[摘要]目的:探究促紅細(xì)胞生成素(Erythropoietin,EPO)對大鼠牙髓損傷后修復(fù)性牙本質(zhì)形成的作用。方法:分離并鑒定人牙髓細(xì)胞(Dental pulp cells,DPCs),將DPCs分為對照(control)組、腫瘤壞死因子-α(Tumor necrosis factor-α,TNF-α)組、TNF-α+EPO組;使用CCK-8法、Transwell法、堿性磷酸酶染色和茜素紅染色法檢測細(xì)胞增殖、遷移、成骨分化能力。將30只大鼠隨機(jī)分為磷酸緩沖鹽溶液(Phosphate buffered saline,PBS)組、氫氧化鈣[Ca(OH)2]組和EPO組,對大鼠上頜第一磨牙進(jìn)行牙髓暴露,分別以含PBS、Ca(OH)2和EPO的膠原蛋白海綿蓋髓;術(shù)后1個月處死大鼠,micro-CT和蘇木精-伊紅染色觀察修復(fù)性牙本質(zhì)形成;免疫組化染色和Western blot檢測牙本質(zhì)基質(zhì)蛋白-1(Dentin matrix protein-1,DMP-1)、牙本質(zhì)涎磷蛋白(Dentin sialophosphoprotein,DSPP)、Runt相關(guān)轉(zhuǎn)錄因子2(Runt related transcription factor 2,Runx2)、Osterix(Osx)水平。結(jié)果:與control組相比,TNF-α組DPCs增殖、遷移、成骨分化能力降低(P<0.05);與TNF-α組相比,TNF-α+EPO組DPCs增殖、遷移、成骨分化能力提高(P<0.05)。與PBS組、Ca(OH)2組相比,EPO組露髓處形成連續(xù)完整的鈣化橋及大量修復(fù)性牙本質(zhì),DMP-1、DSPP、Runx2、Osx水平升高(P<0.05)。結(jié)論:EPO通過提高DMP-1、DSPP、Runx2、Osx水平促進(jìn)牙髓損傷大鼠修復(fù)性牙本質(zhì)形成。
[關(guān)鍵詞]促紅細(xì)胞生成素;牙髓損傷修復(fù);修復(fù)性牙本質(zhì)形成;牙本質(zhì)基質(zhì)蛋白-1;牙本質(zhì)涎磷蛋白
[中圖分類號]R781" " [文獻(xiàn)標(biāo)志碼]A" " [文章編號]1008-6455(2024)07-0065-06
Study on Promoting Effect of Erythropoietin on Restorative Dentin Formation after Dental Pulp Injury in Rats
WANG Li1, ZHONG Sulan2, LANG Mocuo1, ZHANG Yilin1
( 1. Department of Stomatology, the First People's Hospital of Shuangliu District, Chengdu 610200, Sichuan, China;
2. Department of Stomatology, Stomatological Hospital of Southern Medical University, Guangzhou 510280, Guangdong, China )
Abstract: Objective" To explore the effect of erythropoietin (EPO) on reparative dentin formation in rats after dental pulp injury. Methods" Human dental pulp cells (DPCs) was isolated and identified, and DPCs was divided into control group, tumor necrosis factor-α (TNF-α) group, TNF-α+EPO group. CCK-8 method, Transwell method, ALP staining, and alizarin red staining were used to detect cell proliferation, migration, and osteogenic differentiation. 30 rats were randomly divided into PBS group, Ca(OH)2 group, and EPO group. The pulp of the maxillary first molar of the rats was exposed and covered with collagen sponge containing PBS, Ca(OH)2, and EPO respectively. The rats were killed 1 month after surgery, Micro-CT and HE staining was used to observe restorative dentin formation. Immunohistochemical staining and Western blot were used to detect dentin matrix protein-1 (DMP-1), dentin sialophosphoprotein (DSPP), Runt related transcription factor 2 (Runx2) and Osx levels. Results" Compared with control group, the proliferation, migration, and osteogenic differentiation abilities of DPCs in TNF-α group were decreased (P<0.05). Compared with TNF-α group, the proliferation, migration, and osteogenic differentiation abilities of DPCs in TNF-α+EPO group were increased (P<0.05). Compared with PBS group and Ca(OH)2 group, continuous and complete calcified bridges and a large amount of restorative dentin were formed at the pulp exposure point in EPO group, and DMP-1, DSPP, Runx2, and Osx levels were increased (P<0.05). Conclusion" EPO promotes reparative dentin formation in rats with pulp injury by increasing DMP-1, DSPP, Runx2, and Osx levels.
