摘""要:二斑葉螨是世界危險性有害生物。阿維菌素是二斑葉螨防治中使用最為廣泛的殺螨劑之一,其不合理施用導致的抗藥性問題日益嚴重。探究二斑葉螨對阿維菌素的抗性機理,可為延長藥劑的使用壽命及制定綜合防控策略提供理論依據(jù)。為此,本研究首先開展了阿維菌素對二斑葉螨田間種群、實驗室篩選的抗性種群、敏感種群的生物測定,發(fā)現(xiàn)3個種群的24"h致死中濃度(LC50)分別為7.19、2061.43、0.10"mg/mL,"48"h的LC50分別為6.32、1971.55、0.09"mg/mL。以敏感種群的LC50為基準,田間種群和實驗室抗性種群的抗性倍數(shù)超過70倍和20"000倍,分別屬于中等水平抗性和高水平抗性。對LC50處理下存活二斑葉螨的解毒酶活性分析表明,抗性種群的谷胱甘肽-S-轉移酶(GSTs)和尿苷二磷酸糖基轉移酶(UGTs)的活性最高,田間種群次之,并均顯著高于敏感種群的酶活性,與用藥前相比,用藥處理后高抗種群和田間中抗種群的酶活性均隨著處理時間的延長而提高,而敏感種群的酶活性顯著被抑制。采用熒光定量PCR比較上述解毒酶的編碼基因表達量差異,發(fā)現(xiàn)用藥處理后,GSTm09、GSTd10和UGT204a2、UGT201d3基因在高抗種群和田間中抗種群的表達量顯著高于敏感種群,并隨著處理時間的延長,抗性種群和敏感種群的解毒酶基因表達的差異倍數(shù)進一步增大。相關性分析表明,解毒酶活性及其編碼基因表達與阿維菌素的抗性水平呈顯著正相關。本研究結果為深入挖掘二斑葉螨抗性靶標基因和研發(fā)抗性治理策略提供理論參考。
關鍵詞:二斑葉螨;阿維菌素;抗藥性;解毒酶;相關性分析中圖分類號:S433.1""""""文獻標志碼:A
Analysis"of"the"Relationship"Between"Abamectin"Resistance"Levels"and"Detoxification"Enzymes"of"Tetranychus"urticae
HAO"Guifeng1,2,3,"LIU"Ying2,3,"WU"Chunling2,3,"AN"Xingkui2,3,"CHEN"Qing2,3*,"LIANG"Xiao2,3*
1."School"of"Tropical"Agriculture"and"Forestry,"Hainan"University,"Haikou,"Hainan"570228,"China;"2."Environment"and"Plant"Protection"Institute,"China"Academy"of"Tropical"Agricultural"Sciences"/"Key"Laboratory"of"Integrated"Pest"Management"on"Tropical"Crops,"Ministry"of"Agriculture"and"Rural"Affairs"/"Hainan"Engineering"Research"Center"for"Biological"Control"of"Tropical"Crops"Diseases"and"Insect"Pests,"Haikou,"Hainan"571101,"China;"3."Sanya"Research"Academy,"Chinese"Academy"of"Tropical"Agriculture"Science"/"Hainan"Key"Laboratory"for"Biosafety"Monitoring"and"Molecular"Breeding"in"Off-Season"Reproduction"Regions,"Sanya,"Hainan"572000,"China
Abstract:"Tetranychus"urticae"is"a"dangerous"agricultural"pest"worldwide."Abamectin"is"a"widely"used"acaricide"in"the"prevention"and"control"of"T."urticae."However,"the"resistance"caused"by"inappropriate"application"of"acaricide"has"become"an"increasing"challenge."Explorating"the"resistant"mechanisms"of"T."urticae"against"abamectin"can"provide"the"theoretical"basis"for"prolonging"lifespan"and"perform"a"comprehensive"prevention"and"control"strategy."In"this"study,"we"conducted"an"abamectin"bioassays"on"field"population,"laboratory-derived"resistant-and"sensitive"populations."It"was"found"that"the"24"h"median"lethal"concentration"(LC50)"values"of"the"three"populations"was"7.19"μg/mL,"2061.43"μg/mL"and"0.10"μg/mL,"respectively,"while"the"LC50"values"of"the"48"h"was"6.32"μg/mL,"1971.55"μg/mL"and"0.09"μg/mL,"respectively."In"addition,"the"resistance"ratio"of"the"field"population"and"the"laboratory"resistant"population"exceeded"70-fold"and"20"000-fold"respectively,"which"belonged"to"the"medium"resistance"level"and"the"high"resistance"level."Detoxification"enzyme"activity"of"surviving"T."urticae"following"exposure"to"LC50"treatment"showed"that"the"activity"of"glutathione"S-transferase"(GSTs)"and"uridine"diphosphate"glycosyltransferase"(UGTs)"in"the"resistant"population"was"the"highest,"followed"by"the"field"populations,"and"both"two"population"were"significantly"higher"than"those"of"sensitive"population."In"comparison,"prior"to"the"acaricide"treatment,"the"enzyme"activity"of"the"highly"resistant"population"and"the"medium"resistant"population"increased"over"time,"while"the"enzyme"activity"of"the"sensitive"population"were"inhibited."Quantitative"PCR"was"used"to"compare"the"expression"differences"of"the"coding"gene"of"the"above"enzyme"detoxification"enzymes."It"revealed"that"prior"to"the"treatment,"the"expression"level"of"GSTm09,"GSTd10,"UGT204a2"and"UGT201d3"in"the"highly"resistant"population"and"the"medium"resistant"population"in"the"field"was"significantly"higher"than"that"in"the"sensitive"population,"and"the"difference"in"the"expression"of"detoxification"enzyme"genes"between"the"resistant"population"and"the"sensitive"population"increased"further"with"the"extension"of"treatment"time."Correlation"analysis"showed"that"the"detoxification"enzyme"activity"and"the"expression"of"the"coding"genes"were"significantly"positively"correlated"with"the"resistance"level"to"abamectin."The"study"would"provide"a"theoretical"reference"for"in-depth"exploration"of"T."urticae"resistant"target"genes"and"the"development"of"resistance"management"strategies.
