摘要: 為揭示木質(zhì)部穿孔板幾何分布及結(jié)構(gòu)參數(shù)對(duì)導(dǎo)管水輸運(yùn)的影響,采用計(jì)算流體動(dòng)力學(xué)方法構(gòu)建了植物微結(jié)構(gòu)流體模型,并結(jié)合伯努利方程,基于低雷諾數(shù)k-ε湍流物理場(chǎng),研究3種穿孔板結(jié)構(gòu)內(nèi)部微流動(dòng)機(jī)理.通過(guò)壓力差、流動(dòng)阻力系數(shù)及水力傳導(dǎo)率的變化分析導(dǎo)管內(nèi)徑、穿孔板種類、傾斜角、孔數(shù)及等效直徑比對(duì)導(dǎo)管水輸運(yùn)的影響規(guī)律.結(jié)果表明:相較內(nèi)徑40 μm,穿孔板傾斜角20°、等效直徑比0.84的單穿孔板導(dǎo)管,網(wǎng)狀穿孔板導(dǎo)管壓力差增大了44.2%,流動(dòng)阻力系數(shù)增大了53.3%;梯狀穿孔板導(dǎo)管壓力差增大了76.5%,流動(dòng)阻力系數(shù)增大了92.3%.相同參數(shù)下,導(dǎo)管壓力差及流動(dòng)阻力系數(shù)與導(dǎo)管內(nèi)徑、穿孔板傾斜角及等效直徑比成反比,與穿孔板孔數(shù)成正比.其中,單穿孔板傾斜角對(duì)導(dǎo)管水輸運(yùn)特性影響較小.3種導(dǎo)管水力傳導(dǎo)率按孔板排序從大到小依次為單穿孔板、網(wǎng)狀穿孔板和梯狀穿孔板.內(nèi)徑越大的導(dǎo)管水力傳導(dǎo)率越高.
關(guān)鍵詞: 水輸運(yùn);木質(zhì)部穿孔板;伯努利方程;低雷諾數(shù)k-ε湍流模型;流動(dòng)阻力系數(shù)
中圖分類號(hào): S277.9 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1674-8530(2025)01-0080-07
DOI:10.3969/j.issn.1674-8530.23.0112
伍根生,蘇桐,謝建軍,等.不同植物穿孔板結(jié)構(gòu)的水輸運(yùn)特性分析[J].排灌機(jī)械工程學(xué)報(bào),2025,43(1):80-86.
WU Gensheng, SU Tong, XIE Jianjun, et al. Analysis of water transport characteristics in plant with different perforation plate structures[J].Journal of drainage and irrigation machinery engineering(JDIME),2025,43(1):80-86.(in Chinese)
Analysis of water transport characteristics in plant
with different perforation plate structures
WU Gensheng1, SU Tong1*, XIE Jianjun1, CHEN Weiyu1, YUAN Zhishan2
(1. College of Mechatronics Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; 2. College of Electromechanical Engineering, Guangdong University of Technology, Guangzhou,Guangdong 510006, China)
Abstract: The aim of this work is to reveal the effect of the geometric distribution and structural parameters of xylem perforation plates on vessel hydraulic characteristics. By the computational fluid dynamics (CFD) method, the micro-flow mechanism in the vessels with three perforation plates was si-mulated by a k-ε turbulent physical field with a low Reynolds number combined with the Bernoulli equation. The impacts of the inner diameter, the type of perforation plates, as well as their inclination angle, hole number, and equivalent diameter ratio on water transport in the vessel were examined in terms of the pressure difference, the flow resistance coefficient, and the hydraulic conductivity. By comparing with a simple perforation plate, the pressure drop of the vessel with a reticulate perforation plate increases by 44.2%, and the flow resistance coefficient increases by 53.3%. The pressure drop of the vessel with a scalariform perforation plate increases by 76.5%, and the flow resistance coefficient increases by 92.3%. As other parameters are consistent, the pressure difference and the vessel flow resistance are inversely proportional to the vessel inner diameter, the inclination angle of perforation plates, and the equivalent diameter ratio. Meanwhile, the two parameters are proportional to the hole number. Furthermore, the effect of water transfer on the inclination angle of a simple perforation plate is negligible. The hydraulic conductivity of the three vessels is ordered from high to low as follows: simple perforation plate, reticulate perforation plate, and scalariform perforation plate. The larger the inner diameter of a vessel, the higher the hydraulic conductivity.
