摘" " 要:【目的】冰雹災(zāi)害頻發(fā),嚴(yán)重威脅獼猴桃安全生產(chǎn),建設(shè)防雹網(wǎng)成為生產(chǎn)上防災(zāi)減災(zāi)的有效手段之一,探究防雹網(wǎng)對(duì)東紅獼猴桃生育期特點(diǎn)及葉片病害的影響,為防雹網(wǎng)建設(shè)及推廣提供理論參考?!痉椒ā恳再F州省六盤(pán)水市水城區(qū)蟠龍鎮(zhèn)沙坡村6年生的東紅獼猴桃園為供試果園,在同一地塊,以覆蓋白色防雹網(wǎng)為試驗(yàn)處理,以露天栽培為對(duì)照,2020—2021年連續(xù)2 a(年)測(cè)定防雹網(wǎng)對(duì)獼猴桃果園溫度、光照度、物候期、芽間距、萌芽率、主花數(shù)、單花率、產(chǎn)量及葉片病害發(fā)生率的影響?!窘Y(jié)果】與對(duì)照相比,防雹網(wǎng)內(nèi)獼猴桃果園溫度在2—4月一直高于對(duì)照,最高可達(dá)0.8 ℃,6—9月一直低于對(duì)照,最低可達(dá)2.1 ℃。生育期較對(duì)照均推遲,其中萌芽期較對(duì)照推遲3~5 d,開(kāi)花期推遲4~5 d,成熟期推遲7~8 d,落葉期推遲18~23 d。2020年,防雹網(wǎng)內(nèi)獼猴桃40~80 cm、>80~120 cm、>120 cm長(zhǎng)度的結(jié)果母枝上結(jié)果枝主花數(shù)分別較對(duì)照顯著或極顯著降低23.96%、26.98%、31.24%,結(jié)果枝上單花率分別較對(duì)照顯著提高95.39%、103.31%、105.76%;2021年,防雹網(wǎng)內(nèi)獼猴桃40~80 cm、>80~120 cm、>120 cm長(zhǎng)度的結(jié)果母枝上結(jié)果枝主花數(shù)分別較對(duì)照顯著降低24.52%、22.43%、28.37%,結(jié)果枝上單花率分別較對(duì)照顯著提高99.49%、92.64%、95.16%。葉片褐斑病病株率、病葉率、病情指數(shù)連續(xù)兩年平均分別比對(duì)照低17.55%、21.95%、4.13%和17.33%、21.15%、7.04%;灰斑病的病株率、病葉率、病情指數(shù)兩年均分別比對(duì)照低6.73%、20.73%、6.02%和9.04%、25.66%、8.63%;黑斑病的病株率、病葉率、病情指數(shù)兩年均分別比對(duì)照低6.11%、7.96%、2.24%。對(duì)芽間距、萌芽率及產(chǎn)量沒(méi)有顯著影響?!窘Y(jié)論】防雹網(wǎng)影響獼猴桃花芽分化,能促進(jìn)花朵集中開(kāi)放及提高單花率,降低獼猴桃葉片病害發(fā)病率,但不影響獼猴桃整體產(chǎn)量和品質(zhì),對(duì)獼猴桃生產(chǎn)具有促進(jìn)作用。
關(guān)鍵詞: 獼猴桃;防雹網(wǎng);生長(zhǎng)指標(biāo);單花率;葉片病害
中圖分類號(hào):S663.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)11-2358-10
Effect of anti-hail nets on the growth and leaf diseases of Donghong kiwifruit during growing period
WANG Zhiwei1, SONG Fubing1, ZHOU Yuping1, LI Xiuya1, HU Qiuling1*, ZHONG Caihong2*
(1Liupanshui Academy of Agricultural Sciences, Liupanshui 553000, Guizhou, China; 2Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China)
Abstract: 【Objective】 China has the largest planting area and output in the world for kiwifruit which is vulnerable to extreme climate. Hail is considered as one of the most serious natural disasters,which is characterized by the rapid and sudden onset, strong unpredictability and significantly destructive power. In recent years, frequent hail disasters have seriously threatened the safe production of kiwifruit. Anti-hail nets have become one of the effective measures for disaster prevention and protecting against reduction in production. Therefore, analyzing the effect of anti-hail nets in kiwifruit orchards is of great significance to prevent from hail disasters, develop new materials and optimize structural design, guide the fine management and elevate fruit quality and efficiency of kiwifruit industry. 【Methods】 6-year-old Donghong kiwifruit vines were used as test materials at Shapo village, Panlong town, Shuicheng District, Liupanshui City from 2020 to 2021. On the same plot, white anti-hail nets were covered and open-air culture was used as the control. GSP-6 automatic temperature recorder was used to measure the orchard temperature, and the AS823 illuminance meter to determine the orchard light intensity. The bud break stage, flowering stage, maturity stage and leaf fall stage of kiwifruit were analysed. Additionally, the mean internode distance, bud germination rate on mother canes and the main flower number, single flower rate, orchard yield, fruit quality and leaf disease on bearing canes were measured on different length of bearing canes for 40-80 cm, 80-120 cm and above 120 cm. The temperature, bud break stage, flowering stage, maturity stage, leaf fall stage, mean internode distance, bud germination rate, main flower number, single flower rate and leaf disease were compared between inside and outside of anti-hail nets. 【Results】 Compared with the control, the temperature of the kiwifruit orchard in the anti-hail nets was always higher than the control from February to April, up to 0.8 ℃, and was lower than the control from June to September, up to 2.1 ℃. The germination stage was delayed 3-5 days, the flowering stage was delayed 4-5 days, the maturity stage was delayed 7-8 days, and the defoliation stage was delayed 18-23 days. In 2020, the number of main flowers on bearing canes significantly decreased by 23.96%, 26.98% and 31.24%, and the single flower rate on bearing canes significantly increased by 95.39%, 103.31% and 105.76%. In 2021, the number of main flowers on different length bearing canes significantly decreased by 24.52%, 22.43% and 28.37%, and the single flower rate on bearing canes significantly increased by 99.49%, 92.64% and 95.16%. Brown leaf spot disease rate, diseased leaf rate and disease index were 17.55%, 21.95% and 4.13%, and 17.33%, 21.15% and 7.04%, respectively, being lower than the control for two years. The rate of diseased plants, diseased leaf rate and disease index of gray spot were 6.73%, 20.73% and 6.02%, and 9.04%, 25.66% and 8.63%, respectively, being lower than the control. The rate of diseased plants, diseased leaf and disease index of black spot were 6.11%, 7.96% and 2.24%, respectively, being lower than that of the control. There were no significant effects on mean internode distance and germination rate. 【Conclusion】 Anti-hail nets can reduce the number of main flowers, promote the centralized opening of flowers and improve the single flower rate, reduce the incidence of leaf disease, but not affect the yield and quality of kiwifruit, and has a promoting effect on kiwifruit production. Anti-Hail nets is one of the effective measures to solve the contradiction between hailstorm disaster and airspace control, and it is expected to be popularized and applied in the production of high efficiency cash crops like high-quality fruits and vegetables.