Keywords:"Tetranychus"urticae;"abamectin;"resistance;"detoxification"enzyme;"correlation"analysis
DOI:"10.3969/j.issn.1000-2561.2025.02.014
二斑葉螨(Tetranychus"urticae"Koch)是全球性的植食性害螨[1],其寄主植物超過1100多種,該螨主要集中在葉背刺吸汁液為害,導致葉片黃化甚至大面積脫落,造成的為害損失十分嚴重[2]。當前二斑葉螨的防控仍依賴化學藥劑,但高頻次、不合理使用農藥所致的害螨抗藥性問題突出,嚴重制約了二斑葉螨的高效綠色防控[3]。
阿維菌素是大環(huán)內酯類殺螨劑[4],通過刺激害螨釋放神經遞質γ-氨基丁酸,致使神經系統(tǒng)過度刺激,從而引起麻痹和死亡。該藥劑對人畜及非靶標生物安全,在農田環(huán)境中易降解,自投入市場以來便迅速成為防治二斑葉螨的主流藥劑之一。與其他殺螨劑相似,二斑葉螨對阿維菌素的抗藥性問題也日益突出。在我國及全球其他頻繁使用阿維菌素進行二斑葉螨防治的區(qū)域,均有產生不同抗性水平的田間害螨種群的相關報道[5-7]。
二斑葉螨對阿維菌素抗性機制的研究已超過20"a的歷史??剐曰虻狞c突變[8],解毒酶活性的提高[9]及抗性基因的表達量變化[10]等均被證實與二斑葉螨對阿維菌素的抗性形成機制有關,其中解毒酶介導的抗性機制研究較為廣泛。許多研究表明,細胞色素P450酶(CYP450s)[11]、谷胱甘肽-S-轉移酶(GSTs)[12-13]、尿苷二磷酸糖基轉移酶(UGTs)[14-16]等活性的顯著提高及其編碼基因的過表達對抗性形成的貢獻度較大。然而,二斑葉螨解毒酶的表達水平是否與其抗性水平相關研究較少。
為明確二斑葉螨不同阿維菌素抗性水平與解毒酶的相關性,本研究首先開展了阿維菌素對不同抗性水平的3個二斑葉螨種群的生物測定,明確阿維菌素對不同種群的活性,進一步采用致死中濃度處理后,比較不同種群二斑葉螨GSTs、UGTs酶活性和相關編碼基因的表達量變化,闡明抗性水平與解毒酶表達的相關性,為二斑葉螨的抗性治理提供科學依據(jù)。
1.1""材料
1.1.1""供試二斑葉螨""阿維菌素敏感種群(S)和抗性種群(R)為實驗室篩選種群,由西南大學植物保護學院何林教授團隊饋贈;田間種群(F)采集自海南省儋州市國家木薯種質資源圃。3個二斑葉螨種群的實驗室飼養(yǎng)條件為:溫度(26±"1)"℃,相對濕度(70±5)%,光周期14"L/10"D[17]。
1.1.2""供試藥劑""95%阿維菌素原藥購自山東金龍農資有限公司。
1.2""方法
1.2.1""二斑葉螨室內毒力測定及抗性水平分析""配制阿維菌素原藥系列濃度用于二斑葉螨敏感種群(1.00、0.75、0.50、0.15、0.05"mg/mL)、抗性種群(3500、3000、2500、2000、1500"mg/mL),田間種群(80、40、20、10、5"mg/mL)的室內毒力測定。藥劑配制溶液及對照均為4%二甲基甲酰胺水溶液[含0.1%"(V/V)"Tween-80]。采用實驗室前期建立的葉片浸漬法進行毒力測定[18],將供試藥劑小心傾倒在接有30頭二斑葉螨雌成螨的豇豆葉片上,讓葉片充分浸漬在藥液中10"s,然后用鑷子小心夾起葉片,瀝干藥液,將其置于(26±"1)℃,相對濕度(70±5)%,光周期14"L/10"D的光照生化培養(yǎng)箱中,分別在24、48"h后檢查死亡情況。用0號毛筆輕輕撥動螨體,若其足不動則判定為死亡[19-20]。每個濃度及對照需處理30頭二斑葉螨,3個生物學重復。死亡率=(死亡螨數(shù)/供試螨數(shù))×100%;校正死亡率=[(處理組死亡率–對照組死亡率)/(1–對照組死亡率)]×100%。計算3個種群害螨的致死中濃度(LC50),以敏感種群的LC50為基準,分別計算抗性種群和田間種群LC50與敏感種群LC50的比值,即抗性倍數(shù)(resistance"ratio,"RR)。抗性水平劃分標準:RR≤5.0為敏感狀態(tài),5.0lt;RR≤10.0為低水平抗性,10.0lt;RR≤100.0為中等水平抗性,RRgt;100.0為高水平抗性。
1.2.2""二斑葉螨解毒酶活性測定""以敏感、抗性、田間3個二斑葉螨種群的阿維菌素LC50進行處理,方法同毒力測定,分別于藥劑處理前(0"h),處理24"h和48"h后收集存活的二斑葉螨進行UGTs、GSTs酶活分析,每個時間點設置3個重復,每重復50頭二斑葉螨。采用1"mL"PBS緩沖液(0.01"mol/L,pH"7.4),用電動勻漿器研磨二斑葉螨樣品,并于4"℃,7500"r/min離心5"min,轉移上清至新的1.5"mL離心管中,于–20"℃保存待用。酶活性測定參照上海酶聯(lián)公司的UGTs、GSTs酶活試劑盒的方法進行。