Key words: erythropoietin; repair of dental pulp injury; reparative dentin formation; dentin matrix protein-1; dentin sialophosphoprotein
牙髓組織位于牙髓腔內(nèi),外形與牙體形態(tài)相似。當(dāng)牙髓受到外界刺激(如外傷、化學(xué)藥物、放射性損傷等)后,牙髓細(xì)胞可分化為成牙本質(zhì)細(xì)胞,形成修復(fù)性牙本質(zhì),從而保護(hù)牙髓[1]。修復(fù)性牙本質(zhì)的形成主要包括兩個階段:①牙髓細(xì)胞向成牙本質(zhì)細(xì)胞分化;②成牙本質(zhì)細(xì)胞分化、成熟,并形成牙本質(zhì)樣結(jié)構(gòu)[2]。完整的牙本質(zhì)能夠為牙髓提供相對封閉的環(huán)境,使牙髓免受外界刺激;而牙髓能夠為成牙本質(zhì)細(xì)胞提供氧氣,保持牙本質(zhì)的活力和礦化程度[3]。因此牙髓活力和牙本質(zhì)再生能力在牙髓暴露中尤為關(guān)鍵。促紅細(xì)胞生成素(EPO)是一種臨床常見的促造血因子,除造血功能外,EPO還具有抗炎、抗氧化應(yīng)激、促成骨分化等功能[4]。研究發(fā)現(xiàn)炎癥牙髓組織中EPO及EPO受體表達(dá)升高,提示EPO參與牙髓炎癥[5]。另有研究證實EPO能夠促進(jìn)牙髓細(xì)胞的增殖、遷移和成骨分化[6-7]。EPO能夠降低磨牙牙髓血運(yùn)重建術(shù)大鼠牙根組織的炎癥水平,促進(jìn)牙髓修復(fù)和血管再生[8]。然而EPO對大鼠牙髓損傷后修復(fù)性牙本質(zhì)形成的影響研究較少。鑒于此,本研究以EPO對大鼠牙髓損傷后修復(fù)性牙本質(zhì)形成的影響作為創(chuàng)新點進(jìn)行研究,以期為牙髓損傷修復(fù)提供實驗依據(jù)。
1" 材料和方法
1.1 實驗動物:選擇30只8周齡體質(zhì)量200~240 g的SPF級雄性SD大鼠,購買于北京百奧賽圖基因生物技術(shù)有限公司[SCXK(京)2020-0007]。于室溫23℃~25℃、標(biāo)準(zhǔn)濕度55%~60%、光照/黑夜各12 h環(huán)境中飼養(yǎng),飲水飲食正常,1周后實驗。
1.2 主要試劑和儀器:Ⅰ型膠原酶、DMEM培養(yǎng)基(上海源培生物科技股份有限公司);CD34、CD44、CD45、CD90抗體(英國Abcam公司);茜素紅、堿性磷酸酶染色試劑盒、Runx2、Osterix(Osx)抗體(武漢菲恩生物科技有限公司);DMP-1、DSPP抗體(上海碧云天生物技術(shù)有限公司)。蛋白電泳儀、熒光定量PCR儀(美國Bio-rad公司);熒光顯微鏡(日本Nikon公司);Micro-CT顯微掃描儀(德國Siemens公司)。
1.3 方法
1.3.1 牙髓細(xì)胞的培養(yǎng)與鑒定:經(jīng)患者知情同意,收集筆者醫(yī)院口腔科患者因正畸拔出的前磨牙(健康、完整、無齲損),劈開牙齒取出牙髓,剪成體積為1 mm×1 mm×1 mm的組織塊,經(jīng)Ⅰ型膠原酶消化后,收集細(xì)胞并常規(guī)培養(yǎng),每隔48 h換液一次,取第3代DPCs進(jìn)行實驗。經(jīng)流式細(xì)胞儀檢測,DPCs中CD44和CD90(間充質(zhì)干細(xì)胞表面標(biāo)志物)呈陽性表達(dá),CD34和CD45(造血干細(xì)胞表面標(biāo)記物)呈陰性表達(dá)。