Key words: Kiwifruit; Anti-hail nets; Growth index; Single flower rate; Leaf disease
獼猴桃是多年生藤本植物,是20世紀(jì)野生果樹(shù)人工馴化栽培最有成就的四大果樹(shù)之一[1],具有很高的營(yíng)養(yǎng)價(jià)值,對(duì)保持人體健康具有重要作用[2]。中國(guó)是獼猴桃屬植物的原產(chǎn)地,面積和產(chǎn)量均已位居世界第一[3],在全球獼猴桃產(chǎn)業(yè)中占據(jù)不容忽視的地位,并且對(duì)未來(lái)產(chǎn)業(yè)發(fā)展、國(guó)際貿(mào)易、科學(xué)研究等方面發(fā)揮重要作用[1]。貴州省獼猴桃種植面積已高達(dá)4.5萬(wàn)hm2,全國(guó)排名第三[4],其中六盤(pán)水紅心獼猴桃種植面積達(dá)1.3萬(wàn)余hm2,生產(chǎn)出的紅心獼猴桃產(chǎn)品對(duì)穩(wěn)定全國(guó)市場(chǎng)供應(yīng)起到了不可替代的作用。
冰雹是農(nóng)業(yè)生產(chǎn)中的一種破壞性極大的氣象災(zāi)害,能在極短時(shí)間里給農(nóng)業(yè)生產(chǎn)造成不可逆的傷害[5-7],是最嚴(yán)重的自然災(zāi)害之一[8-9],我國(guó)每年遭受冰雹災(zāi)害面積達(dá)243萬(wàn)hm2,造成的直接經(jīng)濟(jì)損失300多億元[10]。六盤(pán)水地理環(huán)境獨(dú)特,立體氣候明顯,每年3—6月是獼猴桃的開(kāi)花坐果期,也是冰雹頻發(fā)的季節(jié)。2019—2024年,六盤(pán)水遭遇18次冰雹災(zāi)害,累計(jì)造成0.2萬(wàn)余hm2獼猴桃果園受災(zāi),解決冰雹災(zāi)害已成為獼猴桃生產(chǎn)中的一項(xiàng)重要研究課題。防雹網(wǎng)作為一種有效的防雹設(shè)施,在持續(xù)穩(wěn)定防雹的同時(shí),還會(huì)對(duì)作物生長(zhǎng)的小氣候、植株生長(zhǎng)發(fā)育及病蟲(chóng)害等方面產(chǎn)生一定的影響[4],已經(jīng)在蘋(píng)果[11-13]、煙草[14]、番茄[15]、梨[16]等作物上得到廣泛應(yīng)用,并且取得了不少成績(jī)。Bosco等[12-13]研究防雹網(wǎng)對(duì)蘋(píng)果的影響時(shí)發(fā)現(xiàn):防雹網(wǎng)能降低太陽(yáng)輻射,有效地調(diào)節(jié)紫外光、近紅外光和光照輻射,根據(jù)防雹網(wǎng)材質(zhì)的不同,果園漫輻射能夠增加17%~170%,防雹網(wǎng)還能夠避免蘋(píng)果果面灼傷,從而提高果實(shí)品質(zhì)[17-18];袁蓮蓮等[14]研究表明:防雹網(wǎng)對(duì)煙蚜防效明顯,可有效減輕煙蚜傳播病毒病的發(fā)生程度;蘇秀敏等[15]認(rèn)為防雹網(wǎng)可以影響防雹網(wǎng)內(nèi)的微環(huán)境,使番茄植株更加粗壯,番茄的產(chǎn)量、品質(zhì)提高;徐福利等[16]發(fā)現(xiàn):防雹網(wǎng)可以改善梨園小氣候,緩解土壤溫度的變化幅度。防雹網(wǎng)對(duì)獼猴桃生長(zhǎng)發(fā)育的影響也有研究,但主要集中在海沃德等國(guó)外主栽品種上,Basile等[19-20]研究結(jié)果表明:白色防雹網(wǎng)對(duì)獼猴桃營(yíng)養(yǎng)生長(zhǎng)影響不大,但能促進(jìn)獼猴桃干物質(zhì)的積累,提高可溶性固形物含量;覆蓋珍珠色、黃色和灰色防雹網(wǎng)大幅降低單株產(chǎn)量,潰瘍病發(fā)生率略微下降,但并不影響獼猴桃果實(shí)品質(zhì)[21]。然而,我國(guó)在防雹網(wǎng)對(duì)獼猴桃生長(zhǎng)的影響方面研究起步較晚,尤其是防雹網(wǎng)對(duì)我國(guó)自主產(chǎn)權(quán)主栽的獼猴桃品種的研究較少,雖然已經(jīng)有人開(kāi)展不同顏色防雹網(wǎng)對(duì)獼猴桃生長(zhǎng)發(fā)育及果實(shí)產(chǎn)量、品質(zhì)的影響研究,但目前白色防雹網(wǎng)依然是我國(guó)用于作物防雹的首選。
筆者在本研究中以6年生東紅獼猴桃果園為試驗(yàn)材料,以覆蓋白色防雹網(wǎng)為試驗(yàn)處理,以露天栽培為對(duì)照,連續(xù)2 a(年)研究其對(duì)獼猴桃物候期、萌芽率、結(jié)果枝平均主花數(shù)、單花率及病害發(fā)生率的影響,旨在探明防雹網(wǎng)對(duì)東紅獼猴桃生長(zhǎng)的影響,以期為獼猴桃防雹網(wǎng)的應(yīng)用與推廣提供理論依據(jù)。
1 材料和方法
1.1 試驗(yàn)地點(diǎn)及供試品種
2020—2021年,連續(xù)2 a在貴州六盤(pán)水市水城區(qū)蟠龍鎮(zhèn)沙坡村晏廷銀家庭農(nóng)場(chǎng)獼猴桃基地進(jìn)行田間試驗(yàn)。供試果園海拔為1218 m,土壤類型為黃棕壤,土壤pH 5.5,全氮含量(w,后同)1470 mg·kg-1,有機(jī)質(zhì)含量2954 mg·kg-1,堿解氮含量1012 mg·kg-1,有效磷含量4.79 mg·kg-1,有效鉀含量3.64 mg·kg-1。砧木為2年生美味獼猴桃實(shí)生苗,嫁接獼猴桃品種為東紅,樹(shù)齡為6 a,株行距均為2 m×3 m,樹(shù)勢(shì)較為整齊一致。
1.2 防雹網(wǎng)處理
以2018年搭建防雹網(wǎng)的獼猴桃基地為試驗(yàn)處理,以同一果園未搭建防雹網(wǎng)的基地為對(duì)照。支撐立柱為鍍鋅鋼管,主管高6 m(地下0.7 m,地上5.3 m),管徑75 cm;分管高5 m(地下0.7 m,地上4.3 m),管徑60 cm,以鋼絲網(wǎng)拉成架面后,以尼龍網(wǎng)覆蓋,網(wǎng)孔密度為:0.8 cm×0.8 cm,顏色為白色。
