摘要:目的探究紫花前胡苷(Nod)在神經(jīng)病理性疼痛(NP)中的作用及機(jī)制。方法篩選并分析NP數(shù)據(jù)初級(jí)軀體感覺皮層(S1)內(nèi)差異性表達(dá)基因及數(shù)據(jù)集與線粒體數(shù)據(jù)之間的重疊基因,重疊基因相互作用網(wǎng)絡(luò)并篩選核心基因。27只小鼠隨機(jī)分為假手術(shù)組、模型組及給藥組(9只/組);模型組及給藥組構(gòu)建坐骨神經(jīng)慢性壓迫損傷模型,給藥組腹腔注射Nod 10 mg/kg連續(xù)1周;檢測(cè)小鼠痛覺行為學(xué)和運(yùn)動(dòng)能力的改變;HE染色、尼氏染色檢測(cè)小鼠S1區(qū)腦組織神經(jīng)損傷和炎癥的影響;蛋白免疫印跡分析S1腦區(qū)白細(xì)胞介素(IL)-1β、即早基因(c-Fos)、泛醇-細(xì)胞色素C還原酶復(fù)合體Ⅲ亞基(Uqcrq)和泛醌氧化還原酶亞基(Ndufb5)的表達(dá)水平;分子對(duì)接探究Nod的作用靶點(diǎn)。將PC12細(xì)胞分為對(duì)照組、IL-1β組(1μmol/L IL-1β處理)和IL-1β+Nod組(1μmol/L IL-1β+1μmol/L Nod處理),檢測(cè)各組線粒體膜電位。結(jié)果NP數(shù)據(jù)集GSE180627中S1腦區(qū)包含293個(gè)差異性表達(dá)基因,線粒體數(shù)據(jù)包含1 082個(gè)基因,重疊基因共34個(gè),氧化磷酸化和電子傳遞鏈相關(guān)基因被富集,蛋白相互作用網(wǎng)絡(luò)顯示核心基因包括電子傳遞鏈相關(guān)蛋白Ndufb5、Uqcrq、Ndufs8、Ndufa7、Ndufa3、Cox6b1和Mrps33。與模型組相比,給藥組小鼠機(jī)械縮足閾值、熱縮足反射潛伏期、轉(zhuǎn)棒停留時(shí)間增加,S1組織炎癥浸潤(rùn)細(xì)胞數(shù)量和神經(jīng)元中尼氏小體數(shù)量減少,神經(jīng)元c-Fos和IL-1β表達(dá)水平降低,Uqcrq和Ndufb5的表達(dá)水平升高(P<0.05)。分子對(duì)接顯示Nod可結(jié)合Uqcrq和Ndufb5。與IL-1β組細(xì)胞相比,IL-1β+Nod組細(xì)胞線粒體膜電位熒光信號(hào)增強(qiáng)(P<0.05)。結(jié)論Nod可改善小鼠的痛覺行為,其機(jī)制涉及改善S1內(nèi)線粒體損傷。
關(guān)鍵詞:前胡苷;線粒體;炎癥;神經(jīng)病理性疼痛;初級(jí)軀體感覺皮層
中圖分類號(hào):R965文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20240971
Mechanism of nodakenin in relieving neuropathic pain
LIU Hongyan,LI Yachen,SHENG Gege,ZHU Haili,WU Jiliang△
School of Pharmacy,Hubei University of Science and Technology,Xianning 437100,China
△Corresponding Author E-mail:Xywjl@163.com
Abstract:Objective To investigate the effect and mechanism of nodakenin(Nod)in neuropathic pain(NP).Methods Differential expression genes in the primary somatsensory cortex(S1)of NP data and overlapping genes between the dataset and mitochondrial data were screened and analyzed.Overlapping gene interaction networks were overlapped and core genes were screened.A total of 27 mice were randomly divided into the sham operation group,the model group and the drug administration group(9 mice/group).The