摘" " 要:【目的】評(píng)價(jià)中華及美味不同獼猴桃品種對(duì)潰瘍病的抗性,深入解析其抗病機(jī)制?!痉椒ā恳?5個(gè)中華及美味獼猴桃的主要栽培品種為材料,運(yùn)用離體枝條人工接種潰瘍病菌的方法對(duì)其抗性進(jìn)行初步評(píng)價(jià),進(jìn)一步對(duì)其中抗性差異顯著的品種運(yùn)用離體葉盤法進(jìn)行抗性驗(yàn)證,并測(cè)定其抗性相關(guān)生理生化指標(biāo)。【結(jié)果】基于枝條病斑長(zhǎng)度,75個(gè)獼猴桃品種可劃分為抗病、耐病、感病及高感4個(gè)級(jí)別,其中抗病品種16個(gè),耐病品種30個(gè),感病品種19個(gè),高感品種10個(gè)。從中選出9個(gè)抗性差異的品種進(jìn)行離體葉盤試驗(yàn)及生理生化指標(biāo)測(cè)定,發(fā)現(xiàn)隨著品種抗性增強(qiáng),葉盤病斑面積對(duì)應(yīng)縮小,葉盤法與枝條接種法結(jié)果呈正相關(guān);葉片生理指標(biāo)中的總酚、可溶性糖和木質(zhì)素含量與品種抗性呈顯著正相關(guān)。【結(jié)論】葉盤法和生理指標(biāo)與枝條鑒定結(jié)果顯著相關(guān),可作為抗性品種的快速鑒定方法。篩選到的抗病品種為獼猴桃潰瘍病的抗病育種及機(jī)制研究奠定了材料基礎(chǔ)。
關(guān)鍵詞:獼猴桃;潰瘍病;抗性評(píng)價(jià);生理指標(biāo)
中圖分類號(hào):S663.4;S436.634 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)11-2312-11
Evaluation on bacterial canker disease and analysis of physiological indexes in main kiwifruit cultivars
ZHU Jiahui1, 2, LI Li2#, HE Di2, PAN Hui2, LI Wenyi2, ZHANG Qi2, WANG Rencai1*, ZHONG Caihong2*
(1College of Horticulture, Hunan Agricultural University, Changsha 410128, Hunan, China; 2Wuhan Botanical Garden, Chinese Academy of Sciences/Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Chinese Academy of Sciences/Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, Hubei, China)
Abstract: 【Objective】 Kiwifruit bacterial canker disease is a devastating disease with a wide range, strong pathogenicity, rapid spread and difficult eradication, which is caused by Pseudomonas syringae pv. actinidiae. Although extensive research has conducted on the classification, biological characterization, pathogenicity analysis and rapid detection methods, there is still a lack of effective control technology in the production. Screening and analyzing the resistance mechanism of high-resistant varieties is crucial for the prevention and control of kiwifruit bacterial canker disease. 【Methods】 Seventy-five varieties of Actinidia chinensis var. chinensis and Actinidia chinensis var. deliciosa were used as materials. Healthy canes were collected after leaf fall. Canes with a diameter of about 0.8 cm and consistent growth were selected and cut into 10 cm stem. Both ends were sealed with paraffin to minimize water loss. A perforator was used to make a 3-mm-width xylem-deep wound on the cane. The wounded cane was inoculated with bacterial suspension (OD600=1.0), and sterile water was used as a negative control. Forty-two days after inoculation, the surface was removed with a knife and the length of the lesions was measured with a vernier caliper for preliminary evaluation of resistance. Then, nine varieties with significant resistance differences were further identified by the isolated leaf disc method. New healthy kiwifruit leaves of uniform size and growth were collected and leaf discs were prepared by the