1.3.2 DPCs損傷模型制作與分組:將DPCs分為對照(control)組,TNF-α組和TNF-α+EPO組,TNF-α組、TNF-α+EPO組所用培養(yǎng)基中分別加TNF-α(50 ng/ml)和TNF-α(50 ng/ml)+EPO(20 U/ml);control組常規(guī)培養(yǎng)。
1.3.3 CCK-8法檢測DPCs增殖:將各組DPCs接種于96孔板,加入含對應(yīng)藥物的培養(yǎng)基常規(guī)培養(yǎng)24 h、48 h、72 h。將原培養(yǎng)基更換成含有10% CCK-8溶液的單純DMEM培養(yǎng)基。并置于37℃下孵育1 h。檢測樣品在450 nm處的吸光度。
1.3.4 Transwell法檢測DPCs遷移:Transwell小室上室加入無血清且含對應(yīng)藥物的培養(yǎng)基培養(yǎng)的各組DPCs,下室加入含有10%胎牛血清且不含藥物的DMEM培養(yǎng)基,并置于37℃下孵育24 h。經(jīng)甲醛固定,結(jié)晶紫染色后,顯微鏡(200×)下對穿膜細(xì)胞進(jìn)行觀察和統(tǒng)計。
1.3.5 堿性磷酸酶染色和茜素紅染色法檢測DPCs成骨能力:將各組DPCs用含對應(yīng)藥物的成骨誘導(dǎo)液誘導(dǎo)分化,2周后進(jìn)行堿性磷酸酶染色和茜素紅染色,顯微鏡(200×)下觀察染色效果。
1.3.6 牙髓損傷模型制作、分組和標(biāo)本制備:30只大鼠隨機(jī)分為PBS組、氫氧化鈣[Ca(OH)2]組和EPO組,每組各10只。大鼠麻醉后,仰臥位固定并消毒口腔,使用005號圓鋼鉆在大鼠上頜第一磨牙的近中表面進(jìn)行牙髓暴露,當(dāng)牙本質(zhì)透粉時停止操作,探針穿通牙髓,經(jīng)生理鹽水清洗、無菌棉球止血、干燥窩洞后,按分組進(jìn)行蓋髓:即PBS組、Ca(OH)2組、EPO組露髓處分別放置含PBS、Ca(OH)2糊劑、EPO(10 U)的膠原蛋白海綿。最后用玻璃離子充填窩洞。1個月后處死大鼠,經(jīng)micro-CT掃描和重建實驗后,制備包含上頜第一磨牙的骨組織塊。各組骨組織塊用甲醛固定,EDTA脫鈣液脫鈣(每隔2 d更換新液),當(dāng)探針能輕易刺破骨骼時表示脫鈣完成。隨后經(jīng)脫水、透明、包埋后,制作連續(xù)切片。
1.3.7 micro-CT掃描和重建:造模1個月后處死大鼠,將包含上頜第一磨牙的骨組織塊置于4%多聚甲醛中固定,使用micro-CT對骨塊進(jìn)行掃描和重建,計算骨體積分?jǐn)?shù)(BV/TV)。
1.3.8 蘇木精-伊紅染色觀察修復(fù)性牙本質(zhì)形成:取上述切片,經(jīng)脫蠟、乙醇梯度脫水、蘇木精-伊紅染色、透明、封片后,顯微鏡(40×)下觀察修復(fù)性牙本質(zhì)的形成情況。
1.3.9 免疫組化染色檢測DMP-1、DSPP、Runx2、Osx水平:取上述切片,經(jīng)脫蠟、脫水、高溫抗原修復(fù)、血清封閉、加入DMP-1、DSPP、Runx2、Osx一抗(1∶400)4℃孵育過夜,二抗37℃孵育,DAB顯色液、蘇木精復(fù)染、脫水、透明封片,顯微鏡(200×)下觀察染色情況并計算陽性灰度值。
1.3.10 Western blot檢測DMP-1、DSPP、Runx2、Osx水平:取各組骨組織,提取并測定蛋白濃度,經(jīng)電泳、轉(zhuǎn)PVDF膜后,脫脂奶粉中封閉2 h,分別加入DMP-1、DSPP、Runx2、Osx一抗(1∶2 000)4℃過夜,加入二抗(1∶5 000)4℃孵育2 h,ECL顯色劑顯色,凝膠成像儀拍照,分析各組蛋白相對GAPDH的表達(dá)量。