chronic compression injury model of sciatic nerve was constructed in the model group and the drug administration group.Nod 10 mg/kg was intraperitoneally injected into the drug administration group for 1 week.Changes of pain behavior and motor ability in mice were detected.HE staining and Nissl staining were used to detect effects of nerve injury and inflammation on brain tissue of S1 region of mice.The expression levels of interleukin-1β,early gene(c-Fos),panthenol-cytochrome c reductase complex III subunit(Uqcrq)and ubiquinone oxidoreductase subunit(Nduf)b5 in S1 brain region were analyzed by Western blot assay.Molecular docking was used to study the target of Nod.PC12 cells were divided into the control group,the IL-1βgroup(1μmol/L IL-1βtreatment)and the IL-1β+Nod group(1μmol/L IL-1β+1μmol/L Nod treatment),and mitochondrial membrane potential was detected in each group.Results In the NP dataset GSE180627,S1 brain region contained 293 differentially expressed genes,and the mitochondrial data contained 1 082 genes.There were 34 overlapping genes,and genes related to oxidative phosphorylation and electron transport chain were enriched.The protein interaction network showed that core genes included electron transport chain related proteins Ndufb5,Uqcrq,Ndufs8,Ndufa7,Ndufa3,Cox6b1 and Mrps33.Compared with the model group,themechanical foot shrinkage threshold,thermal foot shrinkage reflex latency and rod rotation residence time of mice were increased in the drug administration group,the number of inflammatory infiltrating cells in S1 tissue and the number of Nislet bodies in neurons,expression levels of c-Fos and IL-1βin neurons were decreased,and expression levels of Uqcrq and Ndufb5 were increased(P<0.05).Molecular docking showed that Nod could bind Uqcrq and Ndufb5.Compared with the IL-1βgroup,the fluorescence signal of mitochondrial membrane potential was enhanced in the IL-1β+Nod group(P<0.05).Conclusion Nodakenin can improve pain behavior in mice,and its mechanism involves ameliorating mitochondrial damage in S1.
