• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    大型管網(wǎng)關(guān)閥優(yōu)化方案及閥門開度擾動對流量均勻性影響

    2025-02-11 00:00:00楊國苗李小芹唐學(xué)林崔春亮彭致功張興峰封頂梁
    排灌機(jī)械工程學(xué)報 2025年1期
    關(guān)鍵詞:水錘

    摘要: 為解決新疆克拉瑪依市大型灌溉管網(wǎng)關(guān)閥過程中的水錘和灌溉出流流量不均勻等問題,基于一維特征線法,利用Flowmaster軟件建立管網(wǎng)水力模型,研究管網(wǎng)在不同閥門關(guān)閉規(guī)律下的瞬變流特性以及閥門開度擾動對管網(wǎng)流量均勻性的影響.研究結(jié)果表明:模型預(yù)測的相關(guān)水力特性與管網(wǎng)設(shè)計參數(shù)對比誤差不超過8%,驗證了模型的準(zhǔn)確性.針對管網(wǎng)運(yùn)行的瞬變水力特性,總閥采用20至60 min的不同總歷時一階段線性關(guān)閉規(guī)律,即使關(guān)閥時間長達(dá) 60 min,管網(wǎng)管段仍發(fā)生空化現(xiàn)象;開展關(guān)閥總歷時30 min和快關(guān)10 min、快關(guān)開度分別為65%,75%,85%等不同組合的先快后慢兩段關(guān)閉規(guī)律,其中快關(guān)85%、慢關(guān)15%的關(guān)閉規(guī)律下,管網(wǎng)管段不會產(chǎn)生空化,且管道內(nèi)最大水錘壓力小于管道設(shè)計壓力.針對管網(wǎng)壓力波動引起的流量均勻性變化,通過閥門開度擾動仿真壓力波動,閥門開度由100%到90%調(diào)節(jié)后,各支管流量下降比例平均值為0.079%,流量波動較??;各出水樁流量下降比例平均值為0.074%,克里斯琴森系數(shù)為0.989 9,灌溉均勻性較好.研究結(jié)果可為大型灌溉管網(wǎng)的水錘防護(hù)及閥門開度擾動對管網(wǎng)流量均勻性分析提供一定的指導(dǎo).

    關(guān)鍵詞: 灌溉管網(wǎng);特征線法;水錘;關(guān)閥規(guī)律;瞬變特性;灌溉均勻性

    中圖分類號: S277.9 文獻(xiàn)標(biāo)志碼: A 文章編號: 1674-8530(2025)01-0101-08

    DOI:10.3969/j.issn.1674-8530.23.0150

    楊國苗,李小芹,唐學(xué)林,等.大型管網(wǎng)關(guān)閥優(yōu)化方案及閥門開度擾動對流量均勻性影響[J].排灌機(jī)械工程學(xué)報,2025,43(1):101-108.

    YANG Guomiao, LI Xiaoqin, TANG Xuelin, et al. Valve-closing optimization scheme and influence of valve-opening disturbance on flow uniformity in large-scale pipeline network[J].Journal of drainage and irrigation machinery engineering(JDIME),2025,43(1):101-108.(in Chinese)

    Valve-closing optimization scheme and influence of valve-opening

    disturbance on flow uniformity in large-scale pipeline network

    YANG Guomiao1, LI Xiaoqin1,2*, TANG Xuelin1,2, CUI Chunliang3, PENG Zhigong4,

    ZHANG Xingfeng1, FENG Dingliang1

    (1. College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, China; 2. Beijing Water Supply Pipeline Network System Safety and Energy Conservation Engineering Technology Research Center, China Agricultural University, Beijing 100083, China; 3. Xinjiang Institute of Water Resources and Hydropower Science, Urumqi, Xinjiang 830049, China; 4. China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