1.4 統(tǒng)計學(xué)分析:用SPSS 16.0進(jìn)行統(tǒng)計分析。計量資料用平均數(shù)±標(biāo)準(zhǔn)差表示,多組間比較用單因素方差分析(ANOVA),兩兩比較用LSD-t檢驗。P<0.05表示差異具有統(tǒng)計學(xué)意義。
2" 結(jié)果
2.1 EPO對DPCs增殖、遷移和成骨能力的影響:CCK-8實驗、Transwell實驗、堿性磷酸酶染色、茜素紅染色結(jié)果顯示,與control組相比,TNF-α組DPCs增殖、遷移和成骨能力明顯降低(P<0.05);與TNF-α組相比,TNF-α+EPO組DPCs增殖、遷移和成骨能力明顯提高(P<0.05)。見圖1。
2.2 EPO對修復(fù)性牙本質(zhì)形成的影響:micro-CT和骨形態(tài)學(xué)指標(biāo)結(jié)果顯示,與PBS組、Ca(OH)2組相比,EPO組牙髓腔內(nèi)鈣化組織、BV/TV明顯增加(P<0.05)。HE染色結(jié)果顯示,PBS組牙髓腔內(nèi)可見牙髓呈變性壞死征兆,基本無修復(fù)性牙本質(zhì)形成;Ca(OH)2組可見牙髓鈣化壞死,露髓處有少量不連續(xù)的鈣化橋形成;與PBS組、Ca(OH)2組相比,EPO組露髓處可見牙齦組織活性較好,并有連續(xù)完整的鈣化橋形成,牙髓室壁下方有大量修復(fù)性牙本質(zhì)形成。見圖2。
2.3 EPO對DMP-1、DSPP、Runx2、Osx水平的影響:免疫組化染色和Western blot結(jié)果顯示,PBS組和Ca(OH)2組DMP-1、DSPP、Runx2、Osx少量表達(dá);與PBS組、Ca(OH)2組相比,EPO組DMP-1、DSPP、Runx2、Osx表達(dá)水平明顯升高(P<0.05)。見圖3。
3" 討論
外傷和機(jī)械刺激能夠造成牙髓暴露,目前常采用直接蓋髓法進(jìn)行保髓治療,即在牙齦損傷處覆蓋保護(hù)性材料,促使牙髓創(chuàng)面愈合并形成連續(xù)的牙本質(zhì)橋,最終形成修復(fù)性牙本質(zhì)[9]。當(dāng)牙髓組織進(jìn)行自身修復(fù)時,一方面牙髓細(xì)胞通過遷移到牙髓損傷處,分化為成牙本質(zhì)細(xì)胞,形成修復(fù)性牙本質(zhì),從而抵抗外界刺激;另一方面牙髓中的細(xì)胞基質(zhì)蛋白如基質(zhì)金屬蛋白酶、DMP-1、DSPP等能夠調(diào)節(jié)自身蛋白水平參與牙髓修復(fù)[10]。EPO是一種由腎臟產(chǎn)生的糖蛋白,具有促進(jìn)紅細(xì)胞生成、神經(jīng)再生及成骨分化的作用[11]。研究發(fā)現(xiàn)EPO不僅能夠誘導(dǎo)牙周膜干細(xì)胞的增殖和成骨向分化[12];還能促進(jìn)牙髓干細(xì)胞的增殖及向成牙、成骨、成血管向分化[13]。另外EPO能夠降低牙髓暴露大鼠牙髓組織的炎癥水平并促進(jìn)成骨基因表達(dá)[14]。與上述研究一致,本研究顯示,在TNF-α刺激的DPCs細(xì)胞損傷模型中,EPO能夠促進(jìn)DPCs的增殖、遷移和成骨分化能力。另外本研究首次將EPO作為蓋髓劑對大鼠進(jìn)行牙髓損傷治療,并以PBS、Ca(OH)2作為對照,發(fā)現(xiàn)PBS組、Ca(OH)2組大鼠牙髓基本未形成修復(fù)性牙本質(zhì),且牙髓出現(xiàn)壞死現(xiàn)象;而EPO能夠保護(hù)牙齦組織,并促進(jìn)露髓處形成連續(xù)完整的鈣化橋及大量修復(fù)性牙本質(zhì)。