Key words:Nodakenin;mitochondria;inflammation;neuropathicpain;primary somatosensory cortex
神經(jīng)病理性疼痛(neuropathicpain,NP)是由神經(jīng)系統(tǒng)損傷或疾病導(dǎo)致的疼痛,影響全球7%~10%的人口,其病程長(zhǎng),治療困難,嚴(yán)重影響患者生活質(zhì)量[1]。初級(jí)軀體感覺皮層(primary somatosensory cortex,S1)是感覺信號(hào)中心,在NP進(jìn)程中神經(jīng)元自發(fā)放電、同步活動(dòng)和低頻震蕩均增加[2-3],同時(shí)星形膠質(zhì)細(xì)胞被激活且活性增強(qiáng)[4]。線粒體通過影響腺苷三磷酸(ATP)生成、鈣離子水平和過氧化物產(chǎn)生等方式調(diào)節(jié)神經(jīng)元和膠質(zhì)細(xì)胞的功能[5]。在坐骨神經(jīng)損傷和化療神經(jīng)損傷等多種NP動(dòng)物模型中檢測(cè)到線粒體形態(tài)和功能異常[6-8];且70%的線粒體疾病患者伴隨有慢性疼痛[9]。因此,靶向改善S1中線粒體功能可作為治療NP的策略。紫花前胡苷(Nodakenin,Nod)是從當(dāng)歸根中提取的一種香豆素,具有抗炎、抗氧化、抗過敏、改善認(rèn)知等功效。研究顯示,Nod可通過抑制核因子-κB信號(hào)緩解炎性疼痛[10];抑制線粒體分裂并減弱過氧化物信號(hào)來改善炎癥反應(yīng)[11]。但Nod在NP中的作用及機(jī)制尚不明確。本研究通過構(gòu)建坐骨神經(jīng)慢性壓迫損傷(chronic constriction injury of the sciatic nerve,CCI)模型檢測(cè)動(dòng)物痛覺行為變化,分析S1內(nèi)線粒體相關(guān)蛋白表達(dá)變化,為Nod在NP中的應(yīng)用提供實(shí)驗(yàn)依據(jù)。
1材料與方法
1.1細(xì)胞、主要試劑與儀器鼠腎上腺嗜鉻細(xì)胞瘤神經(jīng)細(xì)胞(PC-12)購自廣州艾迪基因科技有限責(zé)任公司,在添加10%胎牛血清的1640培養(yǎng)基中并置于5%CO2、37℃的培養(yǎng)箱中培養(yǎng),培養(yǎng)基每2日更換1次。Nod購自上海源葉生物科技有限公司。一抗兔多克隆抗體即早基因(Fos proto-oncogene,c-fos)和白細(xì)胞介素-1β(IL-1β)購自江蘇親科生物有限公司;兔多克隆抗體泛醇-細(xì)胞色素C還原酶復(fù)合體Ⅲ亞基(Uqcrq)和泛醌氧化還原酶亞基B5(Ndufb5)購自江蘇親科生物研究中心有限公司;辣根過氧化物酶標(biāo)記的羊抗兔IgG二抗購自武漢愛博泰克生物科技有限公司。Mito-Tracker Red CMXRos染色試劑盒購自上海碧云天生物技術(shù)有限公司;1640培養(yǎng)基購自賽默飛世爾科技有限公司。von Frey纖維(Stoelting,美國),轉(zhuǎn)棒疲勞儀(北京眾實(shí)迪創(chuàng),中國),熒光顯微鏡(Olympus,日本),冷凍臺(tái)式微型離心機(jī)(Eppendorf,德國),顯影儀(Invitrogen,美國)。
1.2實(shí)驗(yàn)動(dòng)物27只雄性6~8周齡C57BL/6小鼠,體質(zhì)量(20±2)g,購自江蘇華創(chuàng)信諾醫(yī)藥科技有限公司,動(dòng)物生產(chǎn)許可證號(hào):SCXK(蘇)2020-0009;動(dòng)物使用許可證號(hào):SYXK(鄂)2023-0071。小鼠在標(biāo)準(zhǔn)SPF級(jí)動(dòng)物房中正常飼養(yǎng),提供充足的水和飼料。本研究經(jīng)湖北科技學(xué)院實(shí)驗(yàn)動(dòng)物倫理委員會(huì)批準(zhǔn)(2023-03-104)。
1.3方法
