摘" " 要:【目的】探討不同獼猴桃砧木在干旱脅迫條件下的生理和分子響應機制?!痉椒ā坷?5% PEG-6000模擬干旱脅迫,對4種獼猴桃材料Bruno、XD-GZ-7、XD-RZ-1和DJY-DE-1進行干旱處理,通過植株表型觀測和生理指標測定,進一步利用轉(zhuǎn)錄組測序發(fā)掘關鍵差異表達基因?!窘Y果】Bruno在干旱脅迫下最早表現(xiàn)出明顯的葉片失水和植株萎蔫現(xiàn)象,旱害指數(shù)為87%,顯著高于其他材料;而DJY-DE-1則表現(xiàn)出較強的抗旱性,葉片在脅迫后第8天出現(xiàn)輕微下垂現(xiàn)象,旱害指數(shù)為33%,顯著低于其他材料。轉(zhuǎn)錄組分析揭示了兩份材料在各時期均顯示出大量的差異表達基因,GO富集分析顯示這些基因主要涉及細胞過程、代謝過程等生物過程,細胞和細胞膜等細胞組分,以及結合、催化活性等分子功能。KEGG通路富集分析顯示差異基因主要參與信號轉(zhuǎn)導、代謝通路、蛋白質(zhì)折疊和分類等關鍵生物過程。利用WGCNA分析進一步篩選出了4個可能參與根系干旱響應的關鍵差異表達基因?!窘Y論】綜合生理指標和轉(zhuǎn)錄組學數(shù)據(jù),深入分析了獼猴桃不同砧木對干旱脅迫的響應機制,為未來改良作物抗旱性提供了理論基礎和試驗依據(jù)。
關鍵詞:獼猴桃;干旱脅迫;生理機制;轉(zhuǎn)錄組
中圖分類號:S663.4 文獻標志碼:A 文章編號:1009-9980(2024)11-2300-12
Analysis of drought resistance of kiwifruit rootstocks based on physiology and transcriptome
ZHOU Kangyu1, 2, HE Chengyong1#, XU Zihong1, WANG Lingli1, ZHAO Ke1, SONG Haiyan1, LIU Pu2*, TU Meiyan1*
(1Institute of Horticulture, Sichuan Academy of Agricultural Sciences/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, Sichuan, China; 2School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui, China)
Abstract: 【Objective】 This study aimed to investigate the physiological and molecular mechanisms of drought tolerance of different kiwifruit rootstock materials, with the goal of providing a foundation for future breeding and genetic improvement efforts to enhance drought resistance in kiwifruit. 【Methods】 Four kiwifruit cultivars with varying degrees of drought tolerance were selected: Bruno (Actinidia deliciosa), XD-GZ-7 (A. polygama), XD-RZ-1 (A. eriantha) and DJY-DE-1 (A. valvata). These cultivars were chosen based on previous observations on their drought tolerance and represent diverse genotypes from the collected germplasm. Drought stress was simulated using 25% PEG-6000, applied at five times (0, 2, 4, 6 and 8 days). Phenotypic assessments included observations on leaf wilting, plant dehydration and overall drought response. Physiological parameters, such as malondialdehyde (MDA), proline (Pro), hydrogen peroxide (H2O2), superoxide dismutase (SOD) and catalase (CAT) were measured. In addition, transcriptome sequencing of the roots of DJY-DE-1 and Bruno at 0, 4 and 8 days was performed to identify differentially expressed genes (DEGs). Then, the Weighted Gene Co-expression Network Analysis (WGCNA) algorithm was employed for module construction. The core