perforation method. After suspension vacuum infiltration and washing with sterile water, the leaves were placed with dorsal side up in petri dishes in an artificial climate chamber with L/D=16 h /8 h at 16 ℃, and the lesions were counted after 5 days of inoculation. Finally, resistance-related physiological and biochemical indices of the nine varieties were determined. The total phenol content was determined spectrophotometrically by adding reagents and comparing the absorbance values of different varieties’ solutions at 760 nm; soluble sugar contents were measured by anthrone colorimetry at 630 nm for each variety; lignin content was determined by double-antibody one-step sandwich enzyme-linked immunosorbent assay (ELISA) at 450 nm. 【Results】 Brown lesions could be observed at the inoculation site forty-two days after inoculation, extending from the incision site to both ends. The length of the lesions of different varieties showed significant differences, ranging from 5 mm to 16 mm. 75 kiwifruit germplasm resources could be categorized into four classes, i.e., resistant, tolerant, susceptible and highly-susceptible according to the lesion length, which contained 16 resistant resources, 30 tolerant resources, 19 susceptible resources and 10 highly-susceptible resources. According to the results of the resistance evaluation of isolated canes, nine varieties with different resistance were selected for the isolated leaf disc resistance evaluation experiment to further verify their resistance. Leaf discs inoculated with the suspension would gradually produce black-brown spots after incubation, whereas the negative control of leaf discs inoculated with water basically showed no symptoms. After 5 days of light incubation, there was a difference in the area of leaf discs affected by different varieties. Among the nine varieties, Jin Kui and Cui Yu had the smallest percentage of spots after inoculation, being 3.51% and 5.48%, respectively, which were below 6%. Donghong and Hongyang had the most serious disease, with 45.79% and 46.75% of spots. The correlation analysis between the percentage of leaf disc spots and the lesion length on cane spots of different varieties showed a highly significant correlation of 0.948, confirming the reliability of both methods for resistance identification. Physiological indexes were measured on leaves of the above nine varieties with differences in resistance, and differences were found in the physiological data among different varieties. The values of total phenol content ranged from 3 to 6 mg·g-1, with the resistant variety Cuiyu having the highest total phenol content of 5.7 mg·g-1, and the highly-susceptible variety Hongyang having the lowest total phenol content value of 3.07 mg·g-1. With the variety resistance decreased, the