1.3 測(cè)定項(xiàng)目
1.3.1 防雹網(wǎng)內(nèi)外溫度及光照度測(cè)定 連續(xù)2 a的2—9月,在處理和對(duì)照獼猴桃架面上0.5 m處用Gsp-6(徐州數(shù)智電子科技有限公司生產(chǎn))自動(dòng)溫度記錄儀測(cè)定果園溫度,每30 min自動(dòng)記錄1次,處理和對(duì)照各3次重復(fù),以當(dāng)月日平均溫度的平均值作為當(dāng)月果園溫度(Mean monthly temperature);并分別在每年2—9月上、中、下旬各選擇1個(gè)晴天,并于當(dāng)天14:00用?,擜S823照度計(jì)在處理和對(duì)照獼猴桃架面上方0.5 m處測(cè)定果園光照度,處理和對(duì)照各5次重復(fù),然后以每月測(cè)定的15次數(shù)據(jù)的平均值作為當(dāng)月的光照度(Mean monthly light intensity)。
1.3.2 物候期 萌芽期:整株有5%的芽鱗片裂開(kāi)的時(shí)間,即為萌芽期;始花期:有5%的頂端主花開(kāi)放為始花期;盛花期:有50%的主花開(kāi)放為盛花期;尾花期:85%的主花已全部開(kāi)放為尾花期;成熟期:果實(shí)干物質(zhì)含量≥17.5%、可溶性固形物含量≥7%為成熟期;落葉期:每個(gè)枝條上有50%的葉片脫落為落葉期。
1.3.3 芽間距、萌芽率、主花數(shù)、單花率 在處理和對(duì)照的獼猴桃萌芽后,各選取9株長(zhǎng)勢(shì)基本一致的獼猴桃樹(shù),不進(jìn)行抹芽、打頂?shù)忍幚?,并將其進(jìn)行編號(hào)掛牌,每3株為1次重復(fù),共3次重復(fù)。待獼猴桃落葉后,用游標(biāo)卡尺找到各枝條頂端5 mm處,并在此處進(jìn)行修剪,用皮尺測(cè)量各枝條基部至頂端5 mm處的長(zhǎng)度,并將枝條按照長(zhǎng)度分為3類(40~80 cm、>80~120 cm、>120 cm)。在萌芽前,每次重復(fù)每株按照枝條類型選擇3個(gè)枝條,統(tǒng)計(jì)各個(gè)枝條上的芽數(shù);在萌芽期,統(tǒng)計(jì)每個(gè)枝條的萌芽數(shù);在開(kāi)花期,統(tǒng)計(jì)每個(gè)枝條結(jié)果枝平均主花(頂端花)蕾數(shù)(以下簡(jiǎn)稱:主花數(shù))和單花蕾數(shù)(只有主花沒(méi)有側(cè)花,以下簡(jiǎn)稱:?jiǎn)位〝?shù))。
芽間距/cm=∑[枝條總長(zhǎng)度/(枝條總芽數(shù)-1)]/枝條總數(shù);
萌芽率/%=∑(枝條萌芽數(shù)/枝條總芽數(shù))/枝條總數(shù)×100;
主花數(shù)=∑(結(jié)果母枝總主花數(shù)/結(jié)果枝數(shù))/結(jié)果母枝總數(shù);
單花數(shù)=∑(結(jié)果母枝總單花數(shù)/結(jié)果枝數(shù))/結(jié)果母枝總數(shù);
單花率/%=單花數(shù)/主花數(shù)×100。
1.3.4 褐斑病、灰斑病及黑斑病病害發(fā)生率 觀察統(tǒng)計(jì)防雹網(wǎng)內(nèi)外獼猴桃葉片上褐斑病、灰斑病及黑斑病發(fā)病率。處理和對(duì)照每株選擇5個(gè)枝條,每個(gè)枝條選10枚葉片,每3株為1次重復(fù),共3次重復(fù)。參照《農(nóng)藥田間藥效試驗(yàn)準(zhǔn)則(二)》分級(jí)標(biāo)準(zhǔn),將獼猴桃褐斑病、灰斑病及黑斑病病害程度分為0~5級(jí)(表1)。
病株率/%=病株數(shù)/調(diào)查總株數(shù)×100;
病葉率/%=病葉數(shù)/調(diào)查總?cè)~數(shù)×100;
病情指數(shù)=∑(各級(jí)病葉數(shù)×各級(jí)代表值)/(調(diào)查總?cè)~數(shù)×最高級(jí)代表值)×100。
1.3.5 獼猴桃果實(shí)產(chǎn)量測(cè)定 隨機(jī)選取30筐未取果袋的獼猴桃,按照六盤(pán)水涼都獼猴桃產(chǎn)業(yè)股份有限公司企業(yè)標(biāo)準(zhǔn)《涼都彌你紅獼猴桃果品分級(jí)規(guī)范》,商品果(≥70 g)、特級(jí)果(110~150 g)、一級(jí)果(90~109 g)、二級(jí)果(70~89 g)比例,每個(gè)處理10筐,3次重復(fù)。
1.4 數(shù)據(jù)處理與分析
利用 Excel 2003 進(jìn)行數(shù)據(jù)處理和制作圖表,使用 SPSS17.0 軟件對(duì)數(shù)據(jù)進(jìn)行差異顯著性分析。
2 結(jié)果與分析
2.1 防雹網(wǎng)對(duì)獼猴桃果園架面上層溫度及光照度的影響
表2顯示,在防雹網(wǎng)覆蓋下獼猴桃果園網(wǎng)內(nèi)外溫差呈現(xiàn)“降-升-降”的趨勢(shì),并且環(huán)境溫度越低或越高,網(wǎng)內(nèi)外溫差越大。當(dāng)環(huán)境溫度較低時(shí),防雹網(wǎng)內(nèi)溫度較網(wǎng)外可提高0.1~0.8 ℃,當(dāng)環(huán)境溫度較高時(shí),防雹網(wǎng)內(nèi)溫度較網(wǎng)外低0.8~2.1 ℃。兩年間,獼猴桃果園溫度最高均為8月,并且網(wǎng)內(nèi)外溫差達(dá)到顯著水平(2020年達(dá)2.1 ℃,2021年達(dá)1.9 ℃),防雹網(wǎng)降低了獼猴桃果園溫度,有效減少了獼猴桃在高溫下的日灼,對(duì)提高獼猴桃的品質(zhì)有很大幫助。在防雹網(wǎng)的影響下,兩年間,從2月份到9月份,網(wǎng)內(nèi)光照度一直低于網(wǎng)外,但是差異不顯著,防雹網(wǎng)內(nèi)外光照度差呈現(xiàn)先升高再降低的趨勢(shì)。
2.2 防雹網(wǎng)對(duì)獼猴桃生育期的影響