steps of this algorithm involved calculating the similarity between genes to construct a gene clustering tree, in which each branch represented an independent module. To more precisely delineate these modules, a dynamic tree cutting method was utilized to slice the gene clustering tree. To further quantify the co-expression similarity among the modules, the module eigengenes (MEs) for each module were calculated, and these eigengenes were then used to merge modules that exhibited similarity. Validation of key genes was conducted using quantitative real-time PCR (qRT-PCR). 【Results】 Significant differences in drought responses were observed between the materials. Bruno exhibited early and severe symptoms of drought stress, with noticeable leaf wilting by day 4 (S3), and widespread dehydration by day 8, with a drought index of 87%, the highest among all cultivars. In contrast, DJY-DE-1 showed delayed drought symptoms, with minimal wilting and a low drought index of 33%, indicating superior drought tolerance. The intermediate cultivars, XD-GZ-7 and XD-RZ-1, displayed moderate wilting and dehydration, with drought indices of 67% and 60%, respectively. Physiological measurements supported these observations. Bruno had significantly higher MDA levels under drought stress, indicating greater lipid peroxidation and cellular damage. Conversely, the more drought-tolerant cultivars, especially DJY-DE-1, showed elevated levels of proline and higher activities of antioxidant enzymes (SOD and CAT), suggesting better protection against oxidative damage. A fuzzy membership function analysis ranked the cultivars drought tolerance as follows: DJY-DE-1>XD-RZ-1>XD-GZ-7>Bruno, which was consistent with the phenotypic and physiological data. Transcriptome analysis identified 435 047 transcripts across the three time points, with 102 588, 100 951 and 104 974 DEGs identified at 0, 4 and 8 days, respectively. These DEGs revealed significant expression differences between the drought-tolerant DJY-DE-1 and the drought-sensitive Bruno. Validation of eight highly expressed DEGs using qRT-PCR confirmed the accuracy of the transcriptome data. Gene Ontology (GO) analysis showed that the DEGs were enriched in processes related to cellular metabolism, energy and stress responses. KEGG pathway analysis indicated that these DEGs were involved in key pathways