Key words: water transportation;xylem perforation plate;Bernoulli equation;low Re k-ε turbulent model;flow resistance coefficient
水分對(duì)于植物生命活動(dòng)具有重要的作用,近年來(lái),植物水分作用機(jī)制逐漸成為植物抗逆性研究的熱點(diǎn),其中,植物維管結(jié)構(gòu)及水力特性與其逆境生存能力緊密相關(guān)[1-2].導(dǎo)管作為木質(zhì)部主要輸導(dǎo)組織,在水勢(shì)差的驅(qū)動(dòng)下,將水分從根部運(yùn)輸?shù)筋i部和葉片部,進(jìn)而維持植物生長(zhǎng).對(duì)于導(dǎo)水率高的植物,水分快速運(yùn)輸至冠層,有利于平衡水分,并促進(jìn)其生長(zhǎng)[3].
導(dǎo)管由縱向連接的導(dǎo)管分子組成,相鄰導(dǎo)管分子端壁溶解形成穿孔板[4],是導(dǎo)管內(nèi)水分傳遞的必經(jīng)之路.穿孔板橫隔多樣,對(duì)水分造成不同程度的阻礙,進(jìn)而影響導(dǎo)管水輸運(yùn)效率[5-6].受木質(zhì)部復(fù)雜結(jié)構(gòu)及其尺寸的限制,依靠壓力探針難以預(yù)測(cè)穿孔板內(nèi)部具體的水輸運(yùn)過(guò)程[7-8].一些學(xué)者針對(duì)穿孔板結(jié)構(gòu)進(jìn)行流體建模分析,例如,艾青林等[9]基于CFD方法研究梯狀穿孔板結(jié)構(gòu)參數(shù)對(duì)導(dǎo)管內(nèi)部流場(chǎng)及流動(dòng)阻力的影響.GAO 等[10]利用LBM模型模擬木質(zhì)部微米級(jí)尺度流體流動(dòng),得出梯狀穿孔板引起水力阻力的分布.XU等[4]綜合考慮螺紋增厚及梯狀穿孔板對(duì)導(dǎo)管水輸運(yùn)的影響.目前針對(duì)穿孔板結(jié)構(gòu)的流體建模以梯狀穿孔板為主.諸多研究表明,不同時(shí)期及不同環(huán)境,穿孔板會(huì)呈現(xiàn)不同形狀,不良水分條件更會(huì)加快穿孔板的進(jìn)化,以適應(yīng)水分脅迫的需求,無(wú)需滿足高導(dǎo)水率的植物則會(huì)保留原始的穿孔板結(jié)構(gòu)[11-12].此外,復(fù)穿孔板在低溫環(huán)境下突出的抗栓塞能力有利于導(dǎo)管水輸運(yùn)的安全性[13-14].因此,有必要針對(duì)不同穿孔板進(jìn)行分析.
文中針對(duì)單穿孔板、網(wǎng)狀穿孔板及梯狀穿孔板3類導(dǎo)管流體建模,結(jié)合伯努利方程及低雷諾數(shù)k-ε湍流模型,對(duì)導(dǎo)管內(nèi)的水分輸運(yùn)進(jìn)行數(shù)值模擬.分析導(dǎo)管內(nèi)部流場(chǎng)和壓力場(chǎng),通過(guò)壓力差、流動(dòng)阻力系數(shù)及水力傳導(dǎo)率的變化揭示不同穿孔板對(duì)導(dǎo)管水輸運(yùn)特性的影響規(guī)律.為通過(guò)導(dǎo)管穿孔板結(jié)構(gòu)調(diào)控植物水分輸運(yùn)及抗逆境能力提供理論依據(jù).