1.2.3""二斑葉螨解毒酶基因表達量分析""二斑葉螨的藥劑處理方法參見1.2.2。選擇已報道的與阿維菌素抗性相關的二斑葉螨GSTs基因(TuGSTm09、TuGSTd10)或其近似種朱砂葉螨的UGTs基因(UGT204a2、UGT201d3)(表1),分析阿維菌素以LC50處理前后對害螨基因表達水平的影響。RNA提取參照范東哲等[21]的昆蟲組織TRIzol提取法,利用瓊脂糖凝膠電泳、超微量紫外分光光度計(Thermo)檢測其濃度純度和完整性。取1.0"mg去除gDNA的RNA進行cDNA第一條鏈的合成,參照ToloScript"ALL-in-one"RT"EasyMix"for"qPCR(TOLOBIO,中國)。
cDNA樣品經RNase-free"ddH2O稀釋5倍后作為qPCR的模板,以二斑葉螨Actin作為內參基因(表1)。qPCR反應體系的配制參照2×Q3"SYBR"qPCR"Master"Mix試劑盒(TOLOBIO,中國)。qPCR反應條件為:95"℃預變性30"s;95"℃變性10"s,60"℃下退火30"s,72"℃延伸20"s",40次循環(huán),使用LightCycler?96儀器(Roche,瑞士)程序采集擴增曲線和溶解曲線。以相同時間內敏感種群基因的表達量歸一化設置為1.0,阿維菌素處理后抗性種群、田間種群基因的表達量以敏感種群的相對倍數(shù)表示,采用2–ΔΔCT方法[22]進行qPCR結果分析,每個處理均設置3個生物學重復,每個生物學重復設置3個技術重復。
1.3""數(shù)據(jù)處理
利用Excel軟件進行數(shù)據(jù)匯總與分析,采用PoloPlus軟件計算二斑葉螨敏感種群、田間種群和抗性種群的毒力回歸方程、LC50以及其95%置信限等相關毒力參數(shù)指標;使用統(tǒng)計學軟件DPS(V9.50)的Turkey?s多重比較法分析不同種群在阿維菌素處理前后的解毒代謝酶活性及其編碼基因的表達量差異。采用Spearman法分別分析二斑葉螨酶活及基因表達與對其抗性水平的相關性。
2.1""阿維菌素對不同種群二斑葉螨的毒力測定及抗性水平分析
表2結果表明,阿維菌素對不同二斑葉螨種群的毒力水平差異較大。室內篩選的敏感種群、抗性種群以及田間種群24、48"h的LC50分別為0.10、0.09"mg/mL,2061.43、1971.55"mg/mL和7.19、6.32"mg/mL。以敏感種群為基準,計算田間種群和抗性種群的抗性倍數(shù),結果表明,田間種群的抗性倍數(shù)約為70倍,屬于中等水平抗性,抗性種群的抗性倍數(shù)超過20"000倍,屬于高水平抗性。
2.2""阿維菌素處理后不同抗性水平二斑葉螨UGTs酶活性差異分析
阿維菌素處理前后,不同抗性水平二斑葉螨的UGTs活性存在顯著差異。用藥處理前,抗性種群的UGTs酶活性顯著高于田間種群,并且這二者的酶活性也顯著高于敏感種群。此外,用藥處理24"h和48"h后,抗性種群和田間種群的UGTs酶活性較用藥前顯著提高1.58、1.42倍和1.29、1.20倍,并且仍然表現(xiàn)出抗性種群UGTs酶活顯著高于田間種群的趨勢。與之相反,敏感種群用藥處理24"h和48"h后,其UGTs酶活降低至用藥前的20.14%和33.43%(圖1)。
2.3""阿維菌素處理后不同抗性水平二斑葉螨GSTs酶活性差異分析
阿維菌素處理前后,不同抗性水平二斑葉螨的GSTs活性存在顯著差異(圖2)。用藥處理前,抗性種群的GSTs酶活性顯著高于田間種群,并且這二者的GSTs酶活也顯著高于敏感種群。此外,用藥處理24"h和48"h后,抗性種群和田間種群的GSTs酶活性較用藥前顯著提高1.61、1.56倍和1.29、1.20倍,并且仍表現(xiàn)出抗性種群GSTs酶活顯著高于田間種群的趨勢。與之相反,敏感種群用藥處理24"h和48"h后,其GSTs酶活性降低至用藥前的20.89%和32.63%。
2.4""阿維菌素處理后不同二斑葉螨種群解毒基因UGT204a2表達量差異分析
阿維菌素處理前后,不同抗性水平二斑葉螨UGT204a2表達量存在顯著差異(圖3)。用藥處理前,田間種群的UGT204a2表達量略高于敏感種群和抗性種群,分別為后二者的1.28倍和2.01倍。用藥處理24"h和48"h后,田間種群和抗性種群的UGT204a2基因表達量顯著高于敏感種群,前二者分別達到后者的2.35、3.04倍和6.62、9.69倍(Plt;0.05),表明阿維菌素處理后,UGT204a2在阿維菌素中抗、高抗的二斑葉螨種群中的表達量顯著高于敏感種群。