such as signal transduction, carbohydrate metabolism and protein folding, which were critical for maintaining cellular homeostasis under drought stress. Weighted Gene Co-expression Network Analysis (WGCNA) further identified five key DEGs (TRINITY_DN11629_c0_g1, TRINITY_DN257031_c0_g1, TRINITY_DN3814_c0_g1, TRINITY_DN9194_c0_g1 and TRINITY_DN16120_c0_g1) as potential regulators of drought tolerance, offering valuable targets for future genetic improvement. 【Conclusion】 This study employed a comprehensive approach, integrating physiological with transcriptomic data, to explore the mechanisms of drought tolerance in kiwifruit. The findings provide important insights into the molecular basis of drought response and pave the way for breeding and genetic strategies to enhance drought resistance in kiwifruit. The identification of key drought-responsive genes highlights potential avenues for improving crop adaptation to changing environmental conditions.
Key words: Kiwifruit; Drought stress; Physiological mechanism; Transcriptome
獼猴桃作為一種肉質(zhì)根類果樹,根系含水量高且分布較淺,導致獼猴桃對干旱環(huán)境尤為敏感,對土壤水分管理的要求也較其他果樹更為苛刻。獼猴桃的葉片肥大,還擁有發(fā)達的輸導組織和氣孔,這些特性使葉面蒸騰作用強烈,耗水量極大[1],水分虧缺會嚴重影響獼猴桃的產(chǎn)量和品質(zhì)。
在干旱脅迫下,植物會通過減少水分散失以及提高水分利用率來維持正常生長。植物通過大量積累脯氨酸、可溶性糖、可溶性蛋白以及無機離子等滲透調(diào)節(jié)物質(zhì)降低細胞滲透勢,從而降低水勢,穩(wěn)定膜結構和大分子結構表面的水化層,提高水分利用率,增強植物在干旱脅迫下的耐受力[2-4]。干旱脅迫促使植物體內(nèi)會產(chǎn)生過量的活性氧自由基,由于活性氧具有極強的氧化性,為了維持植物正常的生理代謝,體內(nèi)有一套減輕和消除活性氧自由基的保護系統(tǒng)。植物保護系統(tǒng)包括酶促清除系統(tǒng)和非酶促清除系統(tǒng)[5]。酶促清除系統(tǒng)主要包括過氧化氫酶(CAT)、超氧化物歧化酶(SOD)、過氧化物酶(POD)、谷胱甘肽過氧化物酶(GSH-PX)、抗壞血酸過氧化物酶(APX)等[6],這些抗氧化酶之間相互協(xié)調(diào),維持植物體內(nèi)氧化-抗氧化平衡,從而保障植物正常的生命活動[7]。
受干旱脅迫誘導表達的基因,根據(jù)其功能特性,可被劃分為兩大類。第一類是功能蛋白基因,這類基因編碼的蛋白質(zhì)在植物抗旱機制中發(fā)揮著直接的防護作用,包括滲透物質(zhì)合成酶、糖代謝調(diào)節(jié)基因、抗氧化保護劑基因以及轉(zhuǎn)運蛋白基因等[8-9]。相較于其他不耐旱的砧木品種,蘋果矮化砧木SH6在遭受干旱脅迫時,葉片中的超氧化物歧化酶基因SOD1、抗壞血酸過氧化物酶基因APX1、脫氫抗壞血酸還原酶基因DHAR2以及過氧化氫酶基因CAT1的表達量會顯著上調(diào),展現(xiàn)出更強的表達活性[10]。第二類基因則主要參與調(diào)控干旱脅迫下的基因表達或信號轉(zhuǎn)導過程,主要為轉(zhuǎn)錄因子[11]。以ZmCCT為例,它能夠與膜蛋白ZmFra a 1、泛素連接酶ZmWIPF2以及IAA家族的轉(zhuǎn)錄因子ZmAux/IAA8發(fā)生相互作用,從而促進IAA的合成,并進一步調(diào)控下游靶標基因的表達,以此來調(diào)節(jié)玉米的抗旱性能[12]。
筆者以具有不同抗旱能力的獼猴桃種質(zhì)資源為研究對象,通過綜合研究分析各獼猴桃資源在干旱脅迫下的植株表型、旱害指數(shù),評價不同獼猴桃類型的抗旱能力差異;通過測定不同獼猴桃類型干旱脅迫下的葉片丙二醛和過氧化氫含量及過氧化氫酶和超氧化物歧化酶活性等生理指標,解析抗旱的生理基礎;進一步以獼猴桃資源根系為研究對象,通過轉(zhuǎn)錄組測序挖掘抗旱基因。
1 材料和方法
1.1 材料