total phenol content showed a decreasing trend. Similarly, the resistant variety Cuiyu had the highest soluble sugar content, with roughly 29.88 mg·g-1, but the highly-susceptible variety Hongyang had the lowest soluble sugar content of 18.34 mg·g-1; the soluble sugar content also showed a decreasing trend with the weakening of resistance. Regarding lignin content, the resistant variety Jinmei had the highest content of 9.59 mg of lignin per 100 g of fresh leaves, followed by Cuiyu and Jinkui, which were all resistant varieties. As the varieties’ resistance decreased, the lignin content also reduced, and Hongyang had the lowest lignin content, with only 8.87 mg per 100 g of fresh leaves. In summary, it can be seen that the contents of total phenolics, soluble sugars and lignin differed among the different varieties, but the contents of resistant varieties were significantly higher than the tolerant and sensitive varieties. 【Conclusion】 The screened resistant germplasm lays a material foundation for the breeding and mechanism research on resistance to kiwifruit bacterial canker disease. There was a significant negative correlation between disease resistance and in vitro leaf disc resistance, and a significant positive correlation with physiological indicators, which can be used as a rapid identification method for resistant germplasm.
Key words: Kiwifruit; Bacterial canker; Resistance evaluation; Physiological index
獼猴桃(kiwifruit),又名羊桃、毛桃、山洋桃、毛梨桃,含有豐富的維生素C,被稱為“水果之王”,具有生津止渴、促進(jìn)消化和美容養(yǎng)顏的功能[1]。根據(jù)聯(lián)合國(guó)糧食及農(nóng)業(yè)組織(FAO)最新數(shù)據(jù)(http://www.fao.org/faostat/en/),2022年中國(guó)獼猴桃收獲面積近20萬hm2,占全球的70%,年產(chǎn)量238萬t,占全球的52%。潰瘍病是嚴(yán)重威脅獼猴桃生產(chǎn)的毀滅性細(xì)菌性病害,能夠在短時(shí)間內(nèi)造成植株的大面積死亡,極大地限制了獼猴桃產(chǎn)業(yè)的發(fā)展[2]。雖然國(guó)內(nèi)外學(xué)者已對(duì)病原菌的所屬分類、生物學(xué)特性、致病力和快速檢測(cè)方法開展了大量研究,但實(shí)際生產(chǎn)中對(duì)潰瘍病仍缺乏有效的防控手段。篩選獼猴桃高抗栽培品種并深入解析其抗病機(jī)制,是當(dāng)前獼猴桃潰瘍病防控的首要任務(wù)[3]。
中國(guó)野生獼猴桃資源種類、儲(chǔ)量及遺傳多樣性都十分豐富,經(jīng)過長(zhǎng)期的自然選擇,獼猴桃種質(zhì)資源中含有豐富的抗性基因,可為抗病基因的挖掘及抗性種質(zhì)創(chuàng)新提供育種材料[4]。與田間自然發(fā)病情況調(diào)研相比,室內(nèi)離體抗性鑒定可在一致條件下短時(shí)間內(nèi)評(píng)價(jià)多份種質(zhì)資源的抗病性,評(píng)價(jià)結(jié)果相對(duì)穩(wěn)定可靠,主要在離體枝條和葉片上進(jìn)行[5-6]。溫家康等[7]利用離體枝條接菌法對(duì)28份新疆野核桃種質(zhì)資源進(jìn)行抗性評(píng)價(jià),從中篩選出7份高抗腐爛病種質(zhì)。位杰等[8]采用離體枝條接菌法對(duì)90份梨種質(zhì)資源進(jìn)行梨火疫病的抗性評(píng)價(jià),篩選到2份抗病和8份中抗資源,用于后續(xù)的育種基因挖掘。曹雅芝等[9]采用離體葉片和枝條接種梨火疫病菌的方法對(duì)83份野蘋果資源進(jìn)行抗性評(píng)價(jià),鑒定出高抗資源1份,抗病資源4份。
植物主要通過兩種方式抵御病原微生物的侵染:一是植物自身結(jié)構(gòu)抵御微生物的入侵;二是植物細(xì)胞組織內(nèi)的生化反應(yīng),產(chǎn)生對(duì)病原物有毒的物質(zhì)或抑制病原物的生長(zhǎng)[10]。Gao等[11]發(fā)現(xiàn)番茄葉片過氧化物酶、脂氧合酶活性及總可溶性酚類物質(zhì)和類木質(zhì)素酚類聚合物的含量,與其抗青枯病菌的能力呈正相關(guān)。Archana等[12]發(fā)現(xiàn)杧果生理指標(biāo)中的可溶性固形物、總酚、總類胡蘿卜素含量等與其炭疽病的抑制效果呈顯著正相關(guān)。多項(xiàng)研究均證實(shí)植物生理指標(biāo)與抗病性之間存在著緊密關(guān)聯(lián)。