2.5""阿維菌素處理后不同種群UGT201d3解毒代謝基因的表達差異分析
阿維菌素處理前后,不同抗性水平二斑葉螨UGT201d3表達量存在顯著差異(圖4)。用藥處理前,田間種群的UGT201d3表達量略高于敏感種群和抗性種群,分別為后二者的1.40倍和1.63倍。用藥處理24"h和48"h后,田間種群和抗性種群的UGT201d3基因表達量顯著高于敏感種群,前二者分別達到后者的3.35、4.20倍和3.53、4.54倍(Plt;0.05),表明阿維菌素處理后,UGT201d3在阿維菌素中抗、高抗的二斑葉螨種群中的表達量顯著高于敏感種群。
2.6""阿維菌素處理后不同種群TuGSTm09解毒代謝基因的表達差異分析
阿維菌素處理前后,不同抗性水平二斑葉螨TuGSTm09表達量存在顯著差異(圖5)。用藥處理前,田間種群的TuGSTm09表達量略高于敏感種群和抗性種群,分別為后二者的2.57倍和2.72倍。用藥處理24"h和48"h后,田間種群和抗性種群的TuGSTm09基因表達量顯著高于敏感種群,前二者分別達到后者的2.61、5.58倍和5.62、9.37倍(Plt;0.05),表明阿維菌素處理后,TuGSTm09在阿維菌素中抗、高抗的二斑葉螨種群中的表達量顯著高于敏感種群。
2.7""阿維菌素處理后不同種群TuGSTd10解毒代謝基因的表達差異分析
阿維菌素處理前后,不同抗性水平二斑葉螨TuGSTd10表達量存在顯著差異(圖6)。用藥處理前,田間種群的TuGSTd10表達量略高于敏感種群和抗性種群,分別為后二者的1.81倍和7.30倍。用藥處理24"h和48"h后,田間種群和抗性種群的TuGSTd10基因表達量顯著高于敏感種群,前二者分別達到后者的2.89、6.74倍和4.93、16.30倍(Plt;0.05),表明阿維菌素處理后,TuGSTd10在阿維菌素中抗、高抗的二斑葉螨種群中的表達量顯著高于敏感種群。
2.8""解毒酶基因表達與阿維菌素不同抗性水平的相關性分析
Spearman相關性分析結果表明,阿維菌素LC50進行處理時,存活二斑葉螨的UGTs、GSTs活性均與其抗性水平呈極顯著正相關,相關系數(shù)分別為0.9094(P=0.0007)、0.9143(P=0.0006);UGTs酶的編碼基因UGT204a2、UGT201d3表達量與阿維菌素抗性水平呈正相關,相關系數(shù)分別為0.6848(P=0.1333)、0.9650(P=0.0018);GSTs酶的編碼基因TuGSTm09、TuGSTd10表達量與阿維菌素抗性水平呈顯著正相關,相關系數(shù)分別為0.8844(P=0.0193)、0.8170(P=0.0472)(表3)。
不同用藥水平下害蟲害螨的抗藥性水平差異顯著。黃保宏等[24]研究發(fā)現(xiàn),同種藥劑對不同用藥水平地區(qū)的黑緣紅瓢蟲(Chilocorus"rubidus)成蟲的毒力差異顯著,其中氰戊菊酯和氟氯氰菊酯用藥水平較低的種群的敏感性顯著高于用藥水平較高地區(qū)的種群。PU等[25]分析發(fā)現(xiàn)田間采集的小菜蛾(Plutella"xylostella)種群對阿維菌素產生了超過5000倍的抗性,將該種群用阿維菌素進行21代的連續(xù)抗性篩選后抗性倍數(shù)進一步增強到23"670倍。劉貽聰?shù)萚26]研究表明二斑葉螨北京密云種群(MY-BJ)、山東濰坊種群(WF-SD)、海南三亞種群(SY-HN)、湖南長沙種群(CS-HN)對阿維菌素產生了極高水平的抗性,與敏感種群(SS)相比,MY-BJ種群對阿維菌素的抗性達1526.75倍,WF-SD種群對阿維菌素的抗性達481.00倍,SY-HN種群對阿維菌素的抗性達315.25倍,CS-HN種群對阿維菌素的抗性達160.75倍,推測抗性水平的差異可能與不同地區(qū)的用藥水平及寄主種類有關。在阿維菌素對二斑葉螨的室內抗性篩選中,隨著篩選輪次(用藥次數(shù))的增加,其抗性水平也呈現(xiàn)顯著升高的趨勢。例如,李瑞娟等[27]研究發(fā)現(xiàn)阿維菌素對二斑葉螨敏感進行9輪的抗性篩選后,其抗性水平提高了5.8倍。在周興隆[28]的研究中,經過連續(xù)59代的抗性篩選后,二斑葉螨對阿維菌素的抗性水平提高了658.44倍。此外,隨著田間用藥水平的下降以及中斷對室內抗性種群的藥劑篩選時,害蟲對藥劑的抗性水平也表現(xiàn)出逐漸降低的趨勢[29-31]。本研究采用的二斑葉螨抗性種群經過了超過100代的抗性篩選,對阿維菌素產生了極高水平的抗性,采集的田間種群寄主來源為木薯,而在國內外實際生產中,木薯上阿維菌素及其他對害螨具有潛在交互抗性的殺螨劑的用藥水平較低,抗性代價較小,因此田間種群為中抗水平。