表3顯示,防雹網(wǎng)內(nèi)外獼猴桃的生育期相對(duì)穩(wěn)定,萌芽期在3月上旬,開(kāi)花期在3月下旬至4月上旬,成熟期在8月中下旬,網(wǎng)內(nèi)獼猴桃落葉期在11月下旬至12月上旬,網(wǎng)外的在11月上旬。網(wǎng)內(nèi)獼猴桃的萌芽期、始花期、成熟期及落葉期較對(duì)照(防雹網(wǎng)外)的均推遲,花期相比對(duì)照集中。不同年份間,網(wǎng)內(nèi)獼猴桃萌芽期較對(duì)照晚3~5 d;花期縮短5~8 d;成熟期晚7~8 d;落葉期晚18~23 d。表明防雹網(wǎng)可推遲獼猴桃的生育期,縮短花期時(shí)間,促進(jìn)花朵集中開(kāi)放。
2.3 防雹網(wǎng)對(duì)獼猴桃芽間距、萌芽率、結(jié)果枝平均主花數(shù)及單花率的影響
由表4可知,防雹網(wǎng)內(nèi)獼猴桃的芽間距、萌芽率略高于對(duì)照(防雹網(wǎng)外),但未達(dá)到顯著水平;結(jié)果枝上的主花數(shù)極顯著低于對(duì)照,單花率極顯著高于對(duì)照。枝條上的芽間距和萌芽率與枝條長(zhǎng)度呈正比,相同處理下枝條長(zhǎng)度對(duì)結(jié)果枝上的主花數(shù)和單花率沒(méi)有顯著影響。從主花數(shù)量來(lái)看:2020年,防雹網(wǎng)內(nèi)獼猴桃40~80 cm、>80~120 cm、>120 cm的結(jié)果枝上的平均主花數(shù)分別為5.87枚、5.52枚、5.15枚,較對(duì)照7.72枚、7.56枚、7.49枚分別顯著(極顯著)降低23.96%、26.98%、31.24%;2021年防雹網(wǎng)內(nèi)獼猴桃40~80 cm、>80~120 cm、>120 cm的結(jié)果枝上的平均主花數(shù)分別為5.91枚、5.95枚、5.53枚,較對(duì)照7.83枚、7.67枚、7.72枚分別顯著降低24.52%、22.43%、28.37%。從單花率來(lái)看:防雹網(wǎng)內(nèi)獼猴桃40~80 cm、>80~120 cm、>120 cm的結(jié)果枝上的平均單花率分別為73.35%、74.27%、74.34%,較對(duì)照37.54%、36.53%、36.13%分別極顯著升高95.39%、103.31%、105.76%;2021年防雹網(wǎng)內(nèi)獼猴桃40~80 cm、>80~120 cm、>120 cm的結(jié)果枝上的平均單花率分別為74.15%、75.38%、75.04%,較對(duì)照37.17%、39.13%、38.45%分別極顯著升高99.49%、92.64%、95.16%。表明防雹網(wǎng)可極顯著降低結(jié)果枝的主花數(shù),極顯著提高結(jié)果枝單花率。
2.4 防雹網(wǎng)對(duì)獼猴桃產(chǎn)量及果品分級(jí)的影響
由表5可知,兩年間,防雹網(wǎng)內(nèi)獼猴桃的平均產(chǎn)量、商品果率及一級(jí)果率分別為2 124.93 kg·666.7 m-2、97%、82.94%,較對(duì)照(2 026.51 kg·666.7 m-2、95.56%、80.01%)分別高4.86%、1.51%、3.66%;平均特級(jí)果率為11.65%,較對(duì)照12.5%低6.8%。2020年防雹網(wǎng)內(nèi)獼猴桃二級(jí)果率為3.31%,較對(duì)照4.13%顯著降低19.85%;2021年防雹網(wǎng)內(nèi)獼猴桃二級(jí)果率為1.51%,較對(duì)照1.97%極顯著降低23.35%。表明防雹網(wǎng)對(duì)獼猴桃產(chǎn)量、商品果率、特級(jí)果率及一級(jí)果率沒(méi)有顯著影響,但可顯著降低二級(jí)果率。
2.5 防雹網(wǎng)對(duì)獼猴桃葉片病害的影響
褐斑病、灰斑病及黑斑病在供試獼猴桃果園均有發(fā)生(表6),并且褐斑病發(fā)生情況較其他兩種病害嚴(yán)重。與對(duì)照相比,防雹網(wǎng)內(nèi)獼猴桃褐斑病、灰斑病及黑斑病的病株率、病葉率及病情指數(shù)顯著或極顯著降低。兩年間,供試果園獼猴桃褐斑病、灰斑病及黑斑病發(fā)生程度均呈下降趨勢(shì),其中:褐斑病病株率、病葉率、病情指數(shù)連續(xù)兩年均分別比對(duì)照低17.55、21.95百分點(diǎn)和4.13,17.33、21.15百分點(diǎn)和7.04;灰斑病的病株率、病葉率、病情指數(shù)兩年均分別比對(duì)照低6.73、20.73百分點(diǎn)和6.02,9.04、25.66百分點(diǎn)和8.63;黑斑病的病株率、病葉率、病情指數(shù)兩年平均分別比對(duì)照低6.11、7.96百分點(diǎn)和2.24。表明防雹網(wǎng)可以明顯降低獼猴桃果園褐斑病、灰斑病及黑斑病的發(fā)生程度。
3 討 論
3.1 防雹網(wǎng)對(duì)溫度、光照及獼猴桃物候期的影響
溫度和光照是植物調(diào)控生長(zhǎng)與發(fā)育的重要環(huán)境信號(hào)[22],植物有一系列溫度受體和光受體,并通過(guò)這些受體感知和傳遞外界溫度和光照變化,調(diào)控植物生長(zhǎng)發(fā)育進(jìn)程從而影響植物生育期[23-24]。防雹網(wǎng)不僅能有效抵御農(nóng)作物免受冰雹災(zāi)害,它還能影響作物生長(zhǎng)環(huán)境的溫度和光照度等從而影響作物生長(zhǎng)的小氣候。蘇秀敏等[15]在研究番茄時(shí)發(fā)現(xiàn):防雹網(wǎng)對(duì)番茄園溫度和光照都有影響,在溫度低時(shí),防雹網(wǎng)內(nèi)溫度增高,有利于番茄的生長(zhǎng);在溫度高時(shí),防雹網(wǎng)內(nèi)溫度降低,有效避免了番茄高溫日灼,對(duì)提高番茄的產(chǎn)量和品質(zhì)有很大幫助。白崗栓等[25]研究表明:晴天防雹網(wǎng)內(nèi)早晚氣溫高于網(wǎng)外,午后略低于網(wǎng)外,日平均氣溫高于網(wǎng)外;晴天防雹網(wǎng)內(nèi)光照度極顯著低于網(wǎng)外,陰天與網(wǎng)外無(wú)明顯差異。黃濤[26]認(rèn)為,冬季提高果園溫度能打破獼猴桃休眠,促進(jìn)獼猴桃物候期提前。