筆者擬以75個(gè)中華及美味獼猴桃品種(Actinidia chinensis var. chinensis and A. chinensis var. deliciosa)為試驗(yàn)材料,利用離體枝條及葉盤接菌的方法明確各個(gè)品種的潰瘍病抗病性,進(jìn)一步對(duì)抗性差異顯著的品種進(jìn)行生理指標(biāo)分析,篩選高效準(zhǔn)確的抗性評(píng)價(jià)指標(biāo),以期為獼猴桃的抗病育種奠定基礎(chǔ)。
1 材料和方法
1.1 材料
1.1.1 潰瘍病菌株 供試菌株M228為獼猴桃潰瘍病病原菌,丁香假單胞菌獼猴桃致病變種Pseudomonas syringae pv. actinidiae (Psa),分離自中國(guó)陜西眉縣紅陽獼猴桃,由西北農(nóng)林科技大學(xué)植物保護(hù)學(xué)院果樹病害綜合防治研究團(tuán)隊(duì)保存[13]。
1.1.2 獼猴桃種質(zhì)資源 試驗(yàn)所用的75個(gè)中華及美味獼猴桃品種均保存于中國(guó)科學(xué)院武漢植物園的國(guó)家獼猴桃種質(zhì)資源圃(武漢),樹齡為3 a(年),整體樹勢(shì)生長(zhǎng)良好。75個(gè)品種中含二倍體品種14個(gè)、四倍體品種35個(gè)和六倍體品種26個(gè)(表1)。
1.2 試驗(yàn)方法
1.2.1 離體枝條接種評(píng)價(jià) 參考張迪等[14]和裴艷剛等[15]離體致傷接種的方法,在2023年11月落葉后采集當(dāng)年生獼猴桃健康枝條,選取直徑約為0.8 cm且長(zhǎng)勢(shì)一致的枝條,截成10 cm短枝條,石蠟密封兩端以減少水分的流失?;罨囵B(yǎng)菌株,用接種環(huán)挑取M228的單菌落加入1 mL液體LB培養(yǎng)基,在28 ℃、180 r·min-1振蕩培養(yǎng)12 h,然后8000 r·min-1離心5 min。稀釋菌液至OD600=1.0,約109 CFU·mL-1。
使用打孔器在枝條上制造3 mm寬、深至木質(zhì)部的傷口,接種菌液(OD600=1.0),以無菌水處理作為陰性對(duì)照。接種42 dpi(day post inoculation)后,用小刀刮除表面,使用游標(biāo)卡尺測(cè)量病斑長(zhǎng)度,做統(tǒng)計(jì)學(xué)分析。
根據(jù)枝條不同的病斑長(zhǎng)度,對(duì)其抗性等級(jí)進(jìn)行劃分?;趶埖系萚14]和裴艷剛等[15]的方法,對(duì)抗性等級(jí)的劃分標(biāo)準(zhǔn)略作調(diào)整:抗?。╮esistant,R),病斑長(zhǎng)度<7.0 mm;耐?。╰olerant,T),7.0 mm≤病斑長(zhǎng)度<9.0 mm;感?。╯usceptible,S),9.0 mm≤病斑長(zhǎng)度<11.0 mm;高感(high susceptible,HS),病斑長(zhǎng)度≥11.0 mm。
1.2.2 離體葉片接種評(píng)價(jià) 參考Zhao等[16]的方法進(jìn)行離體葉盤真空滲透接種,采集大小均勻、長(zhǎng)勢(shì)一致的健康獼猴桃新葉,使用打孔器制備葉盤。將葉盤置于裝有30 mL菌懸液的100 mL離心管中(OD600=0.000 1,約105 CFU·mL-1),用于真空滲透。無菌水清洗后,將葉背朝上貼于0.8%水瓊脂的培養(yǎng)皿上,在16 ℃條件下置于L/D=16 h/8 h的人工氣候箱中。接種培養(yǎng)5 dpi后,拍照,然后通過Image J軟件對(duì)每個(gè)葉盤的病斑面積進(jìn)行計(jì)算。
1.2.3 生理指標(biāo)測(cè)定 參考李小方等[17]撰寫的《植物生理學(xué)實(shí)驗(yàn)指導(dǎo)》測(cè)定生理指標(biāo)。采集新鮮葉片,在同一天開展不同生理指標(biāo)的測(cè)定??偡雍坎捎梅止夤舛确y(cè)定,加入試劑后在760 nm下比較不同品種溶液的吸光值;可溶性糖含量的測(cè)定采用蒽酮比色法,糖在濃硫酸的作用下脫水生成糖醛或羥甲基糖醛,生成有色物質(zhì)后在630 nm下測(cè)定各品種的吸光值;采用雙抗體一步夾心法酶聯(lián)免疫吸附試驗(yàn)(ELISA)在450 nm波長(zhǎng)下測(cè)定木質(zhì)素的含量[18]。每個(gè)指標(biāo)測(cè)量3次重復(fù),取平均值。
1.3 數(shù)據(jù)分析
試驗(yàn)數(shù)據(jù)采用Microsoft Excel 2016進(jìn)行統(tǒng)計(jì)分析,并采用SPSS 21.0軟件進(jìn)行比較分析,采用GraphPad Prism 8制作圖表。
2 結(jié)果與分析
2.1 離體枝條接種潰瘍病病菌后發(fā)病情況
離體枝條接種潰瘍病病菌42 d后,用小刀刮開韌皮部表面,可以觀察到接種部位出現(xiàn)褐色病斑,從切口部位向兩端延伸。不同品種的枝條病斑長(zhǎng)度表現(xiàn)出差異,病斑長(zhǎng)度分布在5~16 mm之間(表1)。按照病斑長(zhǎng)度將其劃分為4個(gè)不同的抗性等級(jí)。如圖1-A所示,從左至右病斑長(zhǎng)度依次增加,對(duì)潰瘍病的抗性也依次降低。其中,金魁、翠玉、金美的病斑長(zhǎng)度均小于7 mm,為抗病品種;金桃、金艷的病斑長(zhǎng)度在7~9 mm之間,為耐病品種;皖金、金圓、東紅的病斑長(zhǎng)度在>9~11 mm之間,為感病品種;紅陽的病斑長(zhǎng)度為>11 mm,為高感品種。根據(jù)離體枝條抗性等級(jí)的劃分,可見抗病品種有16個(gè),耐病品種30個(gè),感病及高感品種分別為19個(gè)和10個(gè)(圖1-B)。進(jìn)一步驗(yàn)證了中華及美味獼猴桃種質(zhì)整體抗性較差,但其中也有抗性資源。
75個(gè)獼猴桃品種的抗性及倍性相關(guān)性如圖2所示,從左至右分別為二倍體、四倍體、六倍體中的不同抗性品種數(shù)量分布。14個(gè)二倍體品種中4個(gè)抗病,5個(gè)耐病,4個(gè)感病,1個(gè)高感,分別占比28%、36%、29%和7%;35個(gè)四倍體品種中4個(gè)抗病,15個(gè)耐病,8個(gè)感病,8個(gè)高感,其中耐病品種占比最大,為43%,其次為感病品種和高感品種,占比均為23%,抗病品種占比11%。六倍體品種共有26個(gè),含8個(gè)抗病品種,10個(gè)耐病品種,7個(gè)感病品種,只有1個(gè)高感品種,其中耐病品種數(shù)量最多,其次是抗病品種,兩者占比達(dá)到69%。