1 導(dǎo)管流體力學(xué)建模
1.1 穿孔板結(jié)構(gòu)分析
穿孔板包括單穿孔與復(fù)穿孔.單穿孔具有一個(gè)圓形的開口,隨穿孔板傾斜角度的變化,呈橢圓形或卵圓形.復(fù)穿孔根據(jù)形狀又分為梯狀、網(wǎng)狀及篩狀等多種穿孔類型.導(dǎo)管分子端壁平行排列的紋孔融合形成梯狀穿孔板,散亂排列的紋孔形成為網(wǎng)狀或篩狀穿孔板,再經(jīng)過(guò)橫隔退化,逐漸向單穿孔演變[15],其中,還包括單-梯、單-網(wǎng)混合穿孔板等多種過(guò)渡類型[16],典型的穿孔結(jié)構(gòu)[17]如圖1所示.不同融合方式導(dǎo)致穿孔結(jié)構(gòu)不同,針對(duì)典型的單穿孔板、網(wǎng)狀穿孔板及梯狀穿孔板,結(jié)合文獻(xiàn)[9]并通過(guò)不同位置和不同數(shù)量的孔分別進(jìn)行建模,如圖2所示.
1.2 流體力學(xué)建模
導(dǎo)管的水分流動(dòng)模型如圖3所示,圖中箭頭為導(dǎo)管內(nèi)水分流動(dòng)的方向.由圖3可知,穿孔板橫隔造成流束方向改變并分散成多股流,經(jīng)過(guò)穿孔板后多股流束的不規(guī)則匯聚相互干擾,增強(qiáng)流團(tuán)間的摩擦及碰撞,局部流場(chǎng)紊亂并造成流體能量損失.
截面Z2為穿孔板通流截面(與導(dǎo)管軸線呈θ角),截面Z1和Z3為導(dǎo)管進(jìn)、出口截面.其中,截面Z1,Z2,Z3的速度分別為v1,v2,v3,壓力為p1,p2,p3.假設(shè)通過(guò)導(dǎo)管的流體為理想的不可壓縮的黏性液體,密度ρ為998.2 kg/m3,運(yùn)動(dòng)黏度η為1.002×103 Pa·s,且作定常流動(dòng),基于能量守恒定律建立導(dǎo)管進(jìn)口至出口各截面間的伯努利方程為
式中:Q為導(dǎo)管內(nèi)平均流量,m3/s;Δp為導(dǎo)管進(jìn)出口截面壓力差,Pa.
通過(guò)壓力差Δp和流動(dòng)阻力系數(shù)ξ模擬導(dǎo)管幾何特性、水輸運(yùn)驅(qū)動(dòng)力、流動(dòng)阻力機(jī)制之間的關(guān)系.顯然,Δp和ξ反映了穿孔板結(jié)構(gòu)參數(shù)對(duì)導(dǎo)管水輸運(yùn)的影響.由式(6)可知,流動(dòng)阻力系數(shù)ξ與截面A2,A3、沿程損失系數(shù)λ及局部阻力系數(shù)ξ1,ξ2直接相關(guān).其中,導(dǎo)管內(nèi)徑D確定截面A3;截面A2由導(dǎo)管內(nèi)徑D、穿孔板孔數(shù)n、傾斜角θ及等效直徑比β聯(lián)合確定.對(duì)于不可壓縮流體,沿程損失系數(shù)λ取決于雷諾數(shù)Re,在流體速度、密度及動(dòng)力黏度一致的條件下,雷諾數(shù)由導(dǎo)管內(nèi)徑D確定.流體力學(xué)中多孔板的局部阻力系數(shù)會(huì)受到等效直徑比、孔數(shù)、孔分布密度及壁面粗糙度的影響.考慮穿孔板厚度較薄,局部影響較小,粗糙度可忽略不計(jì)[9].綜上所述,認(rèn)為導(dǎo)管內(nèi)徑D、穿孔板傾斜角θ、孔數(shù)n及等效直徑比β是確定流動(dòng)阻力系數(shù)ξ的關(guān)鍵因素.式(10)可看作ξ與D,n,θ,β關(guān)聯(lián)的多元微分方程,即
ξ=f(D,n,θ,β).(10)
由于通過(guò)試驗(yàn)方法檢測(cè)植物導(dǎo)管內(nèi)流場(chǎng)參數(shù)較為困難,文中通過(guò)COMSOL軟件偏微分方程的求解,獲取導(dǎo)管平均流量Q及壓降Δp等流場(chǎng)參數(shù),再通過(guò)式(9)計(jì)算導(dǎo)管的流動(dòng)阻力系數(shù)ξ.分析導(dǎo)管內(nèi)徑D,穿孔板孔分布(等效直徑β,孔數(shù)n)及傾斜角θ對(duì)單穿孔板、網(wǎng)狀穿孔板、梯狀穿孔板3類導(dǎo)管流動(dòng)阻力的影響.