害螨對阿維菌素的抗性與解毒酶活性的顯著升高有關。?A?ATAY等[32]鑒定發(fā)現(xiàn)菜豆和黃瓜上采集的二斑葉螨田間種群對阿維菌素分別產生了223、404倍的抗性,細胞色素P450酶、GSTs、羧酸酯酶的活性相較敏感種群顯著提高了1.39~3.51倍,推測這些酶活的升高與其抗性形成有關。趙衛(wèi)東等[33]研究指出,對阿維菌素產生抗性的田間二斑葉螨種群體內多功能氧化酶和GSTs活性與敏感種群相比均有所增加。高萍等[34]通過比較對阿維菌素敏感的二斑葉螨種群和抗性種群的乙酰膽堿酯酶和GSTs活性發(fā)現(xiàn),抗性種群中這2個酶活性的升高導致其對阿維菌素的敏感性顯著降低。此外,UGTs的活性升高也被證實與多種害螨,例如二斑葉螨[6]、朱砂葉螨(Tetranychus"cinnabarinus)[14]、柑桔全爪螨(Panonychus"citri)[35]對阿維菌素的抗性有關。本研究也發(fā)現(xiàn)UGTs和GSTs酶活性與二斑葉螨對阿維菌素的抗性水平呈顯著正相關,并且在阿維菌素處理前,中抗的田間種群和高抗的實驗室抗性種群的酶活性均顯著高于敏感種群,而藥劑處理后,這2個酶活性在2個二斑葉螨抗性種群中進一步提高,而敏感種群中上述酶活顯著降低,表明抗性二斑葉螨能夠激活體內的解毒系統(tǒng)對阿維菌素進行代謝,而敏感種群因缺乏有效的解毒能力而致毒。
害螨對阿維菌素的抗性與解毒酶編碼基因表達量的顯著上調有關。針對抗性種群二斑葉螨中解毒酶編碼基因的研究發(fā)現(xiàn),P450[24]以及GST[13]的基因過表達導致二斑葉螨對阿維菌素的抗性升高。編碼UGT酶UGT201D3基因在抗阿維菌素朱砂葉螨中顯著上調表達,將該基因通過體外表達后,發(fā)現(xiàn)該酶蛋白能夠體外代謝阿維菌素,證實UGT201D3與阿維菌素抗性形成相關[14]。RIGA等[23]發(fā)現(xiàn)二斑葉螨P450s基因CYP392A16在抗性品系中顯著過表達,同時該基因編碼的P450酶能夠代謝阿維菌素,直接證實CYP392A16參與阿維菌素的抗性形成。楊順義[36]研究也發(fā)現(xiàn),在二斑葉螨抗阿維菌素品系中,CYP392E7、TuGSTd16和TuCCE35基因相對表達量與敏感品系相比分別顯著上調2.18、1.12、1.59倍,表明這些基因在轉錄水平的顯著上調可能與阿維菌素的抗性形成有關。LIAO等[37]在抗阿維菌素的柑橘全爪螨種群中鑒定到一個顯著上調表達的GST酶編碼基因GSTm5,將此基因沉默后能顯著增加害螨對阿維菌素的敏感性。本研究中對阿維菌素中抗的田間種群的相關解毒酶基因如UGT204a2、UGT201d3、TuGSTm09、TuGSTd10表現(xiàn)出了最高的組成型表達水平,并且敏感種群中上述解毒酶基因的組成型表達與高抗種群持平甚至更高,表現(xiàn)出解毒酶的轉錄水平和蛋白水平不一致的情況,但藥劑處理后,2個二斑葉螨抗性種群的基因表達均顯著高于敏感種群,并且基因表達水平與抗性水平也呈顯著正相關,說明抗性種群具有更強的誘導解毒酶活性的潛力。
本研究結果初步證實了解毒酶UGTs和GSTs活性及其編碼基因UGT204a2、UGT201d3、TuGSTm09、TuGSTd10表達量與二斑葉螨對阿維菌素的抗性水平呈顯著正相關,為深入挖掘二斑葉螨抗性靶標基因和研發(fā)抗性治理策略提供理論參考。
參考文獻
[1]"程立生."中國朱砂葉螨各地理種群形態(tài)變異研究[J]."熱帶作物學報,"1998,"19(1):"83-86."CHENG"L"S."Morphological"variations"of"different"geographic"populations"of"Tertanychus"cinnabarinus[J]."Chinese"Journal"of"Tropical"Crops,"1998,"19(1):"83-86."(in"Chinese)
[2]"DERMAUW"W,"WYBOUW"N,"ROMBAUTS"S,"MENTEN"B,"VONTAS"J,"GRBIC"M,"CLARK"R"M,"FEYEREISEN"R,"VAN"L"T."A"link"between"host"plant"adaptation"and"pesticide"resistance"in"the"polyphagous"spider"mite"Tetranychus"urticae[J]."Proceedings"of"the"National"Academy"of"Sciences"of"the"United"States"of"America,"2013,"110:"113-122.