基于上述結(jié)果可以看出,雖然六倍體中抗病及耐病品種的比例相對(duì)略高,但二倍體、四倍體、六倍體品種中均有抗病、耐病、感病及高感等級(jí)的分布,品種倍性與抗病性之間并未呈現(xiàn)顯著的正相關(guān)。因此,在篩選抗性資源引種馴化時(shí),不能只依靠品種的倍性進(jìn)行選擇,要基于果實(shí)品質(zhì)、抗性評(píng)價(jià)及生理指標(biāo)分析進(jìn)行綜合選擇。
2.2 離體葉盤接種潰瘍病抗性評(píng)價(jià)結(jié)果
根據(jù)離體枝條抗性評(píng)價(jià)結(jié)果,選取9個(gè)抗性等級(jí)不同的品種(抗?。航鹂?、翠玉、金美;耐?。航鹌G、金桃;感病:皖金、金圓、東紅;高感:紅陽)進(jìn)行離體葉盤抗性評(píng)價(jià)試驗(yàn),進(jìn)一步驗(yàn)證其抗病性。接種菌液的葉盤培養(yǎng)后會(huì)逐漸生成黑褐色病斑,而接種水的葉盤(陰性對(duì)照)基本上不會(huì)出現(xiàn)黑褐色病斑,由此證實(shí)了結(jié)果的可靠性。光照培養(yǎng)5 d后,不同品種的葉盤發(fā)病面積存在差異。以枝條抗性評(píng)價(jià)結(jié)果為參考,發(fā)現(xiàn)隨著品種枝條潰瘍病斑越長(zhǎng),對(duì)應(yīng)葉盤病斑面積也越大,兩者結(jié)果呈正相關(guān),如圖3所示。
運(yùn)用軟件計(jì)算病斑面積時(shí),發(fā)現(xiàn)由于每個(gè)品種真空滲透的時(shí)間不同,葉盤可能會(huì)存在壞死的情況,需要挑取正常發(fā)病葉片計(jì)算發(fā)病面積,具體數(shù)值見表2。
9個(gè)品種中,金魁、翠玉接種潰瘍病病菌后,病斑占比最小,分別為3.51%和5.48%,均在6%以下。東紅和紅陽發(fā)病最為嚴(yán)重,病斑占比分別為45.79%和46.75%,均在40%以上。對(duì)不同品種的葉盤病斑占比與枝條病斑長(zhǎng)度進(jìn)行相關(guān)性分析,其相關(guān)系數(shù)達(dá)0.947 8,如圖4所示,呈極顯著相關(guān)。說明不同品種枝條病斑越長(zhǎng),葉盤病斑占比越大,對(duì)潰瘍病的抗性越弱。
2.3 不同生理指標(biāo)測(cè)定結(jié)果
對(duì)上述9個(gè)抗性差異品種采集葉片進(jìn)行生理指標(biāo)測(cè)定,發(fā)現(xiàn)不同品種的生理數(shù)據(jù)間存在差異。根據(jù)表3可知,9個(gè)品種葉片的總酚含量(w,后同)在3~6 mg·g-1之間,其中抗性品種翠玉的總酚含量最高,為5.7 mg·g-1,抗性品種金魁和金美總酚含量均大于4.7 mg·g-1;耐病品種金桃、金艷葉片中的總酚含量在4.4~4.6 mg·g-1之間;高感品種紅陽的總酚含量最低,為3.07 mg·g-1。由此可見,隨著品種抗性的降低,總酚含量呈現(xiàn)下降的趨勢(shì)。同樣,9個(gè)品種中抗性品種翠玉的可溶性糖含量最高,葉片中可溶性糖含量為29.88 mg·g-1,高感品種紅陽的可溶性糖含量最低,為18.34 mg·g-1;可溶性糖含量也隨著抗性的減弱呈降低趨勢(shì)。針對(duì)木質(zhì)素含量,抗病品種金美的最高,新鮮葉片中為9.59 mg·100 g-1,其次為翠玉和金魁,均屬于抗病品種。隨著潰瘍病抗性的降低,木質(zhì)素含量也在發(fā)生變化,其中,紅陽的木質(zhì)素含量最低,低于其他8個(gè)品種,只有8.87 mg·100 g-1。
綜上可知,不同品種間的總酚、可溶性糖和木質(zhì)素含量不同,但抗病品種中的含量均為最高,明顯高于耐病品種及感病品種,高感品種中生理指標(biāo)含量均為最低。
2.4 品種抗病表型和生理指標(biāo)相關(guān)性分析
9個(gè)品種中金魁、翠玉、金美枝條和葉盤的病斑表型最小,而葉片中的總酚、可溶性糖和木質(zhì)素含量均高于其他獼猴桃品種,為抗病品種;紅陽枝條和葉盤的病斑表型最大,總酚、可溶性糖和木質(zhì)素含量最低,屬于高感品種。對(duì)不同品種間生理指標(biāo)和枝條病斑長(zhǎng)度進(jìn)行相關(guān)性分析,如圖5所示,可見總酚含量、可溶性糖含量、木質(zhì)素含量均與枝條病斑長(zhǎng)度呈極顯著負(fù)相關(guān),相關(guān)系數(shù)分別為-0.927、-0.939、-0.871。
綜合而言,潰瘍病菌接種枝條后病斑長(zhǎng)度越短,接種葉片后病斑占比越小,品種的抗病性越強(qiáng),對(duì)應(yīng)生理指標(biāo)中的總酚、可溶性糖及木質(zhì)素含量越高。相反,潰瘍病病菌接種枝條后病斑長(zhǎng)度越長(zhǎng),接種葉片后病斑占比越大,品種越易感病,對(duì)應(yīng)生理指標(biāo)中的總酚、可溶性糖及木質(zhì)素含量越低。
3 討 論
潰瘍病是限制獼猴桃產(chǎn)業(yè)發(fā)展的重要病害之一,其防治方法主要有選擇抗病品種、農(nóng)業(yè)防治、化學(xué)防治和生物防治等[19]。相較而言,栽培抗性品種是提高獼猴桃抗?jié)儾∧芰Φ淖钣行Т胧20]。筆者對(duì)75個(gè)中華及美味獼猴桃品種進(jìn)行離體枝條室內(nèi)抗性鑒定,結(jié)果顯示不同品種對(duì)潰瘍病的抗性不同,75個(gè)品種中有抗病品種16個(gè),耐病品種30個(gè),感病品種19個(gè)及高感品種10個(gè),其中金魁為抗病品種,金桃、金艷為耐病品種,紅陽為高感品種,該結(jié)果與宋雅林等[21]和崔麗紅等[22]的鑒定結(jié)果一致。在離體葉盤抗性鑒定中,不同抗性等級(jí)的品種病斑占比不同,隨著抗?jié)儾∧芰Φ慕档?,其病斑占比也在逐漸增大。本研究顯示,紅陽占比最大,為高感品種,與枝條抗性結(jié)果顯著相關(guān),這也與Zhao等[23]在葉盤法中得到的結(jié)果相似。室內(nèi)離體枝條接種與葉盤接種潰瘍病病菌的方法具有極顯著相關(guān)性,且與田間結(jié)果基本一致,證實(shí)基于兩者開展獼猴桃潰瘍病抗性鑒定是可靠的。