2 數(shù)值模擬
2.1 控制方程
植物導(dǎo)管內(nèi)流體雷諾數(shù)較?。?.01~0.10),流動(dòng)狀態(tài)為層流[17].考慮到流束受穿孔板橫隔分散干擾,流動(dòng)方向突變導(dǎo)致局部流場(chǎng)紊亂,呈現(xiàn)湍流狀態(tài),擬通過(guò)低雷諾數(shù)湍流模型模擬穿孔板內(nèi)水輸運(yùn)過(guò)程[9].低雷諾數(shù)k-ε湍流模型中的方程為
式中:u為速度場(chǎng);Pk為影響流體的體積力;ρ為密度,kg/m3;μ為動(dòng)力黏度,Pa·s;k為湍流動(dòng)能;ε為湍流耗散率;l為參考長(zhǎng)度比例;G為壁距離倒數(shù).
2.2 邊界條件及網(wǎng)格劃分
文中設(shè)置導(dǎo)管入口流速0.003 m/s及壓力出口[18],壁面設(shè)置非滑移.計(jì)算模型整體采用四面體網(wǎng)格劃分[19].考慮到穿孔板結(jié)構(gòu)的不規(guī)整性,幾何曲率變化顯著,選擇對(duì)穿孔板局部區(qū)域網(wǎng)格細(xì)化,以導(dǎo)管進(jìn)出口壓力差為檢測(cè)標(biāo)準(zhǔn),進(jìn)行網(wǎng)格無(wú)關(guān)化驗(yàn)證(見表1).
當(dāng)細(xì)化網(wǎng)格與標(biāo)準(zhǔn)網(wǎng)格的壓降差異Δp在0.10%以內(nèi),認(rèn)為網(wǎng)格精度對(duì)模型數(shù)值分析結(jié)果沒(méi)有影響.網(wǎng)格總單元數(shù)為1 300 939個(gè),單元最大尺寸為4.00 μm,單元最小尺寸為0.04 μm,曲率因子為0.2.網(wǎng)格分布如圖4所示.
3 計(jì)算結(jié)果與分析
為了便于不同穿孔板間的比較分析,設(shè)置導(dǎo)管孔徑比為5,穿孔板孔間距及孔端壁距離固定,建立不同的導(dǎo)管穿孔板模型.圖5,6分別為流體沿導(dǎo)管軸線截面的流場(chǎng)和壓力云圖.
由圖5可知,流體進(jìn)入導(dǎo)管呈明顯的層流狀態(tài),流體速度沿導(dǎo)管徑向梯狀分布.由于壁面摩擦不可逆的影響,管壁附近流速顯著降低.受穿孔板橫隔阻礙,局部流域收縮,流域收縮嚴(yán)重的位置流動(dòng)阻力相對(duì)更大.被橫隔分散的多股流經(jīng)過(guò)摩擦、碰撞后重新匯聚,相鄰流層間相對(duì)運(yùn)動(dòng)加劇,穿孔板局部位置呈現(xiàn)紊流狀態(tài),并產(chǎn)生旋渦,導(dǎo)致局部水頭損失.隨著流域截面擴(kuò)大,匯聚后的流體逐漸恢復(fù)原來(lái)穩(wěn)定的層流狀態(tài).由圖6可知,導(dǎo)管出、入口壓力差呈梯度變化,流體在穿孔板附近遇到阻力,且在穿孔板傾斜角度影響下,流體方向被迫改變,局部阻力增大,在橫隔兩側(cè)形成明顯的壓力差.多股流的分散造成穿孔板高壓區(qū)的流體波動(dòng),并在低壓區(qū)的不規(guī)則匯聚引起流束的相互干擾.此外,相對(duì)橢圓形的單穿孔及菱形和三角形的網(wǎng)狀穿孔,梯狀穿孔長(zhǎng)條形的孔分布,孔口流通截面濕周顯著增大,水力半徑減小,導(dǎo)致孔內(nèi)切向速度顯著降低.流體通過(guò)水力半徑更小的多孔板,流體與壁面接觸更多,流動(dòng)阻力增大,因此梯狀穿孔板兩側(cè)的壓力差更大,導(dǎo)管總壓力差更大.