    Abstract: In order to solve the problems of water hammer and uneven irrigation outflow during valve closing of large-scale irrigation pipe network in Kelamayi City, Xinjiang, based on the one-dimensio-nal method of characteristics, a hydraulic model of pipeline network was established by using Flowmaster software to study the transient flow characteristics of pipeline network under different valve-closing laws and the influence of valve-opening disturbance on pipeline network flow uniformity. The research results show that the comparison error between the predicted hydraulic characteristics of the model and the design parameters of the pipeline network does not exceed 8%, which verifies the accuracy of the model. For the transient hydraulic characteristics of the pipeline network operation, one-stage linear closing laws with different total durations ranging from 20 to 60 min were adopted to control the closing process of the main valve in the pipeline network system. Even if the valve is closed for up to 60 minutes, cavitation phenomenon still occurs in the pipeline section of the pipeline network. Two-stage valve-closing law of fast closing followed by slow closing with the total valve closing duration of 30 min was studied, and the fast closing time is 10 min when the opening degrees of fast closing are 65%, 75% and 85%, respectively. Under the fast closing opening degree of 85% and slow closing opening degree of 15%, there is no cavitation in the pipeline section, and the maximum water hammer pressure in the pipeline is less than the design pressure of the pipeline. For the flow-rate uniformity caused by pressure fluctuation of the pipe network, the pressure fluctuation was simulated by valve-opening disturbance. When the valve-opening is adjusted from 100% to 90%, the average reduction rate of the flow rate at the head end of each branch pipe is 0.079% with small flow rate fluctuation. The average decrease in flow rate at each outlet pile is 0.074% and the Christensen coefficient is 0.989 9, indicating good irrigation uniformity. The research results can provide guidance for the analyses of water hammer protection and valve-opening disturbance on the flow uniformity of large irrigation pipelines.

    Key words: irrigation pipeline network;method of characteristics;water hammer;valve-closing law;transient characteristics;uniformity of irrigation

    低壓管道灌溉、噴灌、滴灌等高效節(jié)水灌溉技術(shù)促進(jìn)了現(xiàn)代節(jié)水農(nóng)業(yè)的發(fā)展[1],但對農(nóng)業(yè)灌溉管網(wǎng)的要求也不斷提高.灌溉管網(wǎng)是保證供水、灌溉用水均勻性的關(guān)鍵設(shè)施.針對老舊的灌溉管網(wǎng)很難滿足現(xiàn)代農(nóng)業(yè)的用水需求[2]、大型灌溉管網(wǎng)系統(tǒng)高復(fù)雜度、管網(wǎng)運(yùn)行時常出現(xiàn)灌溉不均勻現(xiàn)象以及由于誤操作導(dǎo)致的爆管事故等問題,研究灌溉管網(wǎng)非恒定現(xiàn)象,利用合理的閥門關(guān)閉規(guī)律來減少水錘造成的危害[3-4],為管網(wǎng)的安全運(yùn)行提供合適的防護(hù)方案[5],并研究大開度關(guān)閥前后流量均勻性的變化,是保障灌溉管網(wǎng)的安全性及可靠性的關(guān)注重點.管道非恒定流數(shù)值計算方法主要有特征線法(method of characteristics,MOC)、有限差分法(finite difference method,F(xiàn)DM)[6-7]和有限元法(finite element method,F(xiàn)EM)[8-9]等.其中,特征線法由于可以處理復(fù)雜系統(tǒng),具有理論嚴(yán)謹(jǐn)、計算精度高且邊界條件易處理的特點,因此應(yīng)用范圍廣泛. RIAO-BRICEO等[10]為更快建模分析給水管網(wǎng)系統(tǒng)中的水錘現(xiàn)象,利用矢量化和分布式并行化來計算瞬態(tài)流,其加速因子達(dá)到數(shù)千個數(shù)量級,改進(jìn)了MOC的計算效率.KUBRAK等[11]采用隱式特征線并考慮管道黏彈性的方法來研究高壓管道系統(tǒng)中由于閥門快速關(guān)閉引起的水錘現(xiàn)象,其預(yù)測的最大壓力和壓力波振蕩周期與試驗結(jié)果接近.BETTAIEB等[12]基于特征線法,利用Matlab代碼對控制動量方程和連續(xù)方程離散化來進(jìn)行給水管網(wǎng)的停泵水錘分析,證明簡單水錘控制裝置的組合可顯著緩解管網(wǎng)系統(tǒng)中的瞬態(tài)壓力.廖功磊等[13]基于特征線法計算了長距離輸水管道系統(tǒng)中事故停泵時的水力過渡過程,表明采用二階段關(guān)閉蝶閥同時設(shè)置空氣閥和單向調(diào)壓塔的方法,能有效消除事故停泵后管道內(nèi)液柱分離再彌合現(xiàn)象,可保證水錘壓力在管道設(shè)計壓力范圍內(nèi).基于特征線法研究管網(wǎng)系統(tǒng)的瞬變流特性已成為主流手段,然而以大型自壓灌溉管網(wǎng)為研究對象的相關(guān)研究較少.