植物長(zhǎng)期處在自然選擇進(jìn)化中,不同品種間抗性存在差異,其生理指標(biāo)也存在差異[24]。Wang等[25]發(fā)現(xiàn)接種柑橘潰瘍病病菌后,不同柑橘抗性品種過氧化氫酶(CAT)、過氧化物酶(POD)和苯丙氨酸解氨酶(PAL)活性存在差異。酚類在植物中屬于化感物質(zhì),對(duì)植物會(huì)產(chǎn)生直接、間接的促進(jìn)或抑制作用。在辣椒中抗病品種的總酚含量高于感病品種[26]。糖是植物能量?jī)?chǔ)存形式和物質(zhì)轉(zhuǎn)移媒介,在植物抗病性中發(fā)揮著重要作用。番茄接種病菌后,可溶性糖含量顯著上升,說明糖與植物抗病性間存在緊密關(guān)聯(lián)[27-28]。木質(zhì)素是植物中復(fù)雜的生物化合物[29],其與木質(zhì)化和細(xì)胞壁有著顯著的關(guān)聯(lián)性,可以抵抗病原菌的侵入[30]。本研究顯示,獼猴桃葉片生理指標(biāo)中總酚、可溶性糖和木質(zhì)素含量與獼猴桃抗?jié)儾∧芰Τ蕵O顯著正相關(guān),當(dāng)獼猴桃品種越抗病時(shí),其葉片中總酚、可溶性糖和木質(zhì)素含量越高。
基于本文結(jié)果,筆者發(fā)現(xiàn)雖然中華及美味獼猴桃品種對(duì)潰瘍病的抗性較差,但仍存在抗病品種及耐病品種。通過離體枝條、離體葉盤抗性評(píng)價(jià)及總酚、可溶性糖和木質(zhì)素含量等生理指標(biāo)的分析,進(jìn)一步驗(yàn)證了金魁、翠玉、金美屬于抗病品種,皖金、金圓、東紅為感病品種,紅陽為高感品種,室內(nèi)評(píng)價(jià)結(jié)果與田間結(jié)果高度一致。對(duì)于果實(shí)品質(zhì)優(yōu)良的抗病品種建議可以進(jìn)一步推廣栽培,對(duì)于品質(zhì)稍差的抗性品種可將其作為親本用于抗病雜交育種。此外,植物抗病性與生理指標(biāo)之間存在顯著的相關(guān)性,可以直接基于生理指標(biāo)進(jìn)行抗病種質(zhì)的快速鑒定,或者基于這些指標(biāo)可進(jìn)一步開發(fā)抗性分子標(biāo)記,加快獼猴桃抗性育種進(jìn)程。
4 結(jié) 論
對(duì)75個(gè)獼猴桃品種進(jìn)行了離體枝條抗性評(píng)價(jià),從中得出16個(gè)抗病品種,30個(gè)耐病品種,19個(gè)感病品種和10個(gè)高感品種。選擇抗性差異的9個(gè)品種進(jìn)行離體葉盤抗性評(píng)價(jià)及生理指標(biāo)測(cè)定,發(fā)現(xiàn)室內(nèi)離體葉盤評(píng)價(jià)和枝條接種潰瘍病病菌的方法具有極顯著相關(guān)性,離體葉盤病斑面積與品種抗病性存在顯著負(fù)相關(guān),總酚、可溶性糖及木質(zhì)素含量與品種抗病性存在顯著正相關(guān),研究結(jié)果為獼猴桃育種及快速抗性鑒定提供理論基礎(chǔ)。
參考文獻(xiàn) References:
[1] 黃宏文. 中國(guó)獼猴桃種質(zhì)資源[M]. 北京:中國(guó)林業(yè)出版社,2013.
HUANG Hongwen. Actinidia germplasm resources in China[M]. Beijing:China Forestry Publishing House,2013.
[2] MCCANN H C,LI L,LIU Y F,LI D W,PAN H,ZHONG C H,RIKKERINK E H A,TEMPLETON M D,STRAUB C,COLOMBI E,RAINEY P B,HUANG H W. Origin and evolution of the kiwifruit canker pandemic[J]. Genome Biology and Evolution,2017,9(4):932-944.
[3] 鐘彩虹,李黎,潘慧,鄧?yán)?,陳美艷. 獼猴桃細(xì)菌性潰瘍病的發(fā)生規(guī)律及綜合防治技術(shù)[J]. 中國(guó)果樹,2020(1):9-13.
ZHONG Caihong,LI Li,PAN Hui,DENG Lei,CHEN Meiyan. Occurrence rule and comprehensive control of kiwifruit bacterial canker disease[J]. China Fruits,2020(1):9-13.
[4] 李黎,潘慧,李文藝,韓飛,胡光明,張琦,鐘彩虹. 野生中華獼猴桃對(duì)細(xì)菌性潰瘍病的抗性評(píng)價(jià)[J]. 湖北民族大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,40(3):241-248.
LI Li,PAN Hui,LI Wenyi,HAN Fei,HU Guangming,ZHANG Qi,ZHONG Caihong. Evaluation of wild Actinidia chinensis var. chinensis germplasm resources resistant to bacteria canker[J]. Journal of Hubei Minzu University (Natural Science Edition),2022,40(3):241-248.
[5] 王麗,涂洪濤,侯琿,周貝貝,孟帥,堵墨. 桃枝枯病病原菌鑒定及品種(種質(zhì))室內(nèi)抗病性評(píng)價(jià)[J]. 果樹學(xué)報(bào),2024,41(5):980-989.
WANG Li,TU Hongtao,HOU Hui,ZHOU Beibei,MENG Shuai,DU Mo. Identification of the pathogen of peach shoot blight and indoor resistance evaluation of peach varieties (germplasms)[J]. Journal of Fruit Science,2024,41(5):980-989.