供試材料保存于國家西南特色園藝作物種質(zhì)資源圃獼猴桃分圃,分別為美味獼猴桃(Actinidia deliciosa)Bruno,對萼獼猴桃(A. valvata)DJY-DE-1、葛棗獼猴桃(A. polygama) XD-GZ-7和軟棗獼猴桃(A. arguta)XD-RZ-1。
1.2 模擬干旱處理
對獼猴桃幼苗每天澆灌600 mL的25% PEG-6000溶液模擬干旱脅迫,若底部托盤有滲出液則倒回營養(yǎng)缽中。試驗于干旱脅迫后第0、2、4、6、8天分別取獼猴桃自上而下第5~6片完全葉,用純水洗凈后將表面殘留純水吸拭干凈,立即放置于液氮中,保存于超低溫(-80 ℃)冰箱內(nèi),后續(xù)進行相關指標的測定。
1.3 旱害指數(shù)調(diào)查
從干旱脅迫開始,觀察獼猴桃砧木葉片變化。評價標準主要參考樊衛(wèi)國等[13]在野生梨耐旱性的旱害分級標準,根據(jù)獼猴桃干旱脅迫下的植株形態(tài)變化,將旱害分為以下等級:0級,植株正常,無明顯差異;1級,植物葉片發(fā)生輕度萎蔫;2級,植株葉片發(fā)生中度萎蔫;3級,植株葉片發(fā)生重度萎蔫(植株葉片發(fā)生全株萎蔫);4級,植株葉片嚴重萎蔫且約1/3葉片干枯;5級,植株有葉片干枯現(xiàn)象并伴隨脫落。旱害指數(shù)/%=Σ(代表級值×株數(shù))/(最高級值×處理總株數(shù))×100。
1.4 生理指標測定
MDA含量測定采用硫代巴比妥酸法,H2O2含量測定采用過氧化氫-四氯化鈦反應方法,Pro含量測定采用茚三酮-磺基水楊酸法,SOD含量測定采用氮藍四唑(NBT)法,CAT含量測定采用雙氧水法。
1.5 轉(zhuǎn)錄組測序
以干旱脅迫第0、4、8天的DJY-DE-1和Bruno根系為樣本,進行轉(zhuǎn)錄組測序,每個處理3次生物學重復,共計18個樣本。轉(zhuǎn)錄組測序由上海派森諾生物科技股份有限公司完成。利用無參考基因組進行轉(zhuǎn)錄組分析,首先對原始數(shù)據(jù)進行過濾,將帶接頭、長度小于50 bp、序列平均質(zhì)量在Q20以下的Reads進行去除,對得到的高質(zhì)量序列進行從頭拼接得到轉(zhuǎn)錄本序列,對轉(zhuǎn)錄本進行聚類,挑選最長的轉(zhuǎn)錄本作為Unigene,最后用Unigene進行后續(xù)GO和KEGG分析。采用DESeq對基因表達進行差異分析,以表達差異倍數(shù)|log2FoldChange|>1、顯著性P-value<0.05為標準篩選差異表達基因。
1.6 差異表達基因的實時熒光定量PCR
使用RNAprep Pure多糖多酚植物總RNA提取試劑盒提取獼猴桃根系RNA,利用HiScript Ⅱ Q RT SuperMix for qPCR試劑盒反轉(zhuǎn)錄合成cDNA,使用HiScript Ⅱ Q RT SuperMix進行實時熒光定量PCR反應。反應體系為:cDNA模板1 μL,2×HiScript II Q RT SuperMix 10 μL,上下游引物(表1)各0.5 μL,ddH2O 8 μL,儀器為熒光PCR儀480,利用2(-ΔΔCT)法計算基因的相對表達量。
2 結果與分析
2.1 干旱脅迫下獼猴桃植株表型及旱害指數(shù)分析
利用25% PEG-6000模擬干旱脅迫對4份獼猴桃材料進行處理,結果表明,Bruno在處理后的第4天即出現(xiàn)明顯的葉片失水和下垂現(xiàn)象,隨著干旱脅迫時間的延長,萎蔫程度逐漸加重,并在第6天時植株基部葉片出現(xiàn)干枯,第8天時整株葉片均已干枯。XD-GZ-7在干旱脅迫的第4天時葉片開始下垂,第8天基部葉片邊緣出現(xiàn)干枯現(xiàn)象。XD-RZ-1在第6天表現(xiàn)出葉片下垂,第8天基部葉片開始萎蔫。而DJY-DE-1雖然在第8天出現(xiàn)明顯下垂,但并未發(fā)生葉片萎蔫,其受干旱脅迫的損傷程度低于其他材料(圖1)。
對4份獼猴桃材料在干旱脅迫下的旱害指數(shù)進行統(tǒng)計分析,結果表明,各材料的旱害指數(shù)均隨脅迫時間的延長持續(xù)升高。第8天時,旱害指數(shù)從高到低依次為Bruno(87%)、XD-GZ-7(67%)、XD-RZ-1(60%)和DJY-DE-1(33%)(表2)。
2.2 干旱脅迫下獼猴桃葉片生理指標的變化
隨著干旱時間的延長,Bruno和XD-GZ-7葉片中的MDA含量持續(xù)升高。其中,Bruno葉片中的MDA在干旱脅迫第4天時相比0 d增加了113.79%,而XD-GZ-7在干旱脅迫第6天時相比0 d增加了74.48%。XD-RZ-1的MDA含量出現(xiàn)先升高后降低的趨勢,DJY-DE-1呈現(xiàn)先下降后上升再下降最后上升的趨勢,且變化相對平緩,最后基本恢復到干旱脅迫前的水平(圖2-A)。隨著干旱的加劇,DJY-DE-1和XD-RZ-1體內(nèi)的脯氨酸含量一直呈上升趨勢,其中,DJY-DE-1干旱脅迫8 d相比0 d升高了168%,而XD-RZ-1干旱脅迫8 d相比0 d升高了253%。XD-GZ-7隨著干旱時間的持續(xù),脯氨酸含量呈先升高后下降的趨勢。Bruno體內(nèi)的脯氨酸含量隨干旱時間的延長呈先升高后下降的趨勢,并且在干旱脅迫4 d時達到最高峰,為對照的2倍,然后開始快速下降,到干旱脅迫8 d時低于干旱處理前(圖2-B)。