    文中針對新疆克拉瑪依市的大型自壓樹狀灌溉管網(wǎng)水力系統(tǒng),基于MOC方法,利用Flowmaster軟件對灌溉管網(wǎng)系統(tǒng)進(jìn)行建模計算,研究水庫正常蓄水位下總干管蝶閥不同關(guān)閉規(guī)律下的瞬變流特性以及閥門開度擾動對出水樁流量均勻性的影響,以解決灌水高峰期管網(wǎng)運(yùn)行期間的相關(guān)水錘及灌溉不均勻等問題.

    1 數(shù)學(xué)模型

    1.1 水錘計算數(shù)學(xué)模型

    管道非恒定流的連續(xù)性方程和運(yùn)動方程分別為

    1.3 灌溉管網(wǎng)出水口水頭損失模型

    出水口的流量與該出水口處的壓力滿足H=kζq2,kζ為出水口流量系數(shù),此系數(shù)由田間管網(wǎng)管道布置方式?jīng)Q定[14],根據(jù)設(shè)計數(shù)據(jù)率定獲得.模型kζ參數(shù)值見表1.

    2 自壓樹狀管網(wǎng)瞬變流特性

    2.1 自壓水力管網(wǎng)系統(tǒng)

    新疆克拉瑪依市一大型自壓樹狀灌溉管網(wǎng),如圖2所示,管網(wǎng)設(shè)計流量為11.09 m3/s,水庫的正常蓄水位364.2 m,在水庫后接106 m鋼性管處設(shè)置DN2200的蝶閥,管網(wǎng)管道參數(shù)見表2,表中d為管徑,l為管長.管網(wǎng)支管到田間的出流為孔口出流,支管到灌水器之間為灌溉出水口水頭損失模型.

    2.2 管網(wǎng)水力特性的對比驗證

    對管網(wǎng)系統(tǒng)進(jìn)行閥門全開穩(wěn)態(tài)工況的模擬計算,將其水力特性與管網(wǎng)設(shè)計值進(jìn)行對比驗證.支管流量、節(jié)點壓力水頭與設(shè)計值對比如圖3所示.

    計算結(jié)果表明,穩(wěn)態(tài)工況下各支管的流量及節(jié)點壓力與設(shè)計數(shù)據(jù)基本吻合,模擬支管流量與分水處節(jié)點壓力水頭的最大相對誤差均不超過8%,說明模擬計算較為準(zhǔn)確,驗證了計算模型的可靠性.

    2.3 蝶閥不同關(guān)閉規(guī)律的管網(wǎng)瞬變特性

    管道產(chǎn)生負(fù)壓主要由于總干管首部蝶閥的錯誤關(guān)閉.管網(wǎng)實際運(yùn)行中關(guān)閥歷時至少為30 min,為進(jìn)一步確定關(guān)閥方案,針對關(guān)閥時長及關(guān)閥開度2個方面進(jìn)行模擬計算.