1.3.1數(shù)據(jù)收集通過GEO數(shù)據(jù)庫收集神經(jīng)病理性疼痛的數(shù)據(jù),數(shù)據(jù)集編號(hào)為GSE180627,分析S1內(nèi)差異性表達(dá)基因;下載線粒體基因數(shù)據(jù)庫MitoCarta3.0;韋恩圖、GO(Gene Ontology)和京都基因與基因組百科全書(Kyoto Encyclopedia of Genes and Genomes,KEGG)分析數(shù)據(jù)集與線粒體數(shù)據(jù)之間的重疊基因;STRING數(shù)據(jù)庫和Cytoscape分析重疊基因的蛋白相互作用網(wǎng)絡(luò)并篩選核心基因。
1.3.2模型建立及分組處理將小鼠采用隨機(jī)數(shù)字表法分為3組:假手術(shù)組、模型組和給藥組,每組9只。通過麻醉小鼠、剔毛、消毒、剪開皮膚,鈍性分離肌肉,暴露坐骨神經(jīng)并結(jié)扎完成CCI模型構(gòu)建,以用于表征NP。假手術(shù)組僅分離筋膜不結(jié)扎神經(jīng)。建模6周后,給藥組在模型組基礎(chǔ)上腹腔注射10 mg/kg Nod連續(xù)1周;模型組小鼠注射同等體積的DMSO和0.9%氯化鈉混合液。
1.3.3機(jī)械性刺激縮足閾值(paw withdrawal mechaical threshold,PWT)檢測(cè)待小鼠適應(yīng)環(huán)境30 min后,用von Frey纖維剌激小鼠后足底正中部。若出現(xiàn)舔足或抬足等行為則視為陽性反應(yīng),反之則視為陰性反應(yīng)。若出現(xiàn)陽性反應(yīng),則用相鄰較低一級(jí)力度纖維再次刺激;若出現(xiàn)陰性反應(yīng),則用相鄰較高一級(jí)力度再次刺激,測(cè)試出現(xiàn)陽性反應(yīng)的最小刺激強(qiáng)度,6次后記錄并計(jì)算各組小鼠PWT。
1.3.4熱縮足反射潛伏期(thermal withdrawal threshold,TWL)檢測(cè)將小鼠置于PL-200型熱刺激儀適應(yīng),用光照(45~65℃)刺激小鼠足底,觀察小鼠出現(xiàn)舔足縮足時(shí)間,測(cè)試3次,每次間隔15 min,記錄并計(jì)算TWL。
1.3.5轉(zhuǎn)棒停留時(shí)間檢測(cè)實(shí)驗(yàn)前3 d小鼠以固定速度4 r/min訓(xùn)練3次,每次10 min。實(shí)驗(yàn)時(shí)轉(zhuǎn)速為10 r/min,持續(xù)10 s,增加速度至20 r/min,持續(xù)30 s;記錄轉(zhuǎn)棒停留時(shí)間。
1.3.6組織形態(tài)學(xué)分析小鼠深度麻醉后用4%多聚甲醛固定,處死并分離腦組織。腦組織經(jīng)脫水、石蠟包埋后切成4μm切片。切片按照HE試劑盒或尼氏試劑盒標(biāo)準(zhǔn)操作染色。置于顯微鏡下觀察并拍照,Image J軟件分析。
1.3.7蛋白免疫印跡檢測(cè)炎性因子和線粒體相關(guān)蛋白表達(dá)取小鼠腦組織,用含蛋白酶抑制劑的裂解液裂解,4℃、12 000×g離心20 min。收集上清液,使用BCA蛋白濃度試劑盒對(duì)蛋白濃度進(jìn)行定量分析。收集的蛋白樣品經(jīng)SDS-PAGE分離后,轉(zhuǎn)移至聚偏二氟乙烯膜上。5%脫脂奶粉室溫封閉1 h,在4℃條件下c-fos(1∶1 000)、IL-1β(1∶1 000)、Uqcrq(1∶1 000)、Ndufb5(1∶1 000)一抗孵育過夜,洗膜3次,每次10 min。山羊抗兔二抗(1∶5 000)在室溫下孵育1 h。洗膜3次,每次10 min。采用LAS500凝膠成像系統(tǒng)掃描觀察,Image J軟件分析條帶灰度值。
1.3.8分子對(duì)接檢測(cè)藥物分子能與靶點(diǎn)緊密結(jié)合。經(jīng)PDB數(shù)據(jù)庫下載Uqcrq(ID為5XTH)和Ndufb5(ID為8J9H)結(jié)構(gòu);Pubchem數(shù)據(jù)庫下載Nod結(jié)構(gòu);Autodock對(duì)接Nod與Uqcrq和Ndufb5;PyMOL可視化對(duì)接結(jié)果。
1.3.9線粒體膜電位檢測(cè)將PC12細(xì)胞接種于24孔板,分為對(duì)照組、IL-1β組和IL-1β+Nod組。待細(xì)胞貼壁形態(tài)正常后,IL-1β組和IL-1β+Nod組使用IL-1β(1μmol/L)處理6 h,后者加Nod(1μmol/L)處理24 h,使用Mito-Tracker Red CMXRos染色試劑盒檢測(cè)細(xì)胞線粒體膜電位,細(xì)胞分組給藥處理完畢后,加入Mito-Tracker Red CMXRos工作液(200 nmol/L),37℃避光孵育30 min后去除工作液,37℃避光染核10 min,在熒光顯微鏡下觀察拍照。使用Image J軟件分析細(xì)胞的熒光強(qiáng)度。