[3]"李遷,"盧芙萍,"陳青,"盧輝,"徐雪蓮,"經福林,"李開綿,"葉劍秋."木薯種質對朱砂葉螨的抗性評價[J]."熱帶作物學報,"2015,"36(1):"143-151."LI"Q,"LU"F"P,"CHEN"Q,"LU"H,"XU"X"L,nbsp;JING"F"L,"LI"K"M,"YE"J"Q."Evaluation"of"cassava"germplasms"for"resistance"to"spider"mite"Tetranychus"cinnabarinus[J]."Chinese"Journal"of"Tropical"Crops,"2015,"36(1):"143-151."(in"Chinese)
[4]"CHOI"H"Y,"LIM"H"S,"PARK"K"H,"JUNHEON,"KIM"W"G."Directed"evolution"of"glycosyltransferase"for"enhanced"efficiency"of"avermectin"glucosylation[J]."Applied"Microbiology"and"Biotechnology,"2021,"105:"4599-4607.
[5]"FERREIRA"C"B"S,"ANDRADE"F"H"N,"RODRIGUES"A"R"S,"SIQUEIRA"H"A"A,"GONDIM"M"G"C."Resistance"in"field"populations"of"Tetranychus"urticae"to"acaricides"and"characterization"of"the"inheritance"of"abamectin"resistance[J]."Crop"Protection,"2015,"67:"77-83.
[6]"XUE"W,"SNOECK"S,"NJIRU"C,"INAK"E,"DERMAUW"W,"VAN"LEEUWEN"T."Geographical"distribution"and"molecular"insights"into"abamectin"and"milbemectin"cross-resistance"in"European"field"populations"of"Tetranychus"urticae[J]."Pest"Management"Science,"2020,"76(8):"2569-2581.
[7]"ZHANG"Y,"XU"D,"ZHANG"Y,"WU"Q,"XIE"W,"GUO"Z,"WANG"S."Frequencies"and"mechanisms"of"pesticide"resistance"in"Tetranychus"urticae"field"populations"in"China[J]."Insect"Science,"2022,"29(3):"827-839.
[8]"KWON"D"H,"YOON"K"S,"CLARK"J"M,"LEE"S"H."A"point"mutation"in"a"glutamate-gated"chloride"channel"confers"abamectin"resistance"in"the"two-spotted"spider"mite,"Tetranychus"urticae"Koch[J]."Insect"Molecular"Biology,"2010,"19(4):"583-591.
[9]"ADESANYA"A"W,"LAVINE"M"D,"MOURAL"T"W,"LAVINE"L"C,"ZHU"F,"WALSH"D"B."Mechanisms"and"man agement"of"acaricide"resistance"for"Tetranychus"urticae"in"agroecosystems[J]."Journal"of"Pest"Science,"2021,"94:"639-663.
[10]"XU"D,"ZHANG"Y,"ZHANG"Y,"WU"Q,"GUO"Z,"XIE"W,"ZHOU"X,"WANG"S."Transcriptome"profiling"and"functional"analysis"suggest"that"the"constitutive"overexpression"of"four"cytochrome"P450s"confers"resistance"to"abamectin"in"Tetranychus"urticae"from"China[J]."Pest"Management"Sci ence,"2021,"77(3):"1204-1213.
[11]"PAPAPOSTOLOU"K"M,"RIGA"M,"SAMANTSIDIS"G"R,"SKOUFA"E,"BALABANIDOU"V,"VAN"L"T,"VONTAS"J."Over-expression"in"cis"of"the"midgut"P450"CYP392A16"con tributes"to"abamectin"resistance"in"Tetranychus"urticae[J]."Insect"Biochemistry"and"Molecular"Biology,"2022,"142:"103709.
[12]"DANESHIAN"L,"SCHLACHTER"C,"TIMMERS"L"F"S"M,"RADFORD"T,"KAPINGIDZA"B,"DIAS"T,"LIESE"J,"SPEROTTO"R"A,"GRBIC"V,"GRBIC"M,"CHRUSZCZ"M."Delta"class"glutathione"S-transferase"(TuGSTd01)"from"the"two-spotted"spider"mite"Tetranychus"urticae"is"inhibited"by"abamectin[J]."Pesticide"Biochemistry"and"Physiology,"2021,"176:"104873.
[13]"PAVLIDI"N,"TSELIOU"V,"RIGA"M,"NAUEN"R,"VAN"L"T,"LABROU"N"E,"VONTAS"J."Functional"characterization"of"glutathione"S-transferases"associated"with"insecticide"resis tance"in"Tetranychus"urticae[J]."Pesticide"Biochemistry"and"Physiology,"2015,"121:"53-60.
[14]"WANG"M"Y,"LIU"X"Y,"SHI"L,"LIU"J"L,"SHEN"G"M,"ZHANG"P,"LU"W"C,"HE"L."Functional"analysis"of"UGT201D3"associated"with"abamectin"resistance"in"Tetranychus"cinnabarinus"(Boisduval)[J]."Insect"Science,"2020,"27(2):"276-291.