3.1 導(dǎo)管內(nèi)徑對(duì)導(dǎo)管水輸運(yùn)的影響
研究導(dǎo)管內(nèi)徑對(duì)導(dǎo)管水輸運(yùn)特性的影響.穿孔板傾斜角取20°,孔數(shù)取20,等效直徑比取0.84,不同導(dǎo)管內(nèi)徑的流動(dòng)阻力系數(shù)ξ如圖7所示.由圖7可以看出,ξ值由大到小按孔板排序依次為梯狀穿孔板、網(wǎng)狀穿孔板和單穿孔板.由于梯狀穿孔橫隔分布較網(wǎng)狀穿孔更為密集且孔口流通截面水力半徑更小,流體與壁面接觸更多,穿孔板局部流動(dòng)阻力增大,導(dǎo)管總流動(dòng)阻力系數(shù)增大.單穿孔板沒(méi)有橫隔分散流束,流層間相對(duì)運(yùn)動(dòng)緩慢,流動(dòng)阻力相對(duì)較小.不同類型穿孔板導(dǎo)管的ξ值隨內(nèi)徑的變化趨勢(shì)基本一致.當(dāng)導(dǎo)管內(nèi)徑由40 μm增加至90 μm時(shí),單穿孔板導(dǎo)管的流動(dòng)阻力降低了93.2%;網(wǎng)狀穿孔板導(dǎo)管的流動(dòng)阻力降低了82.4%;梯狀穿孔板導(dǎo)管的流動(dòng)阻力降低了79.0%.由于導(dǎo)管入口速度恒定,穿孔板過(guò)流面積隨導(dǎo)管內(nèi)徑增大,導(dǎo)管平均流量增大,流體速度減小.由于沿程水頭損失與流體速度成正比,沿程阻力減小,導(dǎo)管水輸運(yùn)能力增強(qiáng).
3.2 穿孔板孔分布對(duì)水輸運(yùn)的影響
考慮穿孔板幾何分布與其類型的關(guān)聯(lián)性,以導(dǎo)管內(nèi)徑40 μm,傾斜角20°的穿孔板為研究對(duì)象,分析孔分布對(duì)導(dǎo)管水輸運(yùn)特性的影響.圖8為孔數(shù)n及等效直徑比β聯(lián)合約束下流動(dòng)阻力系數(shù)ξ的變化情況.
由圖8可知,孔數(shù)越多,流動(dòng)阻力系數(shù)ξ越大.相同參數(shù)下(導(dǎo)管內(nèi)徑40 μm,傾斜角20°,等效直徑比0.84,20孔),網(wǎng)狀穿孔板導(dǎo)管的流動(dòng)阻力較單穿孔板增大了53.3%,壓力差增大了44.2%;梯狀穿孔板導(dǎo)管的流動(dòng)阻力較單穿孔板增大了92.3%(壓力差增大了76.5%).隨著穿孔數(shù)量增多,被橫隔分散的多股流產(chǎn)生密集的剪切作用,加劇流層間相對(duì)運(yùn)動(dòng),局部流動(dòng)阻力增大.此外,導(dǎo)管流動(dòng)阻力系數(shù)ξ隨著穿孔板等效直徑比的增大而減小.當(dāng)20孔穿孔板的等效直徑比由0.58增加至0.87,單穿孔板導(dǎo)管的流動(dòng)阻力減少了28.8%;網(wǎng)狀穿孔板導(dǎo)管的流動(dòng)阻力減少了34.4%;梯狀穿孔板導(dǎo)管的流動(dòng)阻力減少了65.5%.隨著等效直徑比增大,孔間距減小,穿孔板過(guò)流面積增大,相同流量下穿孔板中心流速降低,局部阻力減小,導(dǎo)管總壓力差降低,水輸運(yùn)能力增強(qiáng).考慮梯狀穿孔板孔口流通截面特殊性,孔數(shù)越多,孔寬越小,穿孔板水力半徑隨等效直徑比變化更顯著,導(dǎo)致流動(dòng)阻力系數(shù)ξ增加幅度更大.