1.4統(tǒng)計(jì)學(xué)方法采用SPSS 26.0軟件進(jìn)行數(shù)據(jù)分析,符合正態(tài)分布的計(jì)量資料以x±s表示,多組間比較采用單因素方差分析,組間多重比較采用Tukey法。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1 NP及線粒體相關(guān)基因表達(dá)分析NP數(shù)據(jù)集GSE180627中S1腦區(qū)包含293個(gè)差異性表達(dá)基因,線粒體數(shù)據(jù)包含1 082個(gè)基因,兩個(gè)數(shù)據(jù)集的重疊基因共34個(gè)。34個(gè)重疊基因通過使用GO和KEGG進(jìn)行富集分析,發(fā)現(xiàn)氧化磷酸化和電子傳遞鏈相關(guān)基因被富集。蛋白相互作用(PPI)網(wǎng)絡(luò)顯示核心基因包括電子傳遞鏈相關(guān)蛋白Ndufb5、Uqcrq、Ndufs8、Ndufa7、Ndufa3、Cox6b1和Mrps33,見圖1。
2.2 Nod對(duì)小鼠疼痛相關(guān)行為的影響與假手術(shù)組相比,模型組小鼠PWT、TWL、轉(zhuǎn)棒停留時(shí)間均下降(P<0.05)。與模型組相比,給藥組PWT、TWL和轉(zhuǎn)棒停留時(shí)間增加(P<0.05),見表1。
2.3 Nod對(duì)S1腦組織神經(jīng)損傷和炎癥的影響HE染色結(jié)果顯示,與假手術(shù)組相比,模型組S1組織炎癥浸潤(rùn)細(xì)胞數(shù)量升高(P<0.05);與模型組相比,給藥組炎癥浸潤(rùn)細(xì)胞數(shù)量降低(P<0.05),見圖2、表2。尼氏染色結(jié)果顯示,與假手術(shù)組相比,模型組S1組織神經(jīng)元中尼氏小體數(shù)量增加(P<0.05);與模型組相比,給藥組小鼠S1組織神經(jīng)元中尼氏小體數(shù)量降低(P<0.05),見圖3、表2。
2.4 Nod對(duì)S1腦組織炎癥因子的影響蛋白免疫印跡結(jié)果顯示,與假手術(shù)組相比,模型組S1中神經(jīng)元c-Fos和IL-1β表達(dá)水平升高(P<0.05);與模型組相比,給藥組S1中神經(jīng)元c-Fos和IL-1β表達(dá)水平降低(P<0.05),見圖4、表3。
2.5 Nod對(duì)線粒體相關(guān)蛋白的影響分子對(duì)接結(jié)果顯示,Nod可與Uqcrq和Ndufb5結(jié)合,能量分別為-6.8 kcal/mol(1 kcal=4.184 kJ)和-6.5 kcal/mol。免疫印跡結(jié)果顯示,與假手術(shù)組相比,模型組S1中線粒體相關(guān)蛋白Uqcrq和Ndufb5表達(dá)水平降低(Plt;0.05);與模型組相比,給藥組Uqcrq和Ndufb5的表達(dá)水平增加(P<0.05),見圖5、表4。
2.6 Nod對(duì)線粒體膜電位的影響對(duì)照組、IL-1β組和IL-1β+Nod組線粒體膜電位熒光信號(hào)強(qiáng)度分別為1.00±0.01、0.68±0.02和1.13±0.02,組間比較差異有統(tǒng)計(jì)學(xué)意義(n=3,F(xiàn)=303.962,P<0.01)。與對(duì)照組相比,IL-1β組細(xì)胞線粒體膜電位熒光信號(hào)減弱(P<0.05);與IL-1β組相比,IL-1β+Nod組細(xì)胞線粒體膜電位熒光信號(hào)增強(qiáng)(P<0.05),見圖6。
3討論