本試驗(yàn)在防雹網(wǎng)覆蓋下,網(wǎng)內(nèi)果園溫度在2—4月一直高于對(duì)照,最高可達(dá)0.8 ℃;6—9月一直低于對(duì)照,最低可達(dá)2.1 ℃;而網(wǎng)內(nèi)光照度一直低于網(wǎng)外,這與蘇秀敏等[15]及白崗栓等[25]的研究結(jié)果類似。從物候期來(lái)看,本試驗(yàn)防雹網(wǎng)內(nèi)獼猴桃萌芽期、成熟期及落葉期較網(wǎng)外推遲,花期較網(wǎng)外縮短,這與黃濤[26]的研究結(jié)果相反??赡苁且?yàn)楂J猴桃的生育期是受溫度和光照雙重影響,并且存在一個(gè)溫度“調(diào)控閾值”和一個(gè)光照“調(diào)控閾值”,當(dāng)溫度達(dá)到而光照未達(dá)到這個(gè)“調(diào)控閾值”時(shí),溫度對(duì)植物的生育期起主導(dǎo)作用;當(dāng)溫度未達(dá)到而光照達(dá)到這個(gè)“調(diào)控閾值”時(shí),光照起主導(dǎo)作用;當(dāng)兩者均未達(dá)到“調(diào)控閾值”時(shí),可能是最接近“調(diào)控閾值”的那種因素起主導(dǎo)作用;當(dāng)溫度和光照都超達(dá)到“調(diào)控閾值”時(shí),二者一起對(duì)植株起調(diào)控作用。六盤(pán)水早春溫度低、光照較弱,防雹網(wǎng)雖然能提高果園溫度、降低光照度,但是總體溫度沒(méi)有達(dá)到調(diào)控獼猴桃生育期的“調(diào)控閾值”,而光照度與光照“調(diào)控閾值”接近,此時(shí)光照對(duì)獼猴桃萌芽起主導(dǎo)作用,所以網(wǎng)外獼猴桃萌芽較早。而在開(kāi)花期,防雹網(wǎng)內(nèi)溫度較高,光照雖然增強(qiáng),但依然沒(méi)有達(dá)到“調(diào)控閾值”,溫度已經(jīng)達(dá)到或者更接近溫度的“調(diào)控閾值”,此時(shí)溫度對(duì)獼猴桃生長(zhǎng)的影響大于光照的影響,所以網(wǎng)內(nèi)獼猴桃在光照度較低的條件下花期較網(wǎng)外明顯縮短,這與Blázquez等[27]在擬南芥上的研究結(jié)果類似。至于網(wǎng)內(nèi)獼猴桃的成熟期及落葉期推遲,這可能是網(wǎng)外獼猴桃葉片感病早衰,從而造成樹(shù)體營(yíng)養(yǎng)不足而促使果實(shí)提前成熟。然而,是否真的存在調(diào)控獼猴桃生育期的溫度和光照度“調(diào)控閾值”及這個(gè)閾值具體值是多少,還需進(jìn)一步研究。但從生產(chǎn)角度看,防雹網(wǎng)在預(yù)防冰雹的同時(shí),能促進(jìn)獼猴桃集中開(kāi)花,便于人工輔助授粉,在節(jié)省勞動(dòng)力同時(shí)還能節(jié)約花粉用量,極大程度上提高了授粉效率。
3.2 防雹網(wǎng)對(duì)獼猴桃花芽分化的影響
植物花芽分化包括生理分化和形態(tài)分化,是一個(gè)十分復(fù)雜的形態(tài)建成過(guò)程[28]。花芽分化是開(kāi)花多少和質(zhì)量好壞的基礎(chǔ),時(shí)刻受外界環(huán)境的影響,如溫度、光照、水分、礦質(zhì)元素等[29-30]。在本研究中,除溫度和光照外其他非生物因子基本相同,溫度和光照可能是影響本試驗(yàn)獼猴桃花芽分化的主要因素。前人研究溫度對(duì)植物開(kāi)花的影響表明:有些植物是需要經(jīng)過(guò)一段時(shí)間的低溫才能開(kāi)花,如黑麥草、石竹、紫羅蘭、花園菊等[30];有些植物在經(jīng)過(guò)低溫后,可以促進(jìn)開(kāi)花并提高花朵質(zhì)量,如百合、郁金香[31]。也有研究發(fā)現(xiàn),光照也是影響植物開(kāi)花的決定因素之一,光周期誘導(dǎo)可促進(jìn)開(kāi)花基因的表達(dá)和降解開(kāi)花因子,并抑制開(kāi)花因子的形成,如當(dāng)自然光照度不夠時(shí)唐菖蒲花芽大部分全部敗育,不能進(jìn)一步分化[32]。本試驗(yàn)發(fā)現(xiàn):在防雹網(wǎng)覆蓋下,連續(xù)兩年網(wǎng)內(nèi)獼猴桃結(jié)果枝上的主花數(shù)顯著或極顯著低于對(duì)照,單花率極顯著高于對(duì)照。有兩種原因:一是防雹網(wǎng)內(nèi)獼猴桃生理分化形成花芽原基時(shí),網(wǎng)內(nèi)光照不足或光質(zhì)下降,主蕾和側(cè)蕾花芽原基形成均受阻,但側(cè)蕾花芽原基受影響較主花芽原基大,導(dǎo)致網(wǎng)內(nèi)獼猴桃花芽原基分化減少,因此防雹網(wǎng)內(nèi)獼猴桃主花和側(cè)花均減少;二是防雹網(wǎng)內(nèi)獼猴桃花芽生理分化形成花芽原基時(shí)能正常進(jìn)行,但在萌芽現(xiàn)蕾前,網(wǎng)內(nèi)溫度過(guò)高導(dǎo)致獼猴桃冷積溫不足,導(dǎo)致花芽在形態(tài)分化時(shí)受阻,并且側(cè)花芽原基受影響較大,少部分花芽原基分化成了葉芽,大部分側(cè)花芽原基退化,所以花量減少及側(cè)花芽退化。目前這只是猜測(cè),具體是溫度還是光照造成了獼猴桃主花減少和側(cè)花退化,還需要進(jìn)一步研究。從測(cè)產(chǎn)結(jié)果來(lái)看,防雹網(wǎng)內(nèi)外果園產(chǎn)量并無(wú)顯著差異,主花減少及單花率升高,可以減少疏花疏果環(huán)節(jié)的用工,有利于降低生產(chǎn)成本。
3.3 防雹網(wǎng)對(duì)獼猴桃葉片病害的影響