[15]"AHN"S"J,"DERMAUW"W,"WYBOUW"N,"HECKEL"D"G,"VAN"L"T."Bacterial"origin"of"a"diverse"family"of"UDP-glycosyltransferase"genes"in"the"Tetranychus"urticae"genome[J]."Insect"Biochemistry"and"Molecular"Biology,"2014,"50:"43-57.
[16]nbsp;SNOECK"S,"PAVLIDI"N,"PIPINI"D,"VONTAS"J,"DERMAUW"W,"VAN"L"T."Substrate"specificity"and"promiscuity"of"horizontally"transferred"UDP-glycosyltransferases"in"the"generalist"herbivore"Tetranychus"urticae[J]."Insect"Biochemistry"and"Molecular"Biology,"2019,"109:"116-127.
[17]"沈慧敏,"張新虎."二點葉螨對甲氰菊酯、氧樂果和四螨嗪抗藥性的選育、衰退和恢復[J]."昆蟲學報,"2002,"45(3):"341-345.SHEN"H"M,"ZHANG"X"H."Selection,"decline"and"recovery"of"Tetranychus"urticae"Koch"resistance"to"fenpropathrin,"omethoate"and"clofentezine[J]."Acta"Entomologica"Sinica,"2002,"45(3):"341-345."(in"Chinese)
[18]"LIANG"X,"CHEN"Q,"WU"C"L,"ZHAO"H"P."The"joint"toxicity"of"bifenazate"and"propargite"mixture"against"Tetranychus"urticae"Koch[J]."International"Journal"of"Acarology,"2018,"44(1):"35-40.
[19]"孟香清,"芮昌輝,"范賢林,"關宏偉."三種增效劑對甜菜夜蛾防治的增效作用[J]."農藥學學報,"2000,"2(4):"82-84.MENG"X"Q,"RUI"C"H,"FAN"X"L,"GUAN"H"W."Joint"action"of"3"synergists"with"3"insecticides"in"Spodoptera"exigua"Hübner"field"populations[J]."Chinese"Journal"of"Pesticide"Science,"2000,"2(4):"82-84."(in"Chinese)
[20]"SHEN"H"M."Resistance"and"cross-resistance"of"Tetranychus"(Acari:"Tetranychidae)"to"14"insecticides"and"acaricides[J]."Systematicand"Applied"Acarology,"1999(4):"9-14.
[21]"范東哲,"陳青,"梁曉,"伍春玲,"劉迎,"竇宏雙,"吳巖."桃蚜取食對抗、感蚜辣椒品種水楊酸、茉莉酸信號途徑的影""響[J]."熱帶作物學報,"2021,"42(10):"2972-2978.FAN"D"Z,"CHEN"Q,"LIANG"X,"WU"C"L,"LIU"Y,"DOU"H"S,"WU"Y."Myzus"persicae"feeding"effects"salicylic"acid"andnbsp;jasmonic"acid"signaling"pathways"in"aphid-resistant"and"aphid-susceptible"pepper"cultivars[J]."Chinese"Journal"of"Tropical"Crops,"2021,"42(10):"2972-2978."(in"Chinese)
[22]"LIVAK"K"J,"SCHMITTGEN"T"D."Analysis"of"relative"gene"expression"data"using"real-time"quantitative"PCR"and"the"""2"?ΔΔCT"method[J]."Methods,"2001,"25(4):"402-408.
[23]"RIGA"M,"TSAKIRELI"D,"ILIAS"A,"MOROU"E,"MYRIDAKIS"A,"STEPHANOU"E"G,"NAUEN"R,"DERMAUW"W,"VAN"L"T,"PAINE"M,"VONTAS"J."Abamectin"is"metabolized"by"CYP392A16,"a"cytochrome"P450"associated"with"high"levels"of"acaricide"resistance"in"Tetranychus"urticae[J]."Insect"Biochemistry"and"Molecular"Biology,"2014,"46:"43-53.
[24]"黃保宏,"尤強生."黑緣紅瓢蟲對6種殺蟲劑的敏感性測"定[J]."昆蟲知識,"2006(5):"648-652.HUANG"B"H,"YOU"Q"S."Evaluation"of"six"insecticides"susceptibility"in"Chilocorus"rubidus[J]."Chinese"Bulletin"of"Entomology,"2006(5):"648-652."(in"Chinese)
[25]"PU"X,"YANG"Y,"WU"S,"WU"Y."Characterisation"of"abamectin"resistance"in"a"field-evolved"multiresistant"population"of"Plutella"xylostella[J]."Pest"Management"Science:"Formerly"Pesticide"Science,"2010,"66(4):"371-378.