    2.3.1 一段線性關(guān)閥瞬變流特性分析

    針對大口徑蝶閥工程上最常采用的關(guān)閉規(guī)律為線性關(guān)閥.本研究分別進(jìn)行關(guān)閥總歷時為30至60 min的線性關(guān)閥瞬態(tài)計算,模擬工況為管網(wǎng)正常運(yùn)行100 s后,需關(guān)閉總干管首部的蝶閥以停止向管網(wǎng)供水的情況,時間步長取0.05 s.閥門損失系數(shù)K隨開度τ變化見圖4.

    在計算過程中,文中重點關(guān)注閥前節(jié)點、閥后節(jié)點A、管路分叉節(jié)點C及管網(wǎng)末端節(jié)點I,J的壓力水頭波動情況.不同時長線性關(guān)閥規(guī)律及各節(jié)點瞬變流特性曲線如圖5所示,閥后一干管管線的各節(jié)點水錘壓力包絡(luò)線如圖6所示,圖中d為距離,Hs為地面高程.

    從圖5可以看出,隨著關(guān)閥時間延長,閥前節(jié)點的最大水錘壓力逐漸減?。陉P(guān)閥過程中,閥后節(jié)點A有負(fù)壓產(chǎn)生,且壓力震蕩劇烈,其水錘波振幅大且衰減慢.從點A的壓力隨時間變化曲線可以發(fā)現(xiàn),線性關(guān)閥時間越短,閥后管路產(chǎn)生的負(fù)壓越大,危害管網(wǎng)的安全穩(wěn)定運(yùn)行.從圖6可以看出,延長關(guān)閥時間能有效減小負(fù)壓極值,但隨著關(guān)閥時間的不斷延長,閥后節(jié)點處仍有負(fù)壓出現(xiàn).對比40,50和60 min線性關(guān)閥可看出,負(fù)壓值變化不大,說明延長關(guān)閥時間只能在一定時間范圍內(nèi)有效抑制管線負(fù)壓產(chǎn)生.

    2.3.2 先快后慢兩階段關(guān)閥瞬變流特性分析

    針對上述問題,為進(jìn)一步探討關(guān)閥方式對水錘壓力的影響,采用兩階段線性關(guān)閥規(guī)律對管網(wǎng)進(jìn)行瞬態(tài)計算.在管網(wǎng)瞬態(tài)計算中,采用兩階段關(guān)閥策略是一種有效的控制手段.大型蝶閥常用前1/3時長快關(guān)、其余時長慢關(guān)的關(guān)閥規(guī)律,通過控制閥門在快關(guān)和慢關(guān)階段關(guān)閉開度的大小,可確定關(guān)閥方式對長距離輸水管線水錘壓力的影響[15].這種分階段的關(guān)閥策略不僅有助于減小水錘現(xiàn)象的影響,還能夠有效保護(hù)管網(wǎng)系統(tǒng)的安全性和穩(wěn)定性.根據(jù)圖4所示的閥門損失系數(shù)隨閥門開度變化曲線,可以看出,當(dāng)閥門開度大于50%時,閥門的損失系數(shù)顯著降低,在這一開度范圍內(nèi),閥門的開度變化對水錘現(xiàn)象的影響將變得更加明顯,這一特性為管網(wǎng)瞬態(tài)計算中閥門的操作提供了參考依據(jù)。根據(jù)新疆克拉瑪依市灌溉管網(wǎng)在實際運(yùn)行中總引水干管首部蝶閥的關(guān)閉時間至少為30 min并結(jié)合閥門損失系數(shù)的特性分析.因此,采用總時長為30 min的兩階段關(guān)閥規(guī)律,分別設(shè)置前10 min線性快關(guān)閥門開度的65%,75%,85%,其余時長慢關(guān)的關(guān)閥規(guī)律進(jìn)行計算.關(guān)閥總時長30 min的兩階段關(guān)閥規(guī)律及其瞬變流特性曲線見圖7.關(guān)閥總時長30 min時不同關(guān)閥方式下閥后一干管管線水錘壓力包絡(luò)線如圖8所示.