CCI模型是一種廣泛使用的慢性NP的周圍神經(jīng)損傷模型,操作簡(jiǎn)單且穩(wěn)定;疼痛過敏反應(yīng)常采用測(cè)定PWT和TWL的方法,這兩種方法成熟、可靠且可定量,使用廣泛[12]。本研究發(fā)現(xiàn)模型組小鼠表現(xiàn)為機(jī)械痛和熱痛異常且運(yùn)動(dòng)能力受損。神經(jīng)元功能改變和神經(jīng)膠質(zhì)介導(dǎo)神經(jīng)炎癥發(fā)生是NP發(fā)生發(fā)展的重要病理機(jī)制[13]。尼氏小體是神經(jīng)元特征性結(jié)構(gòu)之一,是神經(jīng)元內(nèi)的嗜堿性顆粒群,其大小和數(shù)量可反映神經(jīng)元合成蛋白質(zhì)功能的程度。原癌基因c-Fos是神經(jīng)系統(tǒng)廣泛存在的一種即刻早期基因,其編碼的c-Fos蛋白常被用來表征神經(jīng)元功能活動(dòng),在神經(jīng)元受到損傷或刺激后被激活[14]。本研究中模型組S1皮層尼氏小體和c-Fos表達(dá)均上調(diào),表明其神經(jīng)元活動(dòng)和功能受損。IL-1β是一種關(guān)鍵的炎性因子,可激活小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞,導(dǎo)致中樞神經(jīng)系統(tǒng)內(nèi)其他促炎和趨化介質(zhì)的下游合成增加,從而在大多數(shù)中樞神經(jīng)系統(tǒng)相關(guān)疾病中發(fā)揮作用[15]。本研究中模型組S1皮層炎癥細(xì)胞浸潤(rùn)和IL-1β表達(dá)增加,表明其神經(jīng)炎癥被激活。研究表明,Nod可促進(jìn)神經(jīng)元發(fā)生并發(fā)揮改善神經(jīng)元功能的作用,且在炎癥痛小鼠模型中可降低IL-1β表達(dá)水平并緩解炎癥痛[16]。本研究中,與模型組相比,給藥組的上述疼痛相關(guān)行為和運(yùn)動(dòng)能力改善,S1腦組織神經(jīng)損傷和炎癥改善,表明Nod可發(fā)揮神經(jīng)保護(hù)性作用,可作為多種神經(jīng)系統(tǒng)疾病的潛在藥物。
神經(jīng)元和膠質(zhì)細(xì)胞的功能高度依賴ATP和線粒體氧化磷酸化過程。研究發(fā)現(xiàn),NP進(jìn)程中小鼠伴隨有線粒體形態(tài)和功能損傷[17]。Ndufb5是線粒體呼吸傳遞鏈復(fù)合物Ⅰ的亞基,位于線粒體內(nèi)膜,是氧化磷酸化的第一步,負(fù)責(zé)還原型煙酰胺腺嘌呤二核苷酸氧化、泛醌還原及將質(zhì)子跨內(nèi)膜泵出線粒體基質(zhì),有助于ATP的產(chǎn)生[18]。Ndufb過表達(dá)可增加呼吸復(fù)合物組裝、增強(qiáng)線粒體代謝、減輕過氧化物產(chǎn)生并改善線粒體功能[19]。Ndufb5可參與驅(qū)動(dòng)逆向電子傳遞并維持小膠質(zhì)細(xì)胞的激活,在癌痛和炎性痛等動(dòng)物模型中表達(dá)降低,被激活后可降低炎癥反應(yīng)和活性氧水平并緩解痛覺過敏[20-21]。Uqcrq是呼吸傳遞鏈復(fù)合物Ⅲ的一個(gè)亞基,負(fù)責(zé)將電子從泛醇轉(zhuǎn)移到細(xì)胞色素C,并有助于電化學(xué)質(zhì)子梯度的生成[22]。Uqcrq缺乏會(huì)導(dǎo)致細(xì)胞色素C增加并激活含半胱氨酸的天冬氨酸蛋白水解酶級(jí)聯(lián)信號(hào),引發(fā)神經(jīng)元凋亡[23]。本研究發(fā)現(xiàn),在模型組小鼠S1中線粒體呼吸傳遞鏈相關(guān)蛋白Ndufb5和Uqcrq表達(dá)水平降低。Nod可降低線粒體介導(dǎo)的活性氧信號(hào),減輕炎癥反應(yīng)[16]。本研究使用分子對(duì)接預(yù)測(cè)Nod與Ndufb5和Uqcrq的結(jié)合,結(jié)果顯示結(jié)合能量為-6.8 kcal/mol和-6.5 kcal/mol,表示兩者結(jié)合為中等強(qiáng)度。同時(shí)研究發(fā)現(xiàn),Nod可上調(diào)Ndufb5和Uqcrq表達(dá)水平,在細(xì)胞水平升高線粒體膜電位,改善線粒體功能。筆者推測(cè),Nod可能通過上調(diào)線粒體呼吸傳遞鏈相關(guān)蛋白表達(dá)水平,激活線粒體功能,緩解S1皮層神經(jīng)損傷,從而在NP中發(fā)揮作用。
綜上所述,Nod可改善小鼠的S1內(nèi)線粒體功能,進(jìn)而緩解NP。本研究有助于揭示NP的發(fā)病機(jī)制,并為Nod在疼痛中的應(yīng)用提供支持。
參考文獻(xiàn)
[1]BIELEWICZ J,KAMIENIAK M,SZYMONIUK M,et al.Diagnosis and management of neuropathic pain in spine diseases[J].J Clin Med,2023,12(4):1380.doi:10.3390/jcm12041380.