[26]"劉貽聰,"王玲,"張友軍,"謝文,"吳青君,"王少麗."二斑葉螨田間種群對阿維菌素的抗性及抗性相關基因表達分析[J]."昆蟲學報,"2016,"59(11):"1199-1205.LIUnbsp;Y"C,"WANG"L,"ZHANG"Y"J,"XIE"W,"WU"Q"J,"WANG"S"L."Abamectin"resistance"and"expression"of"resistance-related"genes"in"field"populations"of"Tetranychus"urticae"in"China[J]."Acta"Entomologica"Sinica,"2016,"59(11):"1199-1205."(in"Chinese)
[27]"李瑞娟,"王開運,"姜興印,"儀美芹."抗梅嶺霉素和阿維菌素二斑葉螨種群生命力和繁殖力的研究[J]."農藥學學報,"2004,"6(1):"81-84."LI"R"J,"WANG"K"Y,"JIANG"X"Y,"YI"M"Q."The"studies"on"life"vigor"and"fecundity"of"meilingmycin-and"abamectin-resistance"strain"of"Tetranychus"urticae"Koch[J]."Chinese"Journal"of"Pesticide"Science,"2004,"6(1):"81-84."(in"Chinese)
[28]"周興隆."二斑葉螨對阿維菌素,"螺螨酯及甲氰菊酯的多重抗性研究[D]."蘭州:"甘肅農業(yè)大學,"2015.ZHOU"X"L."Study"on"the"multiple"resistance"of"abamectin,"spirodiclofen"and"fenpropathrin"to"Tetranychus"urticae[D]."Lanzhou:"Gansu"Agricultural"University,"2015."(in"Chinese)
[29]"鄭明奇,"張文吉."不同抗性水平的家蠅在不同用藥方式下抗性機制的演變[J]."農藥學學報,"1999,"1(2):"36-41.ZHENG"M"Q,"ZHANG"W"J."The"evolution"of"the"mechanism"of"resistance"under"different"level"of"applieation"of"pesticides"for"house"flies"(Musca"domestica"L.)"with"different"resistant"level[J]."Chinese"Journal"of"Pesticide"Science,"1999,"1(2):"36-41."(in"Chinese)
[30]"胡珍娣,"馮夏,"包華理,"李振宇,"林慶勝,"周小毛,"尹飛,"陳煥瑜."不同小菜蛾田間種群對氟啶脲的抗性動態(tài)[J]."應用昆蟲學報,"2016,"53(2):"292-297.HU"Z"D,"FENG"X,"BAO"H"L,"LI"Z"Y,"LIN"Q"S,"ZHOU"X"M,"YIN"F,"CHEN"H"Y."Changes"in"resistance"rates"to"chlorfluazuron"in"the"diamondback"moth,"Plutella"xylostella,"in"different"fields[J]."Chinese"Journal"of"Applied"Entomology,"2016,"53(2):"292-297."(in"Chinese)
[31]"STUMPF"N,"NAUEN"R."Biochemical"markers"linked"to"abamectin"resistance"in"Tetranychus"urticae"(Acari:"Tetranychidae)[J]."Pesticide"Biochemistry"and"Physiology,"2002,"72(2):"111-121.
[32]"?A?ATAY"N"S,"MENAULT"P,"RIGA"M,"VONTAS"J,"AY"R."Identification"and"characterization"ofnbsp;abamectin"resistance"in"Tetranychus"urticae"Koch"populations"from"greenhouses"in"Turkey[J]."Crop"Protection,"2018,"112:"112-117.
[33]"趙衛(wèi)東,"王開運,"姜興印,"儀美芹."二斑葉螨對常用殺螨劑的抗藥性測定[J]."農藥學學報,"2001,"3(3):"86-88.ZHAO"W"D,"WANG"K"Y,"JIANG"X"Y,"YI"Mnbsp;Q."The"monitoring"of"resistance"of"Tetranychus"urticae"Koch"to"several"insecticides[J]."Chinese"Journal"of"Pesticide"Science,"2001,"3(3):"86-88."(in"Chinese)
[34]"高萍,"周玉書,"孟祥梅,"李忠洲,"樸靜子."抗阿維菌素的二斑葉螨解毒酶活力變化及其酯酶同工酶分析[J]."沈陽農業(yè)大學學報,"2012,"43(5):"599-602.GAO"P,"ZHOU"Y"S,"MENG"X"M,"LI"Z"Z,"PIAO"J"Z."Changes"of"detoxicant"enzymes"activities"in"resistant"population"of"Tetranychus"urticae"Koch"to"abamectin"and"esterase"isozymes"analysis[J]."Journal"of"Shenyang"Agricultural"University,"2012,"43(5):"599-602."(in"Chinese)
[35]"SHAO"B,"YU"S,"WANG"S,"LI"S,"DING"L,"LI"M,"CHENG"L,"PAN"Q,"CONG"L,"RAN"C."A"UDP-glycosyltransferase"gene"PcUGT202A9"was"associated"with"abamectin"resistance"in"Panonychus"citri"(McGregor)[J]."International"Journal"of"Biological"Macromolecules,"2024,"270:"132228.
[36]"楊順義."二斑葉螨對阿維菌素和螺蟲乙酯的抗性機理研究[D]."蘭州:"甘肅農業(yè)大學,"2014.YANG"S"Y."Study"on"resistance"mechanism"of"Tetranychus"urticae"(Koch)"to"avermectin"and"spirotetramat[D]."Lanzhou:"Gansu"Agricultural"University,"2014."(in"Chinese)
[37]"LIAO"C"Y,"XIA"W"K,"FENG"Y"C,"LI"G,"LIU"H,"DOU"W,"WANG"J"J."Characterization"and"functional"analysis"of"a"novel"glutathione"S-transferase"gene"potentially"associated"with"the"abamectin"resistance"in"Panonychus"citri"(McGregor)[J]."Pesticide"Biochemistry"and"Physiology,"2016,"132:"72-80.