摘要: 采用微分方程定性理論和動力系統(tǒng)分支方法研究廣義(2+1)維Hirota-Maccari系統(tǒng)的動力學及混沌行為,獲得對應行波系統(tǒng)的分支相圖,得到系統(tǒng)的周期波解和孤立波解的精確表達式。通過數(shù)值模擬研究不同參數(shù)條件下的行波解波形及其性質(zhì)的變化,對該系統(tǒng)增加一個周期擾動項之后,利用Matlab軟件得到擾動系統(tǒng)在一些特殊參數(shù)條件下的2D相圖、3D相圖和龐加萊截面。結果表明:該系統(tǒng)在特定參數(shù)條件下的運動是準周期的。
關鍵詞: 廣義(2+1)維Hirota-Maccari系統(tǒng);行波解;孤立波解;混沌行為
中圖分類號: O 175.29文獻標志碼: A 文章編號: 1000-5013(2025)01-0113-08
Dynamics and Chaotic Behavior of Generalized (2+1)-Dimensional Hirota-Maccari System
ZHANG Dongmei,LIANG Jianli
(School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China)
Abstract: The dynamics and chaotic behavior of generalized (2+1)-dimensional Hirota-Maccari system are studied by the qualitative theory of differential equations and the bifurcation method of dynamical systems,the bifurcations of phase portraits of the corresponding traveling wave system are obtained,and the exact expressions of the periodic wave solutions and solitary wave solutions of the system are obtained. Numerical simulation is carried out to study the wave forms and properties of traveling wave solutions under different parameter conditions. After adding periodic perturbation term to the system,2D phase portrait,3D phase portrait and Poincare section of the perturbed system are obtained by Matlab software under the special parameter conditions. The results show that the motion of the system is quasi-periodic under specific parameter conditions.
Keywords: generalized (2+1)-dimensional Hirota-Maccari system;traveling wave solution;solitary wave solution;chaotic behavior
1 預備知識
光孤子可以作為長距離光纖通信和光數(shù)據(jù)傳輸?shù)男畔⑤d體。單模光纖中兩個最重要的物理因素是群速度色散和自相位調(diào)制。 光孤子消除了由于群速度色散引起的脈沖展寬,自相位調(diào)制促進了脈沖壓縮。群速度色散和自相位調(diào)制之間的精確平衡是實現(xiàn)光纖中光孤子的基礎。光孤子可以用非線性偏微分方程(NLPDE)進行描述,這激發(fā)了學者們對NLPDE的研究興趣。廣義(2+1)維Hirota-Maccari系統(tǒng)[1]為
iut+uxy+iuxxx+uv-i|u|2ux=0,3vx+(u2)y=0。(1)
式(1)中:x,y為空間變量;t為時間變量;u(x,y,t)為復函數(shù);v(x,y,t)為實函數(shù)。
系統(tǒng)(1)是一種特殊的非線性薛定諤方程,用于模擬局部空間中孤立波的運動,即在光纖通信、等離子體物理、非線性光學、流體力學等領域中具有有限頻率密度擾動的大振幅低混合波的相互作用[2],也解釋了飛秒孤子脈沖在單模光纖中傳播的動力學行為。許多學者用不同的方法得到系統(tǒng)(1)的解析解和孤子解,例如,1/G″-expansion法[3]、new Kudryashov法和tanh-coth法[4]、Jacobi elliptic function expansion法[5]、KP約化法[6]、改進tanφ(ξ)/2-expansion法[7]、Sinh-Gordon法[8]及其他處理NLPDE的方法[9-16]。
本文采用微分方程定性理論和動力系統(tǒng)分支方法,分析系統(tǒng)(1)的行波解和動力學行及其擾動系統(tǒng)的混沌行為。
2 定性分析與分支相圖
3 系統(tǒng)(1)的行波解及其精確表達式
4 系統(tǒng)(1)的擾動系統(tǒng)的混沌行為
5 結束語
采用平面動力系統(tǒng)的方法研究廣義(2+1)維Hirota-Maccari方程的分支與行波解,并分析它對應的周期擾動系統(tǒng),得出該擾動系統(tǒng)在特定參數(shù)條件下的2D相圖、3D相圖和龐加萊截面,可得該擾動系統(tǒng)在特定參數(shù)條件下的運動是準周期的。此外,對得到的行波解進行數(shù)值模擬,研究不同參數(shù)條件下的行波解波形及其性質(zhì)的變化,并解釋相關的物理性質(zhì)。
參考文獻:
[1] YU Xin,GAO Yitian,SUN Zhiyuan,et al.N-soliton solutions for the (2+1)-dimensional Hirota-Maccari equation in fluids,plasmas and optical fibers[J].Journal of Mathematical Analysis and Applications,2011,378(2):519-527.DOI:10.1016/j.jmaa.2010.12.019.