搭建防雹網(wǎng)可以改善果園的微環(huán)境,從而影響樹(shù)體抗病能力。袁蓮蓮等[14]研究發(fā)現(xiàn):防雹網(wǎng)可有效降低煙草馬鈴薯Y病毒和黃瓜花葉病毒??;在有防雹網(wǎng)的覆蓋下,蘋(píng)果樹(shù)的病害嚴(yán)重度最大值顯著低于無(wú)覆蓋的蘋(píng)果樹(shù)[33];栗進(jìn)朝等[34]研究表明:避雨栽培可降低葡萄霜霉病發(fā)生率及病情指數(shù)。本試驗(yàn)研究發(fā)現(xiàn):防雹網(wǎng)可以有效降低獼猴桃果園褐斑病、灰斑病及黑斑病發(fā)生率。這可能是防雹網(wǎng)改善了果園內(nèi)的小氣候,適宜的生長(zhǎng)環(huán)境提高了獼猴桃植株葉片的抗病性;也可能是在防雹網(wǎng)的覆蓋下,減少了夏季高溫強(qiáng)光對(duì)獼猴桃葉片的損傷,從而提高了葉片的抗病能力;還可能是防雹網(wǎng)在一定程度上阻礙了網(wǎng)內(nèi)外雨水及空氣的交流,減少了病菌傳播,從而降低了獼猴桃葉片病害發(fā)生率。獼猴桃葉片抗性增強(qiáng),有效防止了葉片早衰脫落,避免造成獼猴桃果實(shí)因?yàn)槿狈I(yíng)養(yǎng)而提前成熟,這也可能是防雹網(wǎng)內(nèi)獼猴桃成熟期及落葉期較網(wǎng)外推遲的原因之一。
3.4 防雹網(wǎng)效益分析及應(yīng)用前景
搭建防雹網(wǎng)是有效防控冰雹災(zāi)害的手段之一,已經(jīng)在蘋(píng)果、葡萄及考煙生產(chǎn)上廣泛應(yīng)用。劉佩等[35]研究表明:在蘋(píng)果果園建設(shè)平面式防雹網(wǎng)每666.7 m2成本為3 860.4元,產(chǎn)投比為22∶1;劉俊等[36]研究認(rèn)為:在葡萄園建設(shè)防雹網(wǎng)成本為4215元·666.7 m-2,10年內(nèi)遇到1次冰雹即可將成本全部收回,而且葡萄單品價(jià)格越高,防雹網(wǎng)的經(jīng)濟(jì)價(jià)值越明顯;王震東[37]等分析了防雹網(wǎng)對(duì)烤煙種植效益的影響:煙田架設(shè)防雹網(wǎng)扣除成本后每666.7 m2收入增加800元。在六盤(pán)水的生產(chǎn)實(shí)踐表明:第一次建設(shè)防雹網(wǎng)每666.7 m2鋼材設(shè)施投入約為4000元,雹網(wǎng)800~1000元,以20年為一個(gè)周期,每666.7 m2防雹網(wǎng)物資投入約為7400~8000元,折合每年投入200元·666.7 m-2。近6年六盤(pán)水冰雹年均3次,獼猴桃平均666.7 m2產(chǎn)值為12 000元·666.7 m-2,防雹網(wǎng)產(chǎn)投比為180∶1。建設(shè)防雹網(wǎng)的主要制約因素是首次建設(shè)成本高,但防雹網(wǎng)鋼架結(jié)構(gòu)一般可用15~20年,雹網(wǎng)一般可用5年,一次投入可多年使用。隨著冰雹災(zāi)害的加劇及市場(chǎng)對(duì)農(nóng)產(chǎn)品質(zhì)量要求的進(jìn)一步提高,防雹網(wǎng)是破解雹災(zāi)與空域管控矛盾的有效措施之一,將有望在優(yōu)質(zhì)水果、蔬菜、烤煙等高效經(jīng)濟(jì)作物的生產(chǎn)中推廣應(yīng)用。
4 結(jié) 論
防雹網(wǎng)對(duì)獼猴桃生產(chǎn)具有積極的促進(jìn)作用,一方面能縮短獼猴桃花期,促進(jìn)花朵集中開(kāi)放,有利于人工輔助授粉,提高人工授粉及花粉使用效率;另一方面能減少獼猴桃主花數(shù)量,提高單花率,可減少疏花疏果人工投入,降低生產(chǎn)成本;還能顯著降低獼猴桃葉片褐斑病、灰斑病及黑斑病發(fā)生率,有效防止了葉片早衰導(dǎo)致的果實(shí)非正常早熟,是防控冰雹災(zāi)害的最直接、最有效的措施之一,有望在冰雹重災(zāi)區(qū)推廣。
參考文獻(xiàn)References:
[1] 方金豹,鐘彩虹. 新中國(guó)果樹(shù)科學(xué)研究70年:獼猴桃[J]. 果樹(shù)學(xué)報(bào),2019,36(10):1352-1359.
FANG Jinbao,ZHONG Caihong. Fruit scientific research in new China in the past 70 years:Kiwifruit[J]. Journal of Fruit Science,2019,36(10):1352-1359.
[2] 龍友華,張承,龔芬,吳小毛,尹顯慧. 葉面施硒對(duì)獼猴桃含硒量、鎘鉛積累及品質(zhì)的影響[J]. 食品科學(xué),2016,37(11):74-78.
LONG Youhua,ZHANG Cheng,GONG Fen,WU Xiaomao,YIN Xianhui. Effects of foliar application of selenium fertilizer on selenium content,accumulation of cadmium and lead,and fruit quality of kiwifruit[J]. Food Science,2016,37(11):74-78.
[3] 姜正旺,鐘彩虹. 試論獼猴桃科普與果實(shí)品質(zhì)提升的重要性[J]. 中國(guó)果樹(shù),2020(1):1-8.
JIANG Zhengwang,ZHONG Caihong. A comprehensive understanding with the importance of popular science knowledge to the kiwifruit quality improvement[J]. China Fruits,2020(1):1-8.
[4] 傅一凡,王周倩,邱棟梁,黃文俊,鐘彩虹. 防雹網(wǎng)對(duì)‘東紅’獼猴桃果實(shí)耐貯性和品質(zhì)的影響[J]. 植物科學(xué)學(xué)報(bào),2024,42(4):533-542.
FU Yifan,WANG Zhouqian,QIU Dongliang,HUANG Wenjun,ZHONG Caihong. Effects of anti-hail nets on storage performance and quality of Actinidia chinensis Planch. ‘Donghong’[J]. Plant Science Journal,2024,42(4):533-542.