    由圖7可知,兩階段線性關(guān)閥能有效抑制閥前升壓及閥后負(fù)壓現(xiàn)象,節(jié)點C,I,J在不同關(guān)閥方式下均無負(fù)壓產(chǎn)生.關(guān)閥方式從線性關(guān)閥到快關(guān)開度65%,75%,85%變化時,閥前最大壓力值逐漸減小,節(jié)點A水錘波振幅變小且明顯衰減,閥門快關(guān)85%時,節(jié)點A不產(chǎn)生負(fù)壓.從圖8可以看出, 關(guān)閥方式從線性關(guān)閥到快關(guān)開度65%,75%,85%變化時,管線產(chǎn)生負(fù)壓的距離越短,直至快關(guān)85%時,整個管線無負(fù)壓產(chǎn)生.因此,關(guān)閥總時長30 min,快關(guān)85%,慢關(guān)15%的關(guān)閥規(guī)律下管網(wǎng)各節(jié)點無負(fù)壓產(chǎn)生,且管道內(nèi)最大水錘壓力小于管道設(shè)計壓力.

    3 管網(wǎng)流量均勻性

    在用水高峰期,總干管首部的蝶閥會根據(jù)實際灌溉情況進(jìn)行調(diào)節(jié),閥門開度一般為90%.研究在調(diào)節(jié)閥門開度時,各支管流量的波動及調(diào)節(jié)閥門后流量均勻性變化,判斷管網(wǎng)供水穩(wěn)定性.

    采用克里斯琴森系數(shù)Cu評價灌溉的均勻程度.

    Cu=1-Δqq,(11)

    其中,

    Δq=1n∑ni=1QiSi-q,(12)

    式中:Qi為各出水口的流量,m3/s;Si為灌溉小區(qū)面積,m2;q為單位面積上流量的平均值,m3/(s·m2).

    選擇2.1節(jié)計算模型中距離閥門由近及遠(yuǎn)的支管1,6,11,26,將其由支管出水損失模型展開至出水樁出水損失模型,這4條支管上出水樁數(shù)量分別為14,13,23,5.計算干管首部閥門開度在20 s內(nèi)由100%調(diào)整到90%后出水樁的流量變化.閥門開度調(diào)整后以上各支管上首、中、末端的出水樁流量變化見圖9.閥門調(diào)節(jié)前后支管及出水樁流量對比見圖10,圖中κ為流量的下降比例.

    根據(jù)圖9,管網(wǎng)穩(wěn)態(tài)運(yùn)行100 s后,蝶閥開度調(diào)節(jié)時,各出水樁流量波動幅值從閥門處沿干管水流方向逐漸衰減,直至平穩(wěn)下降.長管線的支管1,11出水樁流量波動幅值相較于短管線的支管6,26大,說明閥門調(diào)節(jié)時對長管線的支管流量影響比短管線大,管線越長流量越不穩(wěn)定.達(dá)到新開度下的穩(wěn)定狀態(tài)后,各出水樁流量均有所下降,整個管網(wǎng)流量降幅較為均勻.

    根據(jù)圖10a,閥門調(diào)整后各支管流量與調(diào)整前差距普遍較小,整體小幅下降.在管線越靠后的支管,閥門開度擾動對其影響越大,穩(wěn)定后流量下降比例越大.流量下降比例均值為0.079%,表明閥門在大開度范圍內(nèi)調(diào)節(jié)時對各支管流量的影響較小;根據(jù)圖10b,閥門調(diào)節(jié)后,各出水樁流量均有所下降,在支管管線越靠后的出水樁,達(dá)到新開度后流量下降比例越大.達(dá)到新開度流量穩(wěn)定后的Cu為0.989 9,表明閥門調(diào)節(jié)后仍能保證各出水樁的流量均勻性.