[6] 陳泉,徐永紅,何錦輝,楊宇衡. 柑橘輪斑病抗性鑒定方法的建立[J]. 果樹學(xué)報(bào),2022,39(2):295-301.
CHEN Quan,XU Yonghong,HE Jinhui,YANG Yuheng. Establishment of an identification method of Citrus resistance to target spot[J]. Journal of Fruit Science,2022,39(2):295-301.
[7] 溫家康,馬榮,王大芬,張萍. 新疆野核桃種質(zhì)資源對(duì)核桃腐爛病的抗性評(píng)價(jià)[J]. 果樹學(xué)報(bào),2022,39(8):1469-1478.
WEN Jiakang,MA Rong,WANG Dafen,ZHANG Ping. Evaluation of resistance of Xinjiang wild walnuts to walnut canker[J]. Journal of Fruit Science,2022,39(8):1469-1478.
[8] 位杰,蔣媛,王巖,謝宏江,張亞杰,李永豐. 不同梨種質(zhì)資源對(duì)火疫病菌的抗性評(píng)價(jià)[J]. 經(jīng)濟(jì)林研究,2024,42(1):107-115.
WEI Jie,JIANG Yuan,WANG Yan,XIE Hongjiang,ZHANG Yajie,LI Yongfeng. Evaluation of the resistance of different pear germplasm resources to Erwinia amylovora[J]. Non-wood Forest Research,2024,42(1):107-115.
[9] 曹雅芝,陳衛(wèi)民,張勝軍,陸彪,崔志軍,李克梅,韓麗麗,張學(xué)超,張曉倩,阿依達(dá)娜·阿思克別列. 83份新疆野蘋果種質(zhì)資源對(duì)梨火疫病菌的抗病性評(píng)價(jià)[J]. 植物檢疫,2024,38(1):33-46.
CAO Yazhi,CHEN Weimin,ZHANG Shengjun,LU Biao,CUI Zhijun,LI Kemei,HAN Lili,ZHANG Xuechao,ZHANG Xiaoqian,Ayidana·Asikebielie. Evaluation of disease resistance of 83 Malus sieversii germplasm resources to Erwinia amylovora[J]. Plant Quarantine,2024,38(1):33-46.
[10] 劉興菊. 2,3-丁二醇誘導(dǎo)草地早熟禾抗褐斑病過程中木質(zhì)素生物合成的研究[D]. 蘭州:甘肅農(nóng)業(yè)大學(xué),2023.
LIU Xingju. 2,3-butanediol induced lignin biosynthesis in resistance to brown patch in Poa pratensis[D]. Lanzhou:Gansu Agricultural University,2023.
[11] GAO Y,WANG L,LIU R,TIAN J H,CAI K Z. Physiological response and proteomic profiling of biochar-induced tomato resistance to bacterial wilt[J]. Scientia Horticulturae,2023,317:112055.
[12] ARCHANA T J,GOGOI R,KAUR C,VARGHESE E,SHARMA R R,SRIVASTAV M,TOMAR M,KUMAR M,KUMAR A. Bacterial volatile mediated suppression of postharvest anthracnose and quality enhancement in mango[J]. Postharvest Biology and Technology,2021,177:111525.
[13] 趙志博. 獼猴桃細(xì)菌性潰瘍病菌群體結(jié)構(gòu)與致病機(jī)制研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2016.
ZHAO Zhibo. Population composition and pathogenic mechanism in Pseudomonas syringae pv. actinidiae[D]. Yangling:Northwest A amp; F University,2016.
[14] 張迪,高小寧,趙志博,秦虎強(qiáng),黃麗麗. 不同獼猴桃品種對(duì)潰瘍病的抗性差異及其機(jī)制研究[J]. 果樹學(xué)報(bào),2019,36(11):1549-1557.
ZHANG Di,GAO Xiaoning,ZHAO Zhibo,QIN Huqiang,HUANG Lili. Differences in resistance to Pseudomonas syringae pv. actinidiae and acting mechanism of different kiwifruit varieties[J]. Journal of Fruit Science,2019,36(11):1549-1557.
[15] 裴艷剛,馬利,歲立云,崔永亮,劉曉敏,龔國(guó)淑. 不同獼猴桃品種對(duì)潰瘍病菌的抗性評(píng)價(jià)及其利用[J]. 果樹學(xué)報(bào),2021,38(7):1153-1162.
PEI Yangang,MA Li,SUI Liyun,CUI Yongliang,LIU Xiaomin,GONG Guoshu. Resistance evaluation and utilization of different kiwifruit cultivars to Pseudomonas syringae pv. actinidiae[J]. Journal of Fruit Science,2021,38(7):1153-1162.
[16] ZHAO Z B,GAO X N,HUANG Q L,HUANG L L,QIN H Q,KANG Z. Identification and characterization of the causal agent of bacterial canker of kiwifruit in the Shaanxi province of China[J]. Journal of Plant Pathology,2013,95(1):155-162.
[17] 李小方,張志良. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M]. 5版. 北京:高等教育出版社,2016.
LI Xiaofang,ZHANG Zhiliang. Guidelines for plant physiology experiments[M]. 5th ed. Beijing:Higher Education Press,2016.