隨著干旱脅迫時間的延長,Bruno葉片H2O2含量呈現(xiàn)持續(xù)上升趨勢;XD-GZ-7和XD-RZ-1葉片H2O2含量呈先上升后下降再上升的趨勢;DJY-DE-1隨著干旱時間的延長,葉片H2O2的含量相對穩(wěn)定,除干旱脅迫2 d和4 d稍有升高外,其余時間均無顯著變化(圖2-C)。Bruno和XD-GZ-7的葉片SOD活性呈先上升后下降的趨勢,分別在干旱脅迫4 d和6 d上升到最大值,為598 U·g-1和660 U·g-1。DJY-DE-1葉片SOD活性隨干旱時間的延長持續(xù)升高,干旱脅迫8 d升高到最大值,為0 d的1.6倍(圖2-D)。隨著干旱的加劇,XD-RZ-1和XD-GZ-7的葉片CAT活性均呈先上升后下降的趨勢,XD-RZ-1在干旱脅迫4 d上升到最大值,為35.39 μmol·g-1·min-1;XD-GZ-7在干旱脅迫6 d達到最大值,為25.11 μmol·g-1·min-1。Bruno的CAT活性均呈先升高后降低再升高的趨勢,在干旱脅迫4 d上升到最大值,為27.56 μmol·g-1·min-1。而DJY-DE-1的CAT活性在整個干旱脅迫下均無顯著變化(圖2-E)。
2.3 轉(zhuǎn)錄組數(shù)據(jù)質(zhì)量分析
筆者選取了最耐受干旱和干旱敏感的DJY-DE-1和Bruno在干旱處理不同時期的根系進行轉(zhuǎn)錄組測序分析,旨在從分子水平探究獼猴桃抗旱的機制。將轉(zhuǎn)錄組測序得到的圖像文件轉(zhuǎn)化生成FASTQ的原始數(shù)據(jù)(Raw Data),對每個樣品的原始數(shù)據(jù)分別進行統(tǒng)計,文庫的Q20值在99.2%以上,Q30值在97.6%以上(表3),說明測序質(zhì)量可靠,可進行下一步分析。
2.4 差異表達基因篩選
在進行差異基因表達分析之前,利用皮爾遜相關系數(shù)對樣品間基因表達水平的相關性進行分析,如圖3-A所示,本研究樣品的相關系數(shù)均為1,說明樣品間具有極強相關性。將得到的Clean reads利用Trinity進行從頭組裝,總共獲得435 047個轉(zhuǎn)錄本。根據(jù)轉(zhuǎn)錄組數(shù)據(jù)分析篩選出兩個獼猴桃砧木品種的干旱響應差異表達基因如圖3所示,兩個獼猴桃砧木品種在S1時期差異表達基因共有102 588個,其中,下調(diào)表達基因50 895個,上調(diào)表達基因51 693個;在S3時期差異表達基因共有100 951個,其中,下調(diào)表達基因49 058個,上調(diào)表達基因51 893個;在S5時期差異表達基因共有104 974個,其中,下調(diào)表達基因57 385個,上調(diào)表達基因47 589個(圖3-B)。
2.5 差異表達基因的GO和KEGG分析
針對差異基因進行GO功能分類。結果如圖4-A所示,在生物過程、細胞組分和分子功能三個GO功能分類中,Unigenes被劃分到61個GO亞類中,富集在生物過程中的細胞過程、代謝過程、發(fā)育過程的差異基因較多;在細胞組分方面,細胞、細胞部分和膜富集到較多的差異基因;分子功能中的結合、催化活性和轉(zhuǎn)運蛋白活性富集到較多的差異基因。
為進一步揭示差異基因的生物學功能,探索干旱脅迫下獼猴桃砧木資源的代謝調(diào)控網(wǎng)絡,對差異基因進行KEGG富集分析,結果如圖4-B所示,富集到較多差異基因的通路為信號轉(zhuǎn)導、運輸和分解代謝、糖代謝、折疊、分類和降解、氨基酸代謝等。
2.6 加權基因共表達網(wǎng)絡分析
筆者采用加權基因共表達網(wǎng)絡分析(WGCNA)算法來進行模塊的構建,如圖5所示,在干旱脅迫的背景下,基于拓撲重疊的不同基因聚類樹狀圖,并結合特定的模塊顏色,鑒定出17個不同的模塊,篩選出與干旱高度相關的兩個模塊MEgreenyellow和MEpurple,結合GO分析最終篩選出4個可能參與根系干旱響應的差異基因TRINITY_DN11629_c0_g1(ethylene-responsive transcription factor RAP2-4 like)、TRINITY_DN257031_c0_g1(sucrose synthase 3)、TRINITY_DN3814_c0_g1(protein EARLY FLOWERING like)和TRINITY_DN16120_c0_g1(alpha-dioxygenase)。
2.7 差異表達基因的熒光定量PCR分析
為了進一步驗證RNA-seq結果,結合WGCNA分析,對篩選得到的4個基因采用qRT-PCR的方法對測序的樣品進行了驗證。qRT-PCR結果如圖6所示,4個候選基因的表達量在干旱脅迫后S3和S5時期均呈升高趨勢,與RNA-seq結果相吻合,表明RNA-seq獲得的基因相對表達水平結果可靠。
3 討 論
植物應對干旱脅迫是個動態(tài)的過程,受損情況取決于干旱脅迫的持續(xù)時長[13],為了適應干旱脅迫,植物發(fā)生生理生化的變化。在干旱脅迫下,植物細胞膜脂過氧化加劇,對細胞結構造成破壞,過氧化氫(H2O2)和丙二醛(MDA)是膜脂過氧化作用的重要產(chǎn)物,可以反映細胞膜受傷害的程度。大量研究表明,干旱脅迫前H2O2和MDA在植物體內(nèi)含量較低[14]。本試驗中,在干旱脅迫下不同種質(zhì)獼猴桃呈現(xiàn)出不同的變化趨勢,與耐旱性呈正相關。隨著干旱脅迫的加劇,干旱敏感的品種H2O2和MDA含量持續(xù)升高,意味著細胞膜透性一直在增強,抗旱性強的品種葉片中H2O2和MDA 含量在后期逐漸下降,可能是自由基清除系統(tǒng)發(fā)揮了作用。本研究中對干旱越敏感的品種,有害物質(zhì)的含量越高于干旱處理前;抗性越強的品種,有害物質(zhì)的含量越接近于干旱處理前,這與魏樺[14]的研究結果一致。