[2]ZIEGLER K,F(xiàn)OLKARD R,GONZALEZ A J,et al.Primary somatosensory cortex bidirectionally modulates sensory gain and nociceptive behavior in a layer-specific manner[J].Nat Commun,2023,14(1):2999.doi:10.1038/s41467-023-38798-7.
[3]CHEN C,SUN L,ADLER A,et al.Synchronized activity of sensory neurons initiates cortical synchrony in a model of neuropathic pain[J].Nat Commun,2023,14(1):689.doi:10.1038/s41467-023-36093-z.
[4]JI R R,DONNELLY C R,NEDERGAARD M.Astrocytes in chronic pain and itch[J].Nat Rev Neurosci,2019,20(11):667-685.doi:10.1038/s41583-019-0218-1.
[5]HAYNES P R,PYFROM E S,LI Y,et al.A neuron-glia lipid metabolic cycle couples daily sleep to mitochondrial homeostasis[J].Nat Neurosci,2024,27(4):666-678.doi:10.1038/s41593-023-01568-1.
[6]DOYLE T M,SALVEMINI D.Mini-review:mitochondrial dysfunction and chemotherapy-induced neuropathic pain[J].Neurosci Lett,2021,760:136087.doi:10.1016/j.neulet.2021.136087.
[7]趙佳佳,萬文軍,楊荷雨,等.ANA-12靶向抑制BDNF/TrkB信號(hào)緩解奧沙利鉑誘導(dǎo)化療大鼠的痛覺行為[J].天津醫(yī)藥,2023,51(1):35-40.ZHAO J J,WAN W J,YANG H Y,et al.ANA-12 relieves oxaliplatin-induced chemotherapy pain in rats by targetly inhibiting BDNF/TrkB signal[J].Tianjin Med J,2023,51(1):35-40.doi:10.11958/20220518.
[8]袁滿,馮子瀚,謝敏,等.大黃素對(duì)骨關(guān)節(jié)炎模型小鼠痛覺行為的調(diào)節(jié)機(jī)制[J].天津醫(yī)藥,2024,52(6):572-577.YUAN M,F(xiàn)ENG Z H,XIE M,et al.Mechanism of emodin modulating pain behavior in mouse model of osteoarthritis[J].Tianjin Med J,2024,52(6):572-577.doi:10.11958/20240056.
[9]SILVA SANTOS RIBEIRO P,WILLEMEN H,EIJKELKAMP N.Mitochondria and sensory processing in inflammatory and neuropathic pain[J].Front Pain Res(Lausanne),2022,3:1013577.doi:10.3389/fpain.2022.1013577.
[10]LIN Y,CHEN Y,ZENG J,et al.Nodakenetin alleviates inflammatory pain hypersensitivity by suppressing NF-κB signal pathway[J].Neuroimmunomodulation,2022,29(4):486-492.doi:10.1159/000525690.
[11]YI N,MI Y,XU X,et al.Nodakenin attenuates cartilage degradation and inflammatory responses in a mice model of knee osteoarthritis by regulating mitochondrial Drp1/ROS/NLRP3 axis[J].Int Immunopharmacol,2022,113(Pt A):109349.doi:10.1016/j.intimp.2022.109349.