3.3 穿孔板傾斜角對(duì)水輸運(yùn)的影響
研究穿孔板傾斜角對(duì)導(dǎo)管水輸運(yùn)特性的影響,導(dǎo)管內(nèi)徑取40 μm,穿孔板孔數(shù)取20,等效直徑比取0.84.不同穿孔板傾斜角的流動(dòng)阻力系數(shù)ξ如圖9所示.由圖9可以看出,單穿孔板導(dǎo)管的ξ值幾乎不受穿孔板傾斜角度影響;網(wǎng)狀及梯狀穿孔板導(dǎo)管的ξ值與穿孔板傾斜角呈負(fù)相關(guān),且降低趨勢(shì)逐漸減緩.其中,當(dāng)穿孔板傾斜角由0°增加至75°時(shí),網(wǎng)狀穿孔板導(dǎo)管的流動(dòng)阻力減小了45.5%;梯狀穿孔板導(dǎo)管的流動(dòng)阻力減小了68.5%.穿孔板傾斜角度增大,流體流動(dòng)方向變化減小,流層間相對(duì)運(yùn)動(dòng)減緩,穿孔板局部流動(dòng)阻力減小.由于單穿孔板沒(méi)有橫隔分散流束,流體流動(dòng)方向受穿孔板傾斜角的影響較小.此外,隨著傾斜角度不斷減小,穿孔板逐漸趨向與導(dǎo)管端面平行,在等效直徑比不變的情況下,過(guò)流面積迅速縮小,流場(chǎng)收縮嚴(yán)重,產(chǎn)生更大的流動(dòng)阻力,導(dǎo)致導(dǎo)管水輸運(yùn)能力顯著降低.
3.4 導(dǎo)管水力傳導(dǎo)率分析
進(jìn)一步研究木質(zhì)部導(dǎo)管水輸運(yùn)效率,對(duì)穿孔板不同的3類導(dǎo)管與理想的光滑導(dǎo)管對(duì)比,計(jì)算導(dǎo)管的水力傳導(dǎo)率Lp,計(jì)算公式為
Lp=QΔp/L,(16)
顯然,導(dǎo)管水力傳導(dǎo)率越高,水輸運(yùn)能力越強(qiáng).
通過(guò)式(16)得出導(dǎo)管內(nèi)徑與水力傳導(dǎo)率之間的變化規(guī)律如圖10所示.由圖可知,單穿孔板導(dǎo)管的水力傳導(dǎo)率顯著高于復(fù)穿孔板,與文獻(xiàn)[20]結(jié)論一致.
流體受單穿孔板阻礙較小,導(dǎo)管水力傳導(dǎo)率接近于光滑導(dǎo)管,梯狀穿孔較網(wǎng)狀穿孔更大的流動(dòng)阻力導(dǎo)致導(dǎo)管水力傳導(dǎo)率降低,進(jìn)一步證實(shí)穿孔板引起的局部流動(dòng)阻力影響導(dǎo)管水輸運(yùn)特性.此外,增大導(dǎo)管內(nèi)徑,導(dǎo)管水力傳導(dǎo)率越接近光滑導(dǎo)管.以梯狀穿孔板為例,當(dāng)導(dǎo)管內(nèi)徑為40 μm時(shí),梯狀穿孔板導(dǎo)管的水力傳導(dǎo)率較光滑導(dǎo)管降低了48.2%;導(dǎo)管內(nèi)徑為90 μm時(shí),水力傳導(dǎo)率降低了43.6%.內(nèi)徑增大,導(dǎo)管平均流量增大且總阻力損失減少,導(dǎo)管水力傳導(dǎo)率升高.