在受到干旱脅迫時,植物會通過滲透調(diào)節(jié),降低滲透勢,從而適應干旱環(huán)境[15]。脯氨酸(Pro)含量的增加可以降低植物的脫水能力,保持植物體內(nèi)水分平衡,提高植物抗旱性[16]。在本研究中,干旱敏感的獼猴桃Pro含量先升高后降低,抗性強的獼猴桃Pro含量持續(xù)升高,這表明干旱脅迫會抑制干旱敏感品種Pro的積累,降低植物的耐旱性。這與胡曉健等[17]在馬尾松幼苗中的研究一致,汪婭琴等[18]在藍莓上也證實了這一觀點。
植物除了會通過滲透調(diào)節(jié)物質(zhì)來響應干旱脅迫,還會調(diào)動酶促保護系統(tǒng)相互協(xié)作,共同清除自由基,SOD通過將H2O2分解為O2-從而防御自由基對細胞產(chǎn)生的破壞,產(chǎn)生的O2-再由CAT進一步消除[14]。本研究中大部分獼猴桃種質(zhì)資源SOD活性呈先上升后下降的趨勢,說明在SOD和CAT在前中期的干旱脅迫中起作用,激活了抗旱性保護機制,酶活性增強,協(xié)同清理自由基,在接受外界環(huán)境變化刺激以后,用以抵御外界逆境環(huán)境的變化[19]。在后期,干旱敏感的獼猴桃砧木SOD和CAT活性下降,說明隨著干旱脅迫時間的延長,活性氧等有害物質(zhì)持續(xù)積累,超出了植物三大保護酶的清除能力,植物體內(nèi)環(huán)境平衡被破壞,酶活性降低。
筆者鑒定到的Ethylene-responsive transcription factor RAP2-4 like屬于AP2/ERF轉(zhuǎn)錄因子家族,為植物所特有。AP2/ERF轉(zhuǎn)錄因子AP2結構域能夠識別干旱(DRE/CRT)和冷誘導(A/GCCGAC)響應元件,對植物抵抗干旱和低溫等非生物脅迫至關重要[20-21]。在擬南芥中,RAP2.4被證實能夠通過激活葉片表皮蠟質(zhì)的生物合成途徑提高植株對干旱脅迫的耐受性[22]。與擬南芥RAP2.4序列同源性最高的Medicago truncatula WXP1在轉(zhuǎn)基因苜蓿中同樣表現(xiàn)出更強的耐旱性[23]。蔗糖合酶3(sucrose synthase 3)廣泛參與植物對干旱脅迫響應的過程,Lu等[24]的研究表明,高粱在10% PEG 6000模擬干旱處理時,SbSusy3基因的表達量在最初的12 h內(nèi)持續(xù)上升。大麥的HvSus3基因在干旱脅迫的第10天與對照相比,表達量上調(diào)了約4倍[25]。此外,Chen等[26]的研究表明,在干旱脅迫條件下,黃瓜的CsSus3基因表達上調(diào),不僅增強了蔗糖合酶的活性,還促進了己糖的積累。這一過程可能通過加速植物生長和清除活性氧(ROS)來增強黃瓜的抗旱能力。植物Alpha-dioxygenase可用于產(chǎn)生脂質(zhì)衍生分子,從而保護植物組織免受氧化應激和細胞死亡[27],而EARLY FLOWERING like主要參與植物的開花過程[28],本研究為上述基因在抗旱中的功能研究開拓了新的視角。
4 結 論
4份材料中,美味獼猴桃(A. deliciosa)Bruno抗旱能力最弱,對萼獼猴桃(A. valvata)DJY-DE-1抗旱能力最強,TRINITY_DN11629_c0_g1(Ethylene-responsive transcription factor RAP2-4 like)、TRINITY_DN257031_c0_g1(Sucrose synthase 3)、TRINITY_DN3814_c0_g1(Protein EARLY FLOWERING like)和TRINITY_DN16120_c0_g1(Alpha-dioxygenase)4個差異表達基因可能通過調(diào)控獼猴桃植株的生理變化參與抗旱過程。
參考文獻References:
[1] 何科佳,王中炎,王仁才. 高溫干旱強光對獼猴桃生長發(fā)育的影響及其生理基礎[J]. 湖南農(nóng)業(yè)科學,2005(3):42-44.
HE Kejia,WANG Zhongyan,WANG Rencai. Effects of high temperature,drought and strong light on kiwifruit growth and development and their physiology[J]. Hunan Agricultural Sciences,2005(3):42-44.
[2] 馮瑛. 櫻桃砧木抗旱性評價及應對干旱脅迫響應的生理和分子機制[D]. 楊凌:西北農(nóng)林科技大學,2019.
FENG Ying. Evaluation on drought resistance of cherry rootstocks and study on the physiological and molecular mechanism to drought stress[D]. Yangling:Northwest A amp; F University,2019.
[3] 周興元,曹福亮. 遮陰對假儉草抗氧化酶系統(tǒng)及光合作用的影響[J]. 南京林業(yè)大學學報(自然科學版),2006,30(3):32-36.