成牙本質(zhì)細(xì)胞通過分泌細(xì)胞外基質(zhì)蛋白,促進(jìn)修復(fù)性牙本質(zhì)形成是修復(fù)牙髓損傷的關(guān)鍵[15-16]。DMP-1、DSPP是礦化組織中的非膠原蛋白組分,也是成牙本質(zhì)細(xì)胞的特異性蛋白,主要表達(dá)于成熟的成牙本質(zhì)細(xì)胞中;Runx2、Osx能夠促進(jìn)牙髓細(xì)胞分化為成牙本質(zhì)細(xì)胞,進(jìn)而促進(jìn)修復(fù)性牙本質(zhì)的形成[17]。研究發(fā)現(xiàn)MMP-3通過增加牙髓暴露大鼠蓋髓處DMP-1水平促進(jìn)修復(fù)性牙本質(zhì)形成[18]。Matrilin-4通過促進(jìn)大鼠露髓處DSPP水平增強(qiáng)成牙本質(zhì)細(xì)胞的活性,并促進(jìn)其修復(fù)性牙本質(zhì)形成[19]。攜帶DMP-1質(zhì)粒的碳酸鈣納米顆粒/牙本質(zhì)基質(zhì)支架(DMP-1/NPs/HTFD)能夠提高牙髓干細(xì)胞的活力,其通過升高DSPP、DMP-1、Runx2水平促進(jìn)大鼠牙本質(zhì)-牙髓界面的修復(fù)性牙本質(zhì)形成[20]。本研究中EPO能夠促進(jìn)牙本質(zhì)細(xì)胞中DMP-1、DSPP、Runx2、Osx水平,從而促進(jìn)修復(fù)牙本質(zhì)形成。
綜上所述,EPO通過提高DMP-1、DSPP、Runx2、Osx水平促進(jìn)牙髓損傷大鼠修復(fù)性牙本質(zhì)形成。
[參考文獻(xiàn)]
[1]Wei X L, Luo L, Chen M Z,et al. Temporospatial expression of neuropeptide substance p in dental pulp stem cells during odontoblastic differentiation in vitro and reparative dentinogenesis in vivo[J]. J Endod, 2023,49(3):276-285.
[2]Jin C, Zhao S, Xie H. Forskolin enhanced the osteogenic differentiation of human dental pulp stem cells in vitro and in vivo[J]. J Dent Sci, 2023,18(1):120-128.
[3]Luong M, Sadr A, Chan D. Dentin discoloration and pulpal ion concentrations following silver diamine fluoride and potassium iodide treatment[J]. Oper Dent, 2022,47(6):640-647.
[4]Sergio C M, Rolando C A. Erythropoietin regulates signaling pathways associated with neuroprotective events[J]. Exp Brain Res,
2022,240(5):1303-1315.
[5]Gong Q, Jiang H, Wei X, et al. Expression of erythropoietin and erythropoietin receptor in human dental pulp[J]. J Endod, 2010,36(12):1972-1977.