[5] 李發(fā)康,魏寶融,繆平,崔國(guó)棟. 防雹網(wǎng)在現(xiàn)代蘋(píng)果園中的應(yīng)用及其影響綜述[J]. 甘肅農(nóng)業(yè)科技,2021,52(11):81-83.
LI Fakang,WEI Baorong,MIAO Ping,CUI Guodong. Application and influencein modern apple orchards of anti hail net[J]. Gansu Agricultural Science and Technology,2021,52(11):81-83.
[6] 衣娜娜,蘇立娟,鄭旭程,辛悅,蔡敏,李慧,靳雨晨. 冰雹天氣的環(huán)境參量及預(yù)報(bào)模型[J]. 干旱區(qū)研究,2024,41(1):13-23.
YI Nana,SU Lijuan,ZHENG Xucheng,XIN Yue,CAI Min,LI Hui,JIN Yuchen. Environmental parameters and forecast models of hail events[J]. Arid Zone Research,2024,41(1):13-23.
[7] 鄭永光,張小玲,周慶亮,端義宏,諶蕓,何立富. 強(qiáng)對(duì)流天氣短時(shí)臨近預(yù)報(bào)業(yè)務(wù)技術(shù)進(jìn)展與挑戰(zhàn)[J]. 氣象,2010,36(7):33-42.
ZHENG Yongguang,ZHANG Xiaoling,ZHOU Qingliang,DUAN Yihong,CHEN Yun,HE Lifu. Review on severe convective weather short-term forecasting and nowcasting[J]. Meteorological Monthly,2010,36(7):33-42.
[8] 范皓,楊永勝,段英,許煥斌,劉黎平,耿飛. 太行山東麓一次強(qiáng)對(duì)流冰雹云結(jié)構(gòu)的觀測(cè)分析[J]. 氣象學(xué)報(bào),2019,77(5):823-834.
FAN Hao,YANG Yongsheng,DUAN Ying,XU Huanbin,LIU Liping,GENG Fei. An observational analysis of the cloud structure of a severe convective hailstorm over the eastern foothill of Taihang Mountain[J]. Acta Meteorologica Sinica,2019,77(5):823-834.
[9] 莫麗霞,高憲權(quán),歐徽寧,周云霞,梁維亮. 基于數(shù)值模式產(chǎn)品的廣西冰雹客觀預(yù)報(bào)方法研究[J]. 干旱氣象,2020,38(3):480-489.
MO Lixia,GAO Xianquan,OU Huining,ZHOU Yunxia,LIANG Weiliang. Study of objective forecast method of Guangxi hail based on numerical model product[J]. Journal of Arid Meteorology,2020,38(3):480-489.
[10] 李敬川,劉俊,武亞敬,王秀芬,張東風(fēng),漢瑞峰. 防雹網(wǎng)對(duì)光照和葡萄光合速率影響的研究[J]. 華北農(nóng)學(xué)報(bào),2010,25(增刊2):128-132.
LI Jingchuan,LIU Jun,WU Yajing,WANG Xiufen,ZHANG Dongfeng,HAN Ruifeng. Effect of hail suppression net on light and photosynthetic rate of grapevines[J]. Acta Agriculturae Boreali-Sinica,2010,25(Suppl. 2):128-132.
[11] BASTíAS R M,LOSCIALE P,CHIECO C,CORELLI-GRAPPADELLI L. Red and blue netting alters leaf morphological and physiological characteristics in apple trees[J]. Plants,2021,10(1):127.
[12] BOSCO L C,BERGAMASCHI H,CARDOSO L S,DE PAULA V A,MARODIN G A B,NACHTIGALL G R. Apple production and quality when cultivated under anti-hail cover in Southern Brazil[J]. International Journal of Biometeorology,2015,59(7):773-782.
[13] BOSCO L C,BERGAMASCHI H,CARDOSO L S,DE PAULA V A,MARODIN G A B,BRAUNER P C. Microclimate alterations caused by agricultural hail net coverage and effects on apple tree yield in subtropical climate of Southern Brazil[J]. Bragantia,2017,77(1):181-192.
[14] 袁蓮蓮,馬建彬,肖振杰,李敏,沈貴忠,靳彥峰,周艷賓,李新輝,安泉成,鄭振興,劉興鋒,王新偉,申莉莉,王鳳龍,李彬. 防雹網(wǎng)對(duì)烤煙主要病蟲(chóng)害防治效果的研究[J]. 植物醫(yī)學(xué),2022,1(6):97-103.
YUAN Lianlian,MA Jianbin,XIAO Zhenjie,LI Min,SHEN Guizhong,JIN Yanfeng,ZHOU Yanbin,LI Xinhui,AN Quancheng,ZHENG Zhenxing,LIU Xingfeng,WANG Xinwei,SHEN Lili,WANG Fenglong,LI Bin. Study on the control effect of hail-proof net on main diseases and pests of flue-cured tobacco[J]. Plant Health and Medicine,2022,1(6):97-103.
[15] 蘇秀敏,韓文清,王佼,李鵬,王秋蘭,劉永忠. 防雹網(wǎng)對(duì)網(wǎng)內(nèi)旱地番茄微環(huán)境及產(chǎn)量和品質(zhì)的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),2023,39(19):27-32.
SU Xiumin,HAN Wenqing,WANG Jiao,LI Peng,WANG Qiulan,LIU Yongzhong. Effect of hail net on microenvironment,yield and quality of dryland tomato[J]. Chinese Agricultural Science Bulletin,2023,39(19):27-32.
[16] 徐福利,馬濤,趙世偉,廖佳麗. 寧南山區(qū)防雹網(wǎng)內(nèi)梨園生境狀態(tài)研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,2008,26(4):201-204.
XU Fuli,MA Tao,ZHAO Shiwei,LIAO Jiali. Effect of hail defend-net on living condition in pear orchard in south Ningxia[J]. Agricultural Research in the Arid Areas,2008,26(4):201-204.
[17] 儲(chǔ)寶華. 不同顏色的防雹網(wǎng)對(duì)蘋(píng)果樹(shù)生長(zhǎng)和果實(shí)品質(zhì)的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2022.
CHU Baohua. The influence of anti-hail nets with different color on apple tree growth and fruit quality[D]. Yangling:Northwest A amp; F University,2022.
[18] KALCSITS L,MUSACCHI S,LAYNE D R,SCHMIDT T,MUPAMBI G,SERRA S,MENDOZA M,ASTEGGIANO L,JAROLMASJED S,SANKARAN S,KHOT L R,ESPINOZA C Z. Above and below-ground environmental changes associated with the use of photoselective protective netting to reduce sunburn in apple[J]. Agricultural and Forest Meteorology,2017,237/238:9-17.
[19] BASILE B,GIACCONE M,SHAHAK Y,F(xiàn)ORLANI M,CIRILLO C. Regulation of the vegetative growth of kiwifruit vines by photo-selective anti-hail netting[J]. Scientia Horticulturae,2014,172:300-307.