ZHOU Xingyuan,CAO Fuliang. Effects of shading on the antioxidant enzymatic system and photosynthesis of centipedegrass[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2006,30(3):32-36.
[4] 曹潘攀. 蝴蝶花對干旱和遮陰脅迫的生理響應研究[D]. 雅安:四川農(nóng)業(yè)大學,2019.
CAO Panpan. Physiological response of Iris japonica to drought and shade stress[D]. Yaan:Sichuan Agricultural University,2019.
[5] GULENTURK C,ALP-TURGUT F N,ARIKAN B,TOFAN A,OZFIDAN-KONAKCI C,YILDIZTUGAY E. Polyamine,1,3-diaminopropane,regulates defence responses on growth,gas exchange,PSII photochemistry and antioxidant system in wheat under arsenic toxicity[J]. Plant Physiology and Biochemistry,2023,201:107886.
[6] 楊秋悅,羅影子,楊洋,阮寶麗,黃明進. 干旱脅迫對鐵皮石斛生理及不同部位活性成分的影響[J]. 江蘇農(nóng)業(yè)科學,2023,51(13):142-149.
YANG Qiuyue,LUO Yingzi,YANG Yang,RUAN Baoli,HUANG Mingjin. Influences of drought stress on physiology and active components of different parts of Dendrobium officinale[J]. Jiangsu Agricultural Sciences,2023,51(13):142-149.
[7] 唐佳莉,姬新穎,鄭旭,李敖,張俊佩. 鹽脅迫下東部黑核桃生理生化與營養(yǎng)器官結構的動態(tài)響應[J]. 果樹學報,2024,41(2):294-313.
TANG Jiali,JI Xinying,ZHENG Xu,LI Ao,ZHANG Junpei. Dynamic responses of physiology,biochemistry and structure of vegetative organs of Juglans nigra to salt stress[J]. Journal of Fruit Science,2024,41(2):294-313.
[8] XIAO B Z,CHEN X,XIANG C B,TANG N,ZHANG Q F,XIONG L Z. Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions[J]. Molecular Plant,2009,2(1):73-83.
[9] WANG S C,LIANG D,LI C,HAO Y L,MA F W,SHU H R. Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks[J]. Plant Physiology and Biochemistry,2012,51:81-89.
[10] 李興亮,張軍科,李民吉,周貝貝,周佳,張強,魏欽平. 不同類型蘋果矮化砧木抗旱評價與基因表達分析[J]. 農(nóng)業(yè)生物技術學報,2018,26(3):401-409.
LI Xingliang,ZHANG Junke,LI Minji,ZHOU Beibei,ZHOU Jia,ZHANG Qiang,WEI Qinping. Evaluation and gene expression analysis of different apple (Malus × domestica) dwarfing stocks on drought resistance[J]. Journal of Agricultural Biotechnology,2018,26(3):401-409.
[11] SAIBO N J M,LOUREN?O T,OLIVEIRA M M. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses[J]. Annals of Botany,2009,103(4):609-623.
[12] ZHANG Z H,QU J Y,LU M,ZHAO X Y,XU Y,WANG L,LIU Z J,SHI Y Y,LIU C T,LI Y P,WANG C,XU M L,NAN Z J,CAO Q Q,PAN J B,LIU W D,LI X R,SUN Q P,WANG W X. The maize transcription factor CCT regulates drought tolerance by interacting with Fra a 1,E3 ligase WIPF2,and auxin response factor Aux/IAA8[J]. Journal of Experimental Botany,2024,75(1):103-122.
[13] 樊衛(wèi)國,李迎春. 部分梨砧木的葉片組織結構與抗旱性的關系[J]. 果樹學報,2008,25(1):17-21.
FAN Weiguo,LI Yingchun. Study on the relationship between lamina anatomical structure and drought resistance of pear rootstocks[J]. Journal of Fruit Science,2008,25(1):17-21.
[14] 魏樺. 不同獼猴桃種質(zhì)資源抗旱性及抗寒性綜合評價[D]. 楊凌:西北農(nóng)林科技大學,2021.
WEI Hua. Comprehensive evaluation of drought resistance and cold resistance of different germplasm of kiwifruit[D]. Yangling:Northwest A amp; F University,2021.
[15] 賈鑫,孫窗舒,李光躍,李國斌,陳貴林. 干旱脅迫對蒙古黃芪生長和生理生化指標及其黃芪甲苷積累的影響[J]. 西北植物學報,2018,38(3):501-509.
JIA Xin,SUN Chuangshu,LI Guangyue,LI Guobin,CHEN Guilin. Effect of drought stress on the growth and physiological characteristics and the accumulation of astragaloside Ⅳ secondary metabolites of Astragalus membranaceus (Fisch.) var. mongholicus (Bge.) Hsiao[J]. Acta Botanica Boreali-Occidentalia Sinica,2018,38(3):501-509.