[18] EYNCK C,KOOPMANN B,KARLOVSKY P,VON TIEDEMANN A. Internal resistance in winter oilseed rape inhibits systemic spread of the vascular pathogen Verticillium longisporum[J]. Phytopathology,2009,99(7):802-811.
[19] 王麗,周增強(qiáng),侯琿,方金豹. 我國(guó)獼猴桃細(xì)菌性潰瘍病研究分析及防控[J]. 中國(guó)南方果樹,2017,46(2):178-182.
WANG Li,ZHOU Zengqiang,HOU Hui,F(xiàn)ANG Jinbao. Analysis and prevention of bacterial ulcer disease in kiwifruit in China[J]. South China Fruits,2017,46(2):178-182.
[20] 蔣媛,位杰,王巖,李永豐,謝宏江,崔龍. 杜梨實(shí)生苗遺傳多樣性分析及火疫病抗性鑒定評(píng)價(jià)[J]. 果樹學(xué)報(bào),2023,40(10):2204-2213.
JIANG Yuan,WEI Jie,WANG Yan,LI Yongfeng,XIE Hongjiang,CUI Long. Analysis of genetic diversity and evaluation of disease resistance to pear fire blight of Pyrus betulifolia Bunge seedling[J]. Journal of Fruit Science,2023,40(10):2204-2213.
[21] 宋雅林,林苗苗,鐘云鵬,陳錦永,齊秀娟,孫雷明,方金豹. 獼猴桃品種(系)潰瘍病抗性鑒定及不同評(píng)價(jià)指標(biāo)的相關(guān)性分析[J]. 果樹學(xué)報(bào),2020,37(6):900-908.
SONG Yalin,LIN Miaomiao,ZHONG Yunpeng,CHEN Jinyong,QI Xiujuan,SUN Leiming,F(xiàn)ANG Jinbao. Evaluation of resistance of kiwifruit varieties(line) against bacterial canker disease and correlation analysis among evaluation indexes[J]. Journal of Fruit Science,2020,37(6):900-908.
[22] 崔麗紅,高小寧,張迪,黃麗麗,黃蔚,陳繼富. 湘西地區(qū)獼猴桃細(xì)菌性潰瘍病抗性資源篩選及其抗性機(jī)理研究[J]. 植物保護(hù),2019,45(3):158-164.
CUI Lihong,GAO Xiaoning,ZHANG Di,HUANG Lili,HUANG Wei,CHEN Jifu. Screening of resistance resource and resistance mechanism of kiwifruit to Pseudomonas syringae pv. actinidiae in Xiangxi area[J]. Plant Protection,2019,45(3):158-164.
[23] ZHAO C,LIU W,ZHANG Y L,LI Y Z,MA C,TIAN R Z,LI R,LI M J,HUANG L L. Two transcription factors,AcREM14 and AcC3H1,enhance the resistance of kiwifruit Actinidiachinensis var. chinensis to Pseudomonas syringae pv. actinidiae[J]. Horticulture Research,2023,11(1):uhad242.
[24] AZIZAH R,RACHMAWATI D. Physiological resistance responses of rice plant (Oryza sativa) provided with silicate fertilizer to sheath blight disease (Rhizoctonia solani)[J]. Biodiversitas Journal of Biological Diversity,2023,24(7):3785-3795.
[25] WANG Y,F(xiàn)U X Z,LIU J H,HONG N. Differential structure and physiological response to canker challenge between ‘Meiwa’ kumquat and ‘Newhall’ navel orange with contrasting resistance[J]. Scientia Horticulturae,2011,128(2):115-123.
[26] 王寧. 辣椒根系化感物質(zhì)/化學(xué)信號(hào)的原位分析及作用研究[D]. 哈爾濱:東北林業(yè)大學(xué),2022.
WANG Ning. In situ analysis and function ofallelochemicals/chemical signals in pepper root system[D]. Harbin:Northeast Forestry University,2022.
[27] 梁艷麗,趙婧,劉林,楊靜,李成云. 植物細(xì)胞壁在植物與病原菌互作中的作用[J]. 分子植物育種,2016,14(5):1255-1261.
LIANG Yanli,ZHAO Jing,LIU Lin,YANG Jing,LI Chengyun. The role of the plant cell wall in plant pathogen interactions[J]. Molecular Plant Breeding,2016,14(5):1255-1261.
[28] GU A Q,ZHAO D N,LIU H Q,F(xiàn)U W,LI G Z,HAO L. Paraburkholderia sp. GD17 improves tomato plant growth and resistance to Botrytis cinerea-induced disease[J]. Plant and Soil,2023,486(1):487-502.
[29] MA Q H. Lignin biosynthesis and its diversified roles in disease resistance[J]. Genes,2024,15(3):295.
[30] LIU M X,LIU H Y,ZHANG J D,LI C,LI Y K,YANG G Y,XIA T,HUANG H T,XU Y,KONG W S,HOU B Z,QI X Q,WANG J. Knockout of CAFFEOYL-COA 3-O-METHYLTRANSFERASE 6/6L enhances the S/G ratio of lignin monomers and disease resistance in Nicotiana tabacum[J]. Frontiers in Plant Science,2023,14:1216702.