    4 結(jié) 論

    1) 在穩(wěn)態(tài)工況下,各支管流量及節(jié)點壓力與設(shè)計數(shù)據(jù)基本吻合.采用線性關(guān)閥規(guī)律時,延長關(guān)閥歷時只能在一定時間范圍內(nèi)有效抑制管線負(fù)壓的產(chǎn)生.采用先快后慢兩階段關(guān)閥規(guī)律時,可以在減少關(guān)閥時長的同時抑制管線負(fù)壓的產(chǎn)生.在一定關(guān)閥幅度內(nèi),快關(guān)時關(guān)閥的幅度越大,管線中產(chǎn)生的負(fù)壓值越小.最優(yōu)關(guān)閥方案為總關(guān)閥時長為30 min的快關(guān)85%,慢關(guān)15%關(guān)閥規(guī)律.

    2) 干管首部蝶閥在大開度范圍內(nèi)調(diào)節(jié)后,在管線越靠后的支管,閥門開度擾動對其影響越大.閥門調(diào)節(jié)時對長管線的流量影響比短管線大,管線越長流量越不穩(wěn)定.閥門調(diào)節(jié)時從整體上對各支管及出水樁流量的影響較小,Cu較高,可以滿足灌溉均勻性要求.

    參考文獻(xiàn)(References)

    [1] 韓振中. 創(chuàng)新驅(qū)動節(jié)水灌溉高質(zhì)量發(fā)展 夯實農(nóng)業(yè)強(qiáng)國建設(shè)基礎(chǔ)[J]. 中國水利,2023 (7):11-14.

    HAN Zhenzhong.Boost high-quality development of water-saving irrigation by innovation drive to consolidate foundation of agricultural powerhouse[J]. China water resources,2023(7):11-14. (in Chinese)

    [2] 范雷雷,史海濱,李瑞平,等. 河套灌區(qū)畦灌灌水方案優(yōu)化與敏感性分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2021,52(9):280-290.

    FAN Leilei,SHI Haibin,LI Ruiping,et al. Optimization and sensitivity analysis of border irrigation performancein hetao irrigation district[J]. Transactions of the CSAM,2021,52 (9):280-290. (in Chinese)

    [3] WU Linfeng,YOU Rongyu,WANG Wen,et al. Status of research on water hammer effect in long distance pressure pipelines[J]. Journal of engineering research and reports,2022,23(12):204-211.

    [4] 閆曉彤,楊春霞,鄭源. 含重力流支線的泵站加壓供水系統(tǒng)水錘防護(hù)[J]. 南水北調(diào)與水利科技,2023,21(2):371-378.

    YAN Xiaotong,YANG Chunxia,ZHENG Yuan. Water hammer protection for pressurized water supply system with gravity flow branch[J]. South-to-north water transfers and water science amp; technology,2023, 21(2): 371-378.(in Chinese)

    [5] YUAN Wenqi. Analysis of water supply system characteristics and water hammer protection measures in hilly towns[C]//Proceedings of IOP conference series:earth and environmental science,2023,1171(1):012007.

    [6] TWYMAN J Q. Water hammer analysis using an implicit finite-difference method[J]. Ingeniare revista chilena de ingeniería,2018,26(2):307-318.

    [7] BELHOCINE A,ABDULLAH O I. Numerical simulation of thermally developing turbulent flow through a cylindrical tube[J]. The international journal of advanced ma-nufacturing technology,2019,102:2001-2012.

    [8] SHI Jianfeng,HU Anqi,YU Fa,et al. Finite element analysis of high-density polyethylene pipe in pipe gallery of nuclear power plants[J]. Nuclear engineering and technology,2021,53(3):1004-1012.

    [9] SHAHZAMANIAN M M,LIN M, KAINAT M,et al. Systematic literature review of the application of extended finite element method in failure prediction of pipelines[J]. Journal of pipeline science and engineering,2021,1(2):241-251.

    [10] RIAO-BRICEO G,SELA L,HODGES B R. Distri-buted and vectorized method of characteristics for fast transient simulations in water distribution systems[J]. Computer-aided civil and infrastructure engineering,2022,37(2):163-184.