[2] MACCARI A.A generalized Hirota equation in 2+1 dimensions[J].Journal of Mathematical Physics,1998,39(12):6547-6551.DOI:10.1063/1.532664.
[3] YOKUS A,BASKONUS H M.Dynamics of traveling wave solutions arising in fiber optic communication of some nonlinear models[J].Soft Computing,2022,26(24):13605-13614.DOI:10.1007/S00500-022-07320-4.
[4] OZDEMIR N,SECER A,OZISIK M,et al.Twoanalytical schemes for the optical soliton solution of the (2+1) Hirota-Maccari system observed in single-mode fibers[J].Universe,2022,8(11):12.DOI:10.3390/universe8110584.
[5] TARLA S,ALI K K,YILMAZER R,et al.Investigation of the dynamical behavior of the Hirota-Maccari system in single-mode fibers[J].Optical and Quantum Electronics,2022,54(10):061005.DOI:10.1007/S11082-022-04021-Y.
[6] XIA Pei,ZHANG Yi,ZHANG Heyan,et al.Some novel dynamical behaviors of localized solitary waves for the Hirota-Maccari system[J].Nonlinear Dynamics,2022,108(1):533-541.DOI:10.1007/s11071-022-07208-w.
[7] RAZA N,JHANGEER A,REZAZADEH H,et al.Explicit solutions of the (2+1)-dimensional Hirota-Maccari system arising in nonlinear optics[J].International Journal of Modern Physics B,2019,33(30):1950360(1-21).DOI:10.1142/S0217979219503600.
[8] YEL G,CATTANI C,BASKONUS H M,et al.On thecomplex simulations with dark-bright to the Hirota-Maccari system[J].Journal of Computational and Nonlinear Dynamics,2021,16(6):613.DOI:10.1115/1.4050677.
[9] DEMIRAY S T,PANDIR Y,BULUT H.All exact travelling wave solutions of Hirota equation and Hirota-Maccari system[J].Optik,2016,127(4):1848-1859.DOI:10.1016/j.ijleo.2015.10.235.
[10] AMNA I,NAVEED A,UMAR K,et al.Optical solutions of Schr?dinger equation using extended Sinh-Gordon equation expansion method[J].Frontiers in Physics,2020,8:73.DOI:10.3389/fphy.2020.00073.
[11] ALOTAIBI H.Travelingwave solutions to the nonlinear evolution equation using expansion method and addendum to Kudryashov′s method[J].Symmetry-Basel,2021,13(11):2126.DOI:10.3390/sym13112126.
[12] CHEN Yong,YAN Zhenya.The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations[J].Chaos Solitons amp; Fractals,2006,29(4):948-964.DOI:10.1016/j.chaos.2005.08.071.
[13] VINITA,RAY S S.Optimal system of Lie subalgebra for symmetry reductions,group invariant solutions and exact solutions to the coupled Hirota-Maccari system driving pulse propagation in optical fiber[J].International Journal of Modern Physics B,2022,36(17):2250093.DOI:10.1142/S021797922250093X.
[14] SULAIMAN A T,YEL G,BULUT H.M-fractional solitons and periodic wave solutions to the Hirota-Maccari system[J].Modern Physics Letters B,2019,33(5):1950052.DOI:10.1142/S0217984919500520.
[15] NESLIHAN O,HANDENUR E,AYDIN S,et al.Optical solitons and other solutions to the Hirota-Maccari system with conformable,M-truncated and beta derivatives[J].Modern Physics Letters B,2022,36(11):2150625.DOI:10.1142/S0217984921506259.
[16] GHANBARI B.Abundant soliton solutions for the Hirota-Maccari equation via the generalized exponential rational function method[J].Modern Physics Letters B,2019,33(9):19501069.DOI:10.1142/S0217984919501069.
[17] PERKO L.Differential equations and dynamical systems[M].3rd ed.New York:Springer,2001.
[18] 劉秉正.非線性動力學與混沌基礎[M].長春:東北師范大學出版社,1994.
(責任編輯:錢筠 英文審校:黃心中)