綜上,單穿孔導(dǎo)管水輸運(yùn)能力最強(qiáng),干旱環(huán)境下,導(dǎo)管對(duì)水力傳導(dǎo)率更高的需求促進(jìn)了穿孔板結(jié)構(gòu)由復(fù)穿孔向單穿孔的進(jìn)化,以實(shí)現(xiàn)遠(yuǎn)距離輸運(yùn)和充足的碳固定.嚴(yán)寒環(huán)境植物則需要水力傳導(dǎo)率相對(duì)更高的復(fù)穿孔結(jié)構(gòu)以平衡導(dǎo)管水輸運(yùn)的安全性和效率.
4 結(jié) 論
1) 不同類型穿孔板幾何分布及結(jié)構(gòu)參數(shù)影響導(dǎo)管水輸運(yùn)特性.穿孔板橫隔分散流體,導(dǎo)致局部流場(chǎng)收縮,流層間相對(duì)運(yùn)動(dòng)速度增大,進(jìn)而增強(qiáng)流團(tuán)間的碰撞和摩擦.穿孔板附近流場(chǎng)紊亂引起的壓力差和流動(dòng)阻力是導(dǎo)致導(dǎo)管水輸運(yùn)效率降低的主要影響因素.
2) 基于伯努利數(shù)學(xué)模型分析,導(dǎo)管內(nèi)徑、穿孔板孔數(shù)、等效直徑比及傾斜角對(duì)導(dǎo)管水輸運(yùn)特性影響顯著.導(dǎo)管的壓力差及流動(dòng)阻力系數(shù)與穿孔板孔數(shù)成正比;與導(dǎo)管內(nèi)徑、穿孔板等效直徑比及傾斜角成反比;且單穿孔板傾斜角對(duì)導(dǎo)管水輸運(yùn)特性影響較小.
3) 穿孔板不同的3類導(dǎo)管水力傳導(dǎo)率按孔板排序從大到小依次為單穿孔板、網(wǎng)狀穿孔板、梯狀穿孔板.單穿孔板導(dǎo)管的水力傳導(dǎo)率接近于光滑導(dǎo)管,且導(dǎo)管內(nèi)徑越大,水力傳導(dǎo)率越高.
參考文獻(xiàn)(References)
[1] 羅敏蓉.基于不同方法的毛茛族(毛茛科)導(dǎo)管穿孔板比較研究[J].廣西植物,2021,41(1):123-132.
LUO Minrong. Comparative investigation of vessel perforation plates of Ranunculeae(Ranunculaceae)based on different methods[J].Guihaia,2021,41(1):123-132. (in Chinese)
[2] SANTIAGO T,SYLVAIN D,SANDRINE I,et al. Similar hydraulic efficiency and safety across vesselless angiosperms and vessel-bearing species with scalariform perforation plates[J].Journal of experimental botany,2019,70(12):3227-3240.
[3] LIU H,YE Q,GLEASON S M,et al. Weak tradeoff between xylem hydraulic efficiency and safety:climatic seasonality matters[J].New phytologist,2020,229(3):1440-1452.
[4] XU T Y,ZHI S T,SU Y R,et al. Water transport characteristics of multiple structures of xylem vessels in magnolia[J].Forests,2022,13:101617.
[5] KIM K H,PARK J,HWANG I. Investigating water transport through the xylem network in vascular plants[J].Journal of experimental botany,2014,65(7):1895-1904.
[6] DAIANA A Z,MAYA V N,ALEXEI A O. Comparative wood anatomy of astropanax and neocussonia,an Afro-Malagasy lineage of araliaceae[J].Bntanical Journal of the Linnean Society,2021,195(3):327-347.
[7] MENCUCCINI M,MANZONI S,CHRISTOFFERSEN B. Modelling water fluxes in plants:from tissues to biosphere[J].New phytologist,2019,222(3):1207-1222.
[8] LUCAS W J,GROOVER A,LICHTENBERGEER R,et al. The plant vascular system:evolution,development and functions[J].Journal of integrative plant biology,2013,55(4):294-388.
[9] 艾青林,胥芳,陳琦,等.植物木質(zhì)部導(dǎo)管梯狀穿孔板流動(dòng)阻力特性研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(8):143-148.
AI Qinglin,XU Fang,CHEN Qi,et al. Flow resistance characteristics of scalariform perforation plates in plant xylem vessels[J].Transactions of the CSAM,2011,42(8):143-148. (in Chinese)
[10] GAO Y,YANG Z J,WANG G S,et al. Discerning the difference between lumens and scalariform perforation plates in impeding water flow in single xylem vessels and vessel networks in cotton[J].Frontiers in plant science,2020,11:00246.
