[J].Ann Transl Med,2020,8(8):539.doi:10.21037/atm.2020.02.85.
[17]HO S Y,HSU C Y,LIU P H,et al.Albumin-bilirubin(ALBI)grade-based nomogram for patients with hepatocellular carcinoma undergoing transarterial chemoembolization[J].Dig Dis Sci,2021,66(5):1730-1738.doi:10.1007/s10620-020-06384-2.
[18]BALLERINI P,CONTURSI A,BRUNO A,et al.Inflammation and cancer:from the development of personalized indicators to novel therapeutic strategies[J].Front Pharmacol,2022,13:838079.doi:10.3389/fphar.2022.838079.
[19]BIHARI C,RASTOGI A,SHASTHRY S M,et al.Platelets contribute to growth and metastasis in hepatocellular carcinoma[J].APMIS,2016,124(9):776-786.doi:10.1111/apm.12574.
[20]INNES H,JEPSEN P,MCDONALD S,et al.Performance of models to predict hepatocellular carcinoma risk among UK patients with cirrhosis and cured HCV infection[J].JHEP Rep,2021,3(6):100384.doi:10.1016/j.jhepr.2021.100384.
[21]YAMASHITA Y,JOSHITA S,SUGIURA A,et al.aMAP score prediction of hepatocellular carcinoma occurrence and incidence-free rate after a sustained virologic response in chronic hepatitis C[J].Hepatol Res,2021,51(9):933-942.doi:10.1111/hepr.13689.
[22]WANG J,HUANG R,YAN X M,et al.Red blood cell distribution width:a promising index for evaluating the severity and long-term prognosis of hepatitis B virus-related diseases[J].Dig Liver Dis,2020,52(4):440-446.doi:10.1016/j.dld.2019.12.144.
[23]JING J S,F(xiàn)U X L,ZHAO W,et al.Red cell distribution width as a prognostic factor inpatients with hepatocellular carcinoma[J].Clin Lab,2020,66(7):1237-1248.doi:10.7754/Clin.Lab.2019.191027.
[24]TAN M Q,LIU B,YOU R L,et al.Red blood cell distribution width as a potential valuable survival predictor in hepatitis B virus-related hepatocellular carcinoma[J].Int J Med Sci,2023,20(7):976-984.doi:10.7150/ijms.79619.
[25]VIDILI G,ZINELLU A,MANGONI A A,et al.Red cell distribution width as a predictor of survival in patients with hepatocellular carcinoma[J].Medicina(Kaunas),2024,60(3):391.doi:10.3390/medicina60030391.
[26]XIONG S M,DONG L L,CHENG L.Neutrophils in cancer carcinogenesis and metastasis[J].J Hematol Oncol,2021,14(1):173.doi:10.1186/s13045-021-01187-y.
[27]HONG Y M,YOON K T,HWANG T H,et al.Pretreatment peripheral neutrophils,lymphocytes and monocytes predict long-term survival in hepatocellular carcinoma[J].BMC Cancer,2020,20(1):937.doi:10.1186/s12885-020-07105-8.
[28]UEDA K,SUEKANE S,KUROSE H,et al.Absolute lymphocyte count is an independent predictor of survival in patients with metastatic renal cell carcinoma treated with nivolumab[J].Jpn J Clin Oncol,2022,52(2):179-186.doi:10.1093/jjco/hyab157.
(2024-08-19收稿2024-10-29修回)
(本文編輯陸榮展)