    [11] KUBRAK M,MALESINSKA A,KODURA A,et al. Water hammer control using additional branched HDPE pipe[J]. Energies,2021,14:238008.

    [12] BETTAIEB N,TAIEB E H. Assessment of failure modes caused by water hammer and investigation of convenient control measures[J]. Journal of pipeline systems engineering and practice,2020,11(2):04020006.

    [13] 廖功磊,鐘林濤,蔣輝霞,等. 長距離輸水管道水力過渡分析及水錘防護(hù)措施研究[J].中國農(nóng)村水利水電,2019,443(9):177-180.

    LIAO Gonglei,ZHONG Lintao,JIANG Huixia,et al. An analysis of hydraulic transition and research on water-hammer protection measures in long-distance pipeline[J]. China rural water resources and hydropower,2019,443(9):177-180. (in Chinese)

    [14] 曾誠,尹雨然,陳辰,等.明渠彎道交匯口水動力特性數(shù)值模擬[J].水利水電科技進(jìn)展,2023,43(2):9-15.

    ZENG Cheng, YIN Yuran, CHEN Chen, et al. Numerical simulation of hydrodynamics of open-channel confluences with bend flow[J]. Advances in science and technology of water resources,2023,43(2):9-15.(in Chinese)

    [15] 路夢瑤, 田雨, 劉小蓮. 長距離有壓輸水系統(tǒng)事故停泵水錘防護(hù)措施研究[ J].水利水電技術(shù), 2022, 53(S2): 243-248.

    LU Mengyao, TIAN Yu, LIU Xiaolian. Study on protective measures of water hammer caused by accidental pump shutdown in long-distance pressurized water conveyance system[J]. Water resources and hydropower engineering, 2022, 53(S2): 243-248.(in Chinese)

    (責(zé)任編輯 談國鵬)

    收稿日期: 2023-07-30; 修回日期: 2023-11-08; 網(wǎng)絡(luò)出版時間: 2025-01-07

    網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.TH.20250106.1423.024

    基金項目: 新疆維吾爾自治區(qū)重大科技專項項目(2020A01003-1);國家自然科學(xué)基金資助項目(52079140)

    第一作者簡介: 楊國苗(1998—),女,山西運(yùn)城人,碩士研究生(yguomiao@163.com),主要從事水力瞬變理論及防護(hù)研究.

    通信作者簡介: 李小芹(1971—),女,河北遷安人,副教授(13522915056@163.com),主要從事水力瞬變理論及防護(hù)研究.

    猜你喜歡
    水錘
    高水頭短距離泵站水錘計算分析
    水力壓裂壓后停泵井筒內(nèi)水錘信號模擬
    水錘防護(hù)措施在某長距離供水系統(tǒng)中的應(yīng)用
    畢大供水泵站事故停泵水錘模擬分析與防護(hù)
    輸水管道水錘防護(hù)方案對比分析
    非穩(wěn)定流工況供水工程水錘防護(hù)方案探討
    長距離壓力輸水管道水錘防護(hù)方案分析
    新型中高揚(yáng)程大流量水錘泵結(jié)構(gòu)技術(shù)改進(jìn)研究
    中國水利(2015年7期)2015-02-28 15:12:58
    水錘對給水設(shè)備造成危害分析及預(yù)防措施
    高揚(yáng)程長距離輸水管道系統(tǒng)水錘防護(hù)的模擬分析
    星座| 亳州市| 南靖县| 英超| 罗源县| 南木林县| 色达县| 澄迈县| 双峰县| 江西省| 玉环县| 珲春市| 呼玛县| 图们市| 怀化市| 上饶市| 盈江县| 永和县| 伽师县| 临沧市| 平果县| 寻乌县| 牙克石市| 包头市| 松原市| 蒙城县| 宁海县| 芦山县| 临沭县| 桓仁| 焦作市| 开阳县| 泰兴市| 株洲县| 那曲县| 基隆市| 峨边| 出国| 永济市| 鸡泽县| 克拉玛依市|