[12]康美美,王蓉.CCI和SNI神經(jīng)病理性疼痛動(dòng)物模型的認(rèn)知功能研究進(jìn)展[J].神經(jīng)疾病與精神衛(wèi)生,2021,21(11):761-764.KANG M M,WANG R.Research progress on the cognitive function of CCI and SNI neuropathic pain models[J].Journal of Neuroscience and Mental Health,2021,21(11):761-764.doi:10.3969/j.issn.1009-6574.2021.11.001.
[13]梁彥虎,李雪松,苑龍,等.CXCL1/CXCR2與神經(jīng)性疼痛的相關(guān)機(jī)制及研究進(jìn)展[J].中國臨床實(shí)用醫(yī)學(xué),2019,10(1):72-74.LIANG Y H,LI X S,YUAN L,et al.The mechanism and research progress of CXCL1/CXCR2 and neuropathic pain[J].China Clinical Practical Medicine,2019,10(1):72-74.doi:10.3760/cma.j.issn.1673-8799.2019.01.023.
[14]孫曉敏,張萌,遲宜嘉,等.禁錮應(yīng)激對(duì)小鼠焦慮相關(guān)腦區(qū)c-Fos表達(dá)的影響[J].青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2020,56(2):177-180.SUN X M,ZHANG M,CHI Y J,et al.Effect of repeated restraint stress on the expression of c-Fos in anxiety-related brain regions in mice[J].Journal of Qingdao University(Medical Sciences),2020,56(2):177-180.doi:10.11712/jms.2096-5532.2020.56.067.
[15]LOPEZ-RODRIGUEZ A B,HENNESSY E,MURRAY C L,et al.Acute systemic inflammation exacerbates neuroinflammation in Alzheimer′s disease:IL-1βdrives amplified responses in primed astrocytes and neuronal network dysfunction[J].AlzheimersDement,2021,17(10):1735-1755.doi:10.1002/alz.12341.
[16]LI J,WANG L,TAN R,et al.Nodakenin alleviated obstructivenephropathy through blunting Snail1 induced fibrosis[J].J Cell Mol Med,2020,24(17):9752-9763.doi:10.1111/jcmm.15539.
[17]MU Y,MEI Y,CHEN Y,et al.Perisciatic nerve dexmedetomidine alleviates spinal oxidative stress and improves peripheral mitochondrial dynamic equilibrium in a neuropathic pain mouse model in an AMPK-dependent manner[J].Dis Markers,2022,2022:6889676.doi:10.1155/2022/6889676.
[18]BRIDGES H R,BLAZA J N,YIN Z,et al.Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides[J].Science,2023,379(6630):351-357.doi:10.1126/science.ade3332.
[19]ZHANG R,HOU T,CHENG H,et al.NDUFAB1 protects against obesity and insulin resistance by enhancing mitochondrial metabolism[J].FASEB J,2019,33(12):13310-13322.doi:10.1096/fj.201901117RR.
[20]PERUZZOTTI-JAMETTI L,WILLIS C M,KRZAK G,et al.Mitochondrial complex I activity in microglia sustains neuroinflammation[J].Nature,2024,628(8006):195-203.doi:10.1038/s41586-024-07167-9.
[21]GUO C,YUE Y,WANG B,et al.Anemoside B4 alleviates arthritis pain via suppressing ferroptosis-mediated inflammation[J].J Cell Mol Med,2024,28(4):e18136.doi:10.1111/jcmm.18136.
[22]PANGA V,KALLOR A A,NAIR A,et al.Mitochondrial dysfunction in rheumatoid arthritis:a comprehensive analysis by integrating gene expression,protein-protein interactions and gene ontology data[J].PLoS One,2019,14(11):e0224632.doi:10.1371/journal.pone.0224632.
[23]HUNG Y C,HUANG K L,CHEN P L,et al.UQCRC1 engages cytochrome c for neuronalapoptotic cell death[J].Cell Rep,2021,36(12):109729.doi:10.1016/j.celrep.2021.109729.
(2024-07-19收稿2024-10-25修回)
(本文編輯李志蕓)