[16] 楊艷,陳景震,吉悅娜,陳韻竹,李培旺,葉傳財,李力,潘雨虹,夏栗,李黨訓. 紫色土干旱脅迫對梔子生長及生理的影響[J]. 湖南林業(yè)科技,2023,50(5):28-33.
YANG Yan,CHEN Jingzhen,JI Yuena,CHEN Yunzhu,LI Peiwang,YE Chuancai,LI Li,PAN Yuhong,XIA Li,LI Dangxun. Effects of drought stress on growth and physiological indexes of Gardenia jasminoides in purple soil[J]. Hunan Forestry Science amp; Technology,2023,50(5):28-33.
[17] 胡曉健,楊春霞,譚世才,谷振軍,唐山,喻方圓. 干旱脅迫對不同種源馬尾松幼苗中脯氨酸及內(nèi)源激素含量的影響[J]. 南方林業(yè)科學,2020,48(6):24-28.
HU Xiaojian,YANG Chunxia,TAN Shicai,GU Zhenjun,TANG Shan,YU Fangyuan. Effects of drought stress on proline and endogenous hormones content in Pinus massoniana seedlings from different provenances[J]. South China Forestry Science,2020,48(6):24-28.
[18] 汪婭琴,郭小蘭,李培培,王德爐. 4個兔眼藍莓品種對持續(xù)干旱的生理響應及其抗旱性評價[J]. 經(jīng)濟林研究,2021,39(3):186-196.
WANG Yaqin,GUO Xiaolan,LI Peipei,WANG Delu. Physiological response of four rabbit-eye blueberry cultivars to drought stress and evaluation of drought resistance[J]. Non-wood Forest Research,2021,39(3):186-196.
[19] 陳釧. PEG模擬干旱脅迫對福建山櫻花種子萌發(fā)及幼苗生理的影響[D]. 長沙:中南林業(yè)科技大學,2022.
CHEN Chuan. Effect of PEG stress on seed germination and seedling physiological of Cerasus campanulata cherry[D]. Changsha:Central South University of Forestry amp; Technology,2022.
[20] XIE Z L,NOLAN T,JIANG H,TANG B Y,ZHANG M C,LI Z H,YIN Y H. The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis[J]. The Plant Cell,2019,31(8):1788-1806.
[21] JIANG W,PAN R,WU C,XU L,ABDELAZIZ M E,OELMüLLER R,ZHANG W Y. Piriformospora indica enhances freezing tolerance and post-thaw recovery in Arabidopsis by stimulating the expression of CBF genes[J]. Plant Signaling amp; Behavior,2020,15(4):1745472.
[22] YANG S U,KIM H,KIM R J,KIM J,SUH M C. AP2/DREB transcription factor RAP2.4 activates cuticular wax biosynthesis in Arabidopsis leaves under drought[J]. Frontiers in Plant Science,2020,11:895.
[23] ZHANG J Y,BROECKLING C D,BLANCAFLOR E B,SLEDGE M K,SUMNER L W,WANG Z Y. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene,increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa)[J]. Plant Journal,2005,42(5):689-707.
[24] LU Y L,HAN S P,ZHOU C,CHENG Y W,LV Y,ZENG G J,ZHANG D C,GAO X Q,HU Y F,SHEN X L. Molecular identification and expression analysis of five sucrose synthase genes in Sorghum bicolor[J]. Physiology and Molecular Biology of Plants,2022,28(4):697-707.
[25] BARRERO-SICILIA C,HERNANDO-AMADO S,GONZáLEZ-MELENDI P,CARBONERO P. Structure,expression profile and subcellular localisation of four different sucrose synthase genes from barley[J]. Planta,2011,234(2):391-403.
[26] CHEN L,ZHENG F H,F(xiàn)ENG Z L,LI Y,MA M X,WANG G P,ZHAO H B. A vacuolar invertase CsVI2 regulates sucrose metabolism and increases drought tolerance in Cucumis sativus L.[J]. International Journal of Molecular Sciences,2021,23(1):176.
[27] DE LEóN I P,SANZ A,HAMBERG M,CASTRESANA C. Involvement of the Arabidopsis alpha-DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death[J]. Plant Journal,2002,29(1):61-62.
[28] TIAN M M,WU A M,ZHANG M,ZHANG J J,WEI H L,YANG X,MA L,LU J H,F(xiàn)U X K,WANG H T,YU S X. Genome-wide identification of the Early flowering 4 (ELF4) gene family in cotton and silent GhELF4-1 and GhEFL3-6 decreased cotton stress resistance[J]. Frontiers in Genetics,2021,12:686852.