[6]曾俊瑜,龔啟梅,凌均棨.促紅細(xì)胞生成素對人牙髓細(xì)胞遷移能力的作用[J].中華口腔醫(yī)學(xué)研究雜志(電子版),2016,10(3):166-171.
[7]韓偉.促紅細(xì)胞生成素對人牙髓細(xì)胞增殖和成骨分化的影響[J].實用口腔醫(yī)學(xué)雜志,2016,32(4):485-489.
[8]王芹,李立恒,王鐘華,等.促紅細(xì)胞生成素對大鼠磨牙牙髓血運(yùn)重建術(shù)后SDF-1和VEGF表達(dá)水平及疼痛的影響[J].河北醫(yī)學(xué),2022,28(2):224-229.
[9]Tzanetakis G N, Tsiouma O, Mougiou E, et al. Factors related to pulp survival after complicated crown fracture following vital pulp therapy: a systematic review and Meta-analysis[J]. J Endod, 2022,48(4):457-478.e4.
[10]Pedrosa M D S, Vilela H D S, Rahhal J G, et al. Exposure to lipopolysaccharide and calcium silicate-based materials affects the behavior of dental pulp cells[J]. Braz Dent J, 2022,33(5):9-17.
[11]Wu Y W, Comstock B A, Gonzalez F F, et al. Trial of erythropoietin for hypoxic-ischemic encephalopathy in newborns[J]. N Engl J Med, 2022,387(2):148-159.
[12]Zheng D H, Han Z Q, Wang X X, et al. Erythropoietin attenuates high glucose-induced oxidative stress and inhibition of osteogenic differentiation in periodontal ligament stem cell (PDLSCs)[J]. Chem Biol Interact, 2019,305:40-47.
[13]唐莉,禹怡君,苗雷英.EPO對人牙髓干細(xì)胞增殖及分化的影響[J].現(xiàn)代口腔醫(yī)學(xué)雜志,2020,34(4):224-226.
[14]Papic M, Zivanovic S, Vucicevic T, et al. Pulpal expression of erythropoietin and erythropoietin receptor after direct pulp capping in rat[J]. Eur J Oral Sci, 2022,130(5):e12888.
[15]Mack Wilson J, Bell C, Queck K, et al. A Review of Dentinogenesis Imperfecta and Primary Dentin Disorders in Dogs[J]. J Vet Dent,2022,39(4):376-390.
[16]謝娜,陸磊,姬小婷,等.人乳牙牙髓干細(xì)胞膜片在組織工程牙髓再生中的實驗研究[J].中國美容醫(yī)學(xué),2022,31(12):116-120.
[17]Nutchoey O, Intarak N, Theerapanon T, et al. Phenotypic features of dentinogenesis imperfecta associated with osteogenesis imperfecta and COL1A2 mutations[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2021,131(6):694-701.
[18]李雯,尹碩,張娟,等.MMP-3對大鼠牙髓損傷后修復(fù)性牙本質(zhì)形成的促進(jìn)作用及意義[J].牙體牙髓牙周病學(xué)雜志,2015,25(8):453-458.
[19]謝金芳,孟琳,高華麗,等.Matrilin-4對大鼠牙髓損傷后修復(fù)性牙本質(zhì)形成的促進(jìn)作用[J].吉林大學(xué)學(xué)報(醫(yī)學(xué)版),2020,46(1):73-77,209.
[20]Machla F, Sokolova V, Platania V, et al. Tissue engineering at the dentin-pulp interface using human treated dentin scaffolds conditioned with DMP1 or BMP2 plasmid DNA-carrying calcium phosphate nanoparticles[J]. Acta Biomater, 2023,159:156-172.
[收稿日期]2023-04-04
本文引用格式:汪莉,鐘素蘭,朗么磋,等.促紅細(xì)胞生成素對大鼠牙髓損傷后修復(fù)性牙本質(zhì)形成的促進(jìn)作用研究[J].中國美容醫(yī)學(xué),2024,33(7):65-70.