[20] BASILE B,GIACCONE M,CIRILLO C,RITIENI A,GRAZIANI G,SHAHAK Y,F(xiàn)ORLANI M. Photo-selective hail nets affect fruit size and quality in Hayward kiwifruit[J]. Scientia Horticulturae,2012,141:91-97.
[21] MOURA L,PINTO R,RODRIGUES R,BRITO L M,REGO R,VALíN M I,MARIZ-PONTE N,SANTOS C,MOUR?O I M. Effect of photo-selective nets on yield,fruit quality and Psa disease progression in a ‘Hayward’ kiwifruit orchard[J]. Horticulturae,2022,8(11):1062.
[22] 李莉,李旭,劉亞文,劉宏濤. 光和溫度調(diào)控開(kāi)花時(shí)間的研究進(jìn)展[J]. 中國(guó)科學(xué):生命科學(xué),2016,46(3):253-259.
LI Li,LI Xu,LIU Yawen,LIU Hongtao. Flowering responses to light and temperature[J]. Scientia Sinica (Vitae),2016,46(3):253-259.
[23] PUTTERILL J,VARKONYI-GASIC E. FT and florigen long-distance flowering control in plants[J]. Current Opinion in Plant Biology,2016,33:77-82.
[24] BALASUBRAMANIAN S,SURESHKUMAR S,LEMPE J,WEIGEL D. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature[J]. PLoS Genetics,2006,2(7):e106.
[25] 白崗栓,杜社妮,李明霞,耿桂俊,閆亞丹. 防雹網(wǎng)對(duì)果園立地環(huán)境及蘋(píng)果生長(zhǎng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(3):255-261.
BAI Gangshuan,DU Sheni,LI Mingxia,GENG Guijun,YAN Yadan. Influence of anti-hail net on the habitat and growth of apple[J]. Transactions of the Chinese Society of Agricultural Engineering,2010,26(3):255-261.
[26] 黃濤. 大棚栽培條件下紅陽(yáng)獼猴桃生長(zhǎng)發(fā)育及果實(shí)品質(zhì)的研究[D]. 雅安:四川農(nóng)業(yè)大學(xué),2012.
HUANG Tao. Studies on the development and fruit quality of the ‘Red Sun’ kiwifruit in plastic greenhouse [D]. Yaan:Sichuan Agricultural University,2012.
[27] BLáZQUEZ M A,AHN J H,WEIGEL D. A thermosensory pathway controlling flowering time in Arabidopsis thaliana[J]. Nature Genetics,2003,33(2):168-171.
[28] 陳欣晨,趙慧敏,王森,鄔思敏,向林,產(chǎn)祝龍,王艷平. 不同溫度對(duì)郁金香花芽分化的影響及相關(guān)基因表達(dá)分析[J]. 園藝學(xué)報(bào),2023,50(5):1037-1047.
CHEN Xinchen,ZHAO Huimin,WANG Sen,WU Simin,XIANG Lin,CHAN Zhulong,WANG Yanping. Analysis of floral bud differentiation and related genes expression under different temperatures in Tulipa gesneriana[J]. Acta Horticulturae Sinica,2023,50(5):1037-1047.
[29] 董曉曉. 單花及有側(cè)花牡丹品種花芽分化規(guī)律初步研究[D]. 北京:北京林業(yè)大學(xué),2020.
DONG Xiaoxiao. Preliminary study on the bud differentiation of single-flowered and lateral-flowered tree peony cultivars[D]. Beijing:Beijing Forestry University,2020.
[30] 馬月萍,戴思蘭. 植物花芽分化機(jī)理研究進(jìn)展[J]. 分子植物育種,2003,1(4):539-545.
MA Yueping,DAI Silan. Flower bud differentiation mechanism of anthophyta[J]. Molecular Plant Breeding,2003,1(4):539-545.
[31] 桂敏,陳敏,黎霞,龍江,盧珍紅. 4種球根盆花的生育特性·植物學(xué)性狀及花期調(diào)控研究[J]. 安徽農(nóng)業(yè)科學(xué),2010,38(1):131-133.
GUI Min,CHEN Min,LI Xia,LONG Jiang,LU Zhenhong. Study on growth and development characteristics,botanical characteristics and flowering period control of four flower bulbs[J]. Journal of Anhui Agricultural Sciences,2010,38(1):131-133.
[32] 黃嘉鑫. 光照對(duì)唐菖蒲花芽分化及相關(guān)理化指標(biāo)影響的研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2003.
HUANG Jiaxin. Effect of daylength and light on flower bud differentiation and relevant physioiogical-biochemiical index of Gladiolus[D]. Harbin:Northeast Agricultural University,2003.
[33] BOGO A,CASA R T,AGOSTINETO L,GON?ALVES M J,RUFATO L. Effect of hail protection nets on apple scab in ‘Royal Gala’ and ‘Fuji’ apple cultivars[J]. Crop Protection,2012,38:49-52.
[34] 栗進(jìn)朝,段羅順,張曉申. 避雨對(duì)葡萄病害和光照強(qiáng)度的影響[J]. 果樹(shù)學(xué)報(bào),2009,26(6):847-850.
LI Jinchao,DUAN Luoshun,ZHANG Xiaoshen. Effect of rainproof cultivation on grape disease incidence and light intensity under the shelter[J]. Journal of Fruit Science,2009,26(6):847-850.
[35] 劉佩,王建玉. 老蘋(píng)果園防雹網(wǎng)架設(shè)技術(shù)及效益調(diào)查[J]. 果樹(shù)實(shí)用技術(shù)與信息,2023(7):39-42.
LIU Pei,WANG Jianyu. Investigation on technology and benefit of anti-hail net erection in old apple orchard[J]. Fruit tree practical technology and information,2023(7):39-42.
[36] 劉俊,田勤科,李敬川,張東風(fēng),王秀芬. 葡萄防雹網(wǎng)防雹成本與經(jīng)濟(jì)效益評(píng)價(jià)[J]. 河北林業(yè)科技,2011(2):1-5.
LIU Jun,TIAN Qinke,LI Jingchuan,ZHANG Dongfeng,WANG Xiufen. Evaluation of anti-hail net cost and economic benefit of grape[J]. The Journal of Hebei Forestry Science and Technology,2011(2):1-5.
[37] 王震東,李義春,寶建民,祁忠廷,王興林,王子華,張樹(shù)廷. 煙田防雹網(wǎng)防雹試驗(yàn)推廣初報(bào)[J]. 中國(guó)煙草科學(xué),2010,31(1):32-33.
WANG Zhendong,LI Yichun,BAO Jianmin,QI Zhongting,WANG Xinglin,WANG Zihua,ZHANG Shuting. Preliminary report on application of hail-proof net in tobacco fields[J]. Chinese Tobacco Science,2010,31(1):32-33.