[11] OLSON M E. Xylem hydraulic evolution,I. W. Bailey,and Nardini amp; Jansen(2013):pattern and process[J].New phytologist,2014,203(1):7-11.
[12] LENS F,VOS R A,CHARRIER G,et al. Scalariform-to-simple transition in vessel perforation plates triggered by differences in climate during the evolution of adoxaceae[J].Annals of botany,2016,118(5):1043-1056.
[13] GUIMARAES A R,BAUMGRATZ J F A,VIEIRA R C. First report of reticulate perforation plates in the melastomataceae [J].IAWA journal,2014,35(1):12-18.
[14] 王瑞慶,張莉,郭連金,等.植物木質(zhì)部水力學(xué)研究進(jìn)展[J].西北植物學(xué)報(bào),2020,40(12):2157-2168.
WANG Ruiqing,ZHANG Li,GUO Lianjin,et al. Advance in plant xylem hydraulics[J].Acta botanica boreali occidentalia sinica,2020,40(12):2157-2168. (in Chinese)
[15] 李紅芳.兩種山龍眼科植物次生木質(zhì)部導(dǎo)管分子及其穿孔板的觀察[J].生物學(xué)雜志,2018,35(1):82-84.
LI Hongfang. The vessel elements and perforation plates of secondary xylem in two species from proteaceae[J].Journal of biology,2018,35(1):82-84. (in Chinese)
[16] 李紅芳,劉江梅.鵝掌楸屬(木蘭科)次生木質(zhì)部導(dǎo)管穿孔板的比較研究[J].西北植物學(xué)報(bào),2016,36(8):1585-1593.
LI Hongfang,LIU Jiangmei. Comparative investigation of vessel elements in the secondary xylem of liriodendron[J].Acta botanica boreali occidentalia sinica,2016,36(8):1585-1593. (in Chinese)
[17] HE S M,CHEN C,CHEN G,et al. High-performance,scalable wood-based filtration device with a reversed-tree design[J].Chemistry of materials,2020,32(5):1887-1895.
[18] XU T Y,ZHANG L X. Analysis of water transport inside a plant xylem vessel with pitted thickening[J].Fluid dynamics and materials processing,2020,16(3):525-536.
[19] 柏樂(lè),劉英,華潔,等.離心通風(fēng)機(jī)內(nèi)部流場(chǎng)數(shù)值模擬[J].揚(yáng)州大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,18(1):28-31.
BO Le,LIU Ying,HUA Jie,et al. Numerical simulation for inner flow field of the centrifugal fan[J].Journal of Yangzhou University(natural science edition),2015,18(1):28-31. (in Chinese)
[20] 張紅霞,袁鳳輝,關(guān)德新,等.維管植物木質(zhì)部水分傳輸過(guò)程的影響因素及研究進(jìn)展[J].生態(tài)學(xué)雜志,2017,36(11):3281-3288.
ZHANG Hongxia,YUAN Fenghui,GUAN Dexin,et al. A review on water transport in xylem of vascular plants and its affecting factors[J].Chinese journal of ecology,2017,36(11):3281-3288. (in Chinese)
(責(zé)任編輯 談國(guó)鵬)
收稿日期: 2023-06-07; 修回日期: 2023-09-16; 網(wǎng)絡(luò)出版時(shí)間: 2025-01-07
網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.th.20250106.1423.022
基金項(xiàng)目: 國(guó)家自然科學(xué)基金資助項(xiàng)目(51905276);江蘇省自然科學(xué)基金資助項(xiàng)目(BK20200787)
第一作者簡(jiǎn)介: 伍根生(1986—),男,安徽蕪湖人,講師(genshengwu@njfu.edu.cn),主要從事木質(zhì)膜狀材料的應(yīng)用、水凈化以及水輸運(yùn)研究.
通信作者簡(jiǎn)介: 蘇桐(1998—),男,安徽蚌埠人,碩士研究生(785465261@qq.com),主要從事木質(zhì)膜狀材料的應(yīng)用、水凈化以